在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
二次根式的除法算二次根式的除法教学设计篇一
知识结构:
重点难点分析:
教法建议:
教学设计示例
一、教学目标
2.会进行简单的运算;
4. 培养学生利用公式进行化简与计算的能力;
二、教学重点和难点
2.难点:与商的算术平方根的关系及应用.
三、教学方法
内容可引导学生自学,进行总结对比.
四、教学手段
利用投影仪.
五、教学过程
(一) 引入新课
学生回忆及得算数平方根和性质: (a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)
学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:
(二)新课
商的算术平方根.
一般地,有 (a≥0,b>0)
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
例1 化简:
(1) ; (2) ; (3) ;
解∶(1)
(2)
(3)
例2 化简:
(1) ; (2) ;
解:(1)
(2)
让学生观察例题中分母的特点,然后提出, 的问题怎样解决?
学生讨论本节课所学内容,并进行小结.
(三)小结
1.商的算术平方根的性质.(注意公式成立的条件)
2.会利用商的算术平方根的性质进行简单的二次根式的化简.
(四)练习
1.化简:
(1) ; (2) ; (3) .
2.化简:
(1) ; (2) ; (3)
教材p.183习题11.3;a组1.
二次根式的除法算二次根式的除法教学设计篇二
知识结构:
重点难点分析:
教法建议:
教学设计示例
一、教学目标
4. 培养学生利用二次根式的除法公式进行化简与计算的能力;
二、教学重点和难点
2.难点:二次根式的除法与商的算术平方根的关系及应用.
三、教学方法
内容可引导学生自学,进行总结对比.
四、教学手段
利用投影仪.
五、教学过程
(一) 引入新课
学生回忆及得算数平方根和性质: (a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)
学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:
(二)新课
商的算术平方根.
一般地,有 (a≥0,b>0)
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
例1 化简:
(1) ; (2) ; (3) ;
解∶(1)
(2)
(3)
例2 化简:
(1) ; (2) ;
解:(1)
(2)
让学生观察例题中分母的特点,然后提出, 的问题怎样解决?
学生讨论本节课所学内容,并进行小结.
(三)小结
1.商的算术平方根的性质.(注意公式成立的条件)
2.会利用商的算术平方根的性质进行简单的二次根式的化简.
(四)练习
1.化简:
(1) ; (2) ; (3) .
2.化简:
(1) ; (2) ; (3)
教材p.183习题11.3;a组1.
二次根式的除法算二次根式的除法教学设计篇三
(一)知识与技能:
2.会用二次根式性质进行有关计算。
3.了解逆用公式在实数范围内因式分解。
(二)过程与方法:体验性质的推导过程,感受由特殊到一般的方法。
(三)情感态度:激发对数学的兴趣。
二、教学重点:
二次根式成立的条件,双重非负性;
用性质进行计算。
三、教学难点
性质的逆用。
四、教学准备:
课件
五、教学过程
(一)复习提问
1.什么叫二次根式?
(二)二次根式的简单性质
上节课我们已经学习了二次根式的定义,并了解了第一个简单性质
(三)小结
1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.
2.关于公式的应用。
(1)经常用于乘法的运算中.
二次根式的除法算二次根式的除法教学设计篇四
这节课因为有了前面学习的基础,所以学生学习起来并不难,本节课的重点是二次根式的乘除法法则,难点是灵活运用法则进行计算和化简。
开始可以从二次根式的性质引入,将二次根式的性质反过来就是二次根式的乘除法法则:,利用这个法则,可以进行二次根式的乘法和除法运算。
本节课中的易错点是运算的最后结果不是最简结果,因为学生只顾着运用法则进行计算了,忽略了二次根式的化简,举例说明:,这个运算过程只是运用了法则,但没有进行化简,应该是。
随堂练习中一个题目对于这个题目,很多学生表示都不知道从何下手,只有一些程度好的学生有自己的看法,我让学生进行了讲解:学生能将分母中不含有根号,想到用来代替,然后再利用法则进行解答,真是聪明。学生的这种做法,我给予了充分的肯定,并表扬了这位同学。并且我也用分母有理化的思想进行了另一种方法的讲解,因为后面我想补一节分母有理化,所以在这里只是展示了一下过程,这样同样能达到化简的.目的,然后让学生对比了一下刚才那位同学的做法,没有展开讲。
剩下的时间我主要针对法则让学生进行了练习,做正确的小组加分,不正确的进行点评,到下课时,学生基本掌握了二次根式的乘除法的计算。
学生比较容易理解这两个法则,下面可以学习例2,主要是让学生通过看课本来理解法则的应用,在学生理解例题的基础上,让学生思考还有没有其他方法来解决这些题目,以此来增加学生解题的思路与方法。在这里可以拿出1—2个题目来示范。
法一:这一种也是课本上的方法,是直接利用了二次根式的乘法法则。
法二:这是利用了二次根式的性质。
通过这个题目的讲解,可让学生灵活掌握二次根式的计算方法。
再一个就是二次根式的乘除法混合运算,课本上有一个例子,通过这个例子引出一个公式:,算是对法则的一个延伸。学生通过这个公式,也可以进行一些二次根式的运算。
二次根式的除法算二次根式的除法教学设计篇五
学案设计:原先设想在初三结束前完成二次根式一章,由于历史生物的结业考试,二次根式的加减实在是讲不完,只好把乘除讲完。时间赶到二次根式除法,于是,在学案的设计上,从处理方式与环节上,都与二次根式乘法相类似,但是比乘法所涉及的数学思想、数学思维力度更高,首先学习过程中用到类比的思想,与乘法类比,提高了学生的接受度,思维更加的顺畅,在本节中最简二次根式的概念的两个条件分别分散到乘法和除法两节中,最后想概括出这一概念,还是因为课堂效率不高没有能够概括出。其次,分母有理化教材虽然删掉,但是用所学过的知识,学生经过思考,头脑有些灵活性的话,是可以自己想出办法解决的,尤其是对于分母是整个根号的这种情况,因此在本节课的最后加上了把3中分母的.根号化掉,事实上在用公式计算时,由于没有领着学生对公式进行再认识,学生先用乘法化简,出现了类似的结果,学生经过自己动脑思考会想出不同的办法解决这个问题的。
展示的范围与效果:全员展示,基本性的题目,公式的运用,主要是5、6号同学,虽然他们都各自出现不同的问题,但是通过展示能够正确的利用公式,有的六号非常顺利的解决问题,有的出现了问题,但能够说出自己的根据,有的根本不会,通过展示指导能够得到提高,5号同学展示的难度相对提高,由于学习能力较6号强,都顺利的完成任务,并总结出方法,对于难度较大的题目,找出不同解决方法进行展示,让学生从不同的角度进行问题的解决,数学思想方法的展示,主要的是学习比较灵活的学生,他们能够根据自己对知识理解想出不同的方法,并根据自己在解决问题中的关键点或难点及时的提问或提示,基本上每个小组的1号同学都得到展示,在展示的过程中对于其他同学是一个学习提高的过程,全班展示率达到50%,在展示的过程中提高了学习的效率和积极性。
数学知识是系统的,练习的,新旧知识之间是相互联系的,对于这节课,如果能够在有5分钟,及时的对知识体系概念进行总结可能会更好一些,最简二次根式的两个条件都已经在做题的过程中体现出来,但概念没有进行总结。这是这节课的一个不足。其次本节课的评价不够具体,有效。
二次根式的除法算二次根式的除法教学设计篇六
2.熟练地进行二次根式的加、减、乘、除混合运算
难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子
一、复习
3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
二、例题
例1x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
x-2且x0
解因为n2-90,9-n20,且n-30,所以n2=9且n3,所以
例3
解因为1-a>0,3-a0,所以
a<1,|a-2|=2-a.
分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算
注意:
所以在化简过程中,
例6
分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷。
三、课堂练习
1.选择题:
a.a2b.a2
c.a2d.a<2
a.x+2b.-x-2
c.-x+2d.x-2
a.2xb.2a
c.-2xd.-2a
2.填空题:
4.计算:
四、小结
1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握。
2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围。
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件。
4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题。
五、作业
1.x是什么值时,下列各式在实数范围内有意义?
2.把下列各式化成最简二次根式:

一键复制