每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
倍数与因数的关系篇一
课时安排
第六课时
:1.在教学活动中,帮助学生理解质数和合数的意义。
2.培养学生的观察、比较、抽象、概括能力。
3.使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。
:1.在教学活动中,帮助学生理解质数和合数的意义。
2.培养学生的观察、比较、抽象、概括能力。
3.使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。
由于受不同环境的影响,学生思维还是存在一定的差距。在学习此部分内容时,大部分孩子都能很快理解并掌握。
(一)游戏引入新课
师:我们一起来玩一个拼图游戏,你们愿意吗?下面我先说一说游戏的要求是:每个小组都有一袋大小相等的正方形,但是每个小组小正方形的个数都不一样,请你将袋中所有的小正方形拼成一个长方形或稍微大一点的正方形。比比哪个组设计的方案最多,请把你们的设计方案记录下来。
(学生动手操作,教师巡视,纠正错误。)
学生汇报,教师进行板书。
(有11块小正方形的小组不同意,因为只有一种设计方案。教师板书: 1 × 11 11)
师:还是这11块小正方形,大家帮助他们想想还有其他设计方案吗?
师:哪个组也遇到了与他们组同样的困难?
(板书:29、7、13、17。)
师:为什么它们只有一种设计方案呀?(它们只有1和它本身两个因数)
板书:29、7、13、17的因数。
师:指合数说,为什么它们不是一种设计方案?(它们都有两个以上约数)
师:如果重新比赛,让你们自己选择小正方形的个数,你们肯定不会选择哪些数?为什么不选择11、29、7、13、17呢?(因为它们只有两个因数)
师:看来你们选择的标准是根据数的因数的个数,我这还有几袋小正方形,(出示信封1-12),请你马上写下它们的因数。
师:请你仔细观察每个数因数的特点,并把这些数分类。
(学生进行小组讨论,讨论后学生汇报的情况是:①按数自身奇偶性分类 ②按因数个数的奇偶性分类 ③按因数的个数分类 。)
师:根据第③种分类的方法,移动1~12这些数,将出现下面的分类。
3 6
5 8
7 9
11 10
12
师:你能给这两类数取个名字吗?
(学生起名,师提出质数与合数并板书)
师:谁能用自己的话说说什么叫质数、合数?
板书:“1” 既不是质数也不是合数
师:你现在能迅速判断出一个数是质数还是合数了吗?
(媒体出示一组数据)
师:组内商量商量,你们组喜欢挑质数就把质数挑出来,喜欢挑合数就把合数挑出来。看哪个组挑的又快又准。
(学生汇报,教师板书如下:质数: 2、3、23、31、37、41、47;合数:25、33、49、51、63、74、36、70;既不是质数也不是合数的:1)
师:你们为什么都不挑1呀?
生:一个数的因数除了1和它本身,再找到第三个因数就可以判断出这个数是合数。
(二) 游戏活动
1、 猜电话号码
⑴10以内最大的既是偶数又是合数。
⑵10以内最小的既是质数又是奇数。
⑶10以内最小的质数。
⑷10以内最大的质数。
⑸10以内最小的合数。
⑹这个数既不是质数也不是合数。
⑺10以内最大的偶数。
⑻10以内最大的既是奇数又是合数。
(学生汇报:电话号码是83274189)
2、 自我介绍
师:下面做的活动是自我介绍。根据自己的学号说说这个数的特性,能说多少就说多少?如:我是1号,1是奇数,它既不是奇数又不是合数;我是9号,它是自然数,整数,是奇数,又是合数。
(学生开展小组内的自我介绍,然后安排班内的交流)
我是20号。它是偶数,也是合数,既能被2整除,又能被5整除。
(三)小结与质疑
师:通过今天这节课的学习,你有什么收获?你还有什么要问的?
(四)动脑筋出教室
师:请最特殊的数出教室(1号)请既是奇数又是合数的出教室;请质数出教室;请既是偶数又是合数的出教室。
(五)练习设计:把1——20各数按要求填入合适的圆圈内。
质数
合数
奇数
偶数
找质数
只有1和它本身两个因数的数——质数
除了1和它本身以外还有别的因数的数——合数
1既不是质数,也不是合数。
个性化教学思路:
在数学活动中,学生通过观察,试验,归纳获得数学猜想,并进一步证明,能有条理地表达自己的思考过程,认识数学与生活的联系,体验数学活动中的探索与创造,感受数学的严谨及数学结论的确切。
倍数与因数的关系篇二
(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
(2)教学目标:
知识、技能目标:
1、让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
情感、价值目标:
2、让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
(3)教学重点:
(4)教学难点:
掌握找一个数的倍数和因数的方法。
首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。
其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
(1)合作交流、揭示主题
用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。
(2)教学概念、正反促成
利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。
(3)设疑,置疑,激发学生的反思力度
(5)讨论互评,自主学习
1×36=36
36÷1=36
2×18=36
36÷2=18
3×12=36
36÷3=12
4×9=363
6÷4=9
6×6=36
36÷6=6
(6)自主不失指导,掌握不失总结
如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
小结:不能被这个数整除的数就不是这个数的因数。
小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。
总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。
xxxx
倍数与因数的关系篇三
第 1 课时 数的世界
[教学内容] 数的世界(第2-3页)
[教学目标]
1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。
2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
3、了解什么是整除。
[教学重、难点]
1、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
2、建立整除的概念。
[教学过程]
一、数的世界
了解“水果店”的情境,呈现了生活中的数有自然数、负数、小数。并认识自然数、整数,使对数的认识进一步系统化。
先让学生观察情境图,说说图中有哪些数,并给它们分类。
二、因数与倍数
1、 在解决书上提出的问题的过程中引出算式。
5×4=20(元)
进而说明倍数和因数的含义,即20是4的倍数,20也是5的倍数,4是20的因数,5也是20的因数。从而体会倍数与因数的含义。
进而出示一个除法算式,如:18÷6=3 启发学生思考:根据整数除法算式能不能确定两个数之间的倍数关系。强调:因数和倍数是相互依存的。
说明:在研究倍数和因数,范围为不是零的自然数。
三、找一找
1、 判断题目中给的数是不是7的倍数与同学交流
体会可以通过想乘法算式或除法算式的方法来判断。
2、 找7的倍数:
引导学生体会一般可以用想乘法算式的方法来找一个数的倍数,让学生领会一个数的倍数的个数是无限的。
四、练一练:
第2题:先让学生自己找一找4的倍数和6的倍数,并用不同的符号做好记号。然后使学生交流,并说说找倍数的方法。最后,说说哪几个数既是4的倍数有是6的倍数。
第3题:先让学生独立完成,并思考怎样才能不遗漏。
[板书设计]
倍数与因数
像0、1、2、3、4、5、…这样的数是自然数。
像-3、-2、-1、0、1、2、…这样的数是整数。
a ÷b=c(a、b、c、都为整数,且b不为0)
a能被b整除,b能整除a,a是b和c的倍数,b和c是a的因数。
第 2课时
[教学内容] 2、5的倍数特征(第4-5页)
[教学目标]
1、探索2、5倍数的特征,理解2、5倍数的特征,能判断一个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或是偶数。
[教学重、难点] 理解2、5倍数的特征,能判断一个数是不是2或5的倍数。
[教学过程]
一、5的倍数的特征的探究
让学生在100以内的数表中找出5的倍数,并观察、思考5的倍数有什么特征。从而 , 引导学生归纳5的倍数的特征,教师进而总结:个位上是0或5的数是5的倍数。
试一试:尝试用5的倍数特征来判断一个数是不是5的倍数。
二、2的倍数的特征的探究
让学生在100以内的数表中找出2的倍数,用自己的方式做记号,并观察、思考2的倍数有什么特征。在此基础上组织学生交流。
引导学生归纳2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
三、奇数、偶数
在学生理解2的倍数的特征后再揭示偶数、奇数的含义,并进行你问 我答的判断练习。
四、练一练:
五、数学游戏:
这是围绕“2、5的倍数的特征”设计的数学游戏,通过游戏加深学生对2、5的倍数的特征的理解。
六、思考:能同时被2和5整除的特征是什么?
[板书设计]
2、5的倍数的特征
5的倍数的特征:个位上是0或5的数是5的倍数。
2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
是2 的倍数的数叫偶数。 不是2 的倍数的数叫奇数。
能同时被2和5整除的特征是个位上都是0
第3课时
[教学内容] 3的倍数特征(第6-7页)
[教学目标]
1、探索3倍数的特征,理解3倍数的特征,能判断一个数是不是3的倍数。
2、了解9的倍数的特征。
[教学重、难点]理解3倍数的特征,能判断一个数是不是3的倍数。
[教学过程]
一、3的倍数的特征的猜想3的倍数有什么特征呢?
学生可能会猜想:个位上能被3整除的数能被3整除等,讨论、研究。
二、3的倍数的特征的探究
让学生在100以内的数表中找出3的倍数,思考3的倍数有什么特征。引导学生将3的倍数每个数位的各个数字加起来再观察,从而归纳出3的倍数的特征。
引导学生归纳3的倍数的特征:各各数位的数字之和是3的倍数这个数就是三的倍数。
三、练一练:
第2题:
让学生准备几张卡片:3、0、4、5 边摆边想,再交流讨论思考的过程。
四、教师提问:同时能被2、3、5、整除的数的特征是什么?
五、实践活动:
让学生运用研究3的倍数的特征的方法去研究9的数。
得出9的倍数的特征。教师强调:是九的倍数就一定是三的倍数但是三的倍数不一定是三的倍数。
[板书设计]
3的倍数的特征:各各数位上的数字之和是3的倍数这个数就是三的倍数。
第4课时
[教学内容] 找因数 (第8-9页)
[教学目标]
1、体会找一个数的因数的方法,提高有条理思考的习惯和能力。
2、在1-100的自然数中,能找到某个自然数的所有因数。
[教学重、难点]体会找一个数的因数的方法,提高有条理思考的习惯和能力。
[教学准备]小正方形若干个。
[教学过程]
一、 动手拼长方形
用12个小正方形拼成长方形有几种拼法。让学生自己试着拼一拼,再说出不同的拼法。
引导学生想:哪两个数相乘等于12?然后找出:
1×12、2×6、3×4。教师强调这种思路就是找一个数的因数的基本方法,并引导学生要有序思考,体会一个数的因数个数是有限的。
二、试一试
练习:找9和15的因数。让学生独立完成,引导学生有序思考。
三、练一练:
第5题:引导学生用找因数的方法进行思考, 48=1×48=2×24=3×16=4×12=6×8,所以48有10个因数,就有10种排法。如每行12人,排4行;每行4人,排12行等。37只有两个因数,只有两种排法。强调有几个因数就有几种排法。
[板书设计]
找因数
面积是12 的长方形有: 6种图形
1×12=12
2×6=12
3×4=12
12的因数有:1、2、3、4、6、12
第5课时
[教学目标]
1、在小正方形拼长方形的活动中,探索质数与合数,理解质数和合数的意义。
2、能正确判断质数和合数。
[教学重、难点]
1、理解质数和合数的意义。
2、能正确判断质数和合数。
[教学准备] 学生、老师小正方形若干个。
[教学过程]
一、动手拼长方形,揭示质数、合数的意义
1、用小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,边拼边填写书上的表格。
2、引导学生观察。
3、揭示质数、合数的意义
组织学生观察、比较、分析逐步发现特征,并把几个自然数分类,揭示质数和合数的意义。
从概念出发理解“1既不是质数,也不是合数。”
强调:只有1和它本身两个因数的数是质数,除了1和它本身以外还有别的因数的数是合数。
二、讨论判断质数、合数的方法。
先让学生独立判断,再组织交流“怎样判断一个数是质数还是合数”
2、归纳方法:
只要找到一个1和本身以外的因数,这个数就是合数。如果除了1 和它本身找不到其他的因数,这个数就是质数。
三、探索活动:
第1题:引导学生有步骤、有目的地操作、观察和交流,找出100以内的质数。
第2题:
本题引导学生通过操作、观察,探索规律。
第(1)、(2)题,学生会发现这些质数都分布在第1列和第5列,为什么?第(3)题理由:用6除一个大于6的自然数,如果余数是0、2、4,这个数肯定是2的倍数;如果余数是3,这个数肯定是3的倍数。
[板书设计]
找质数
一个数除了1和它本身以外还有别的因数,这个数就叫合数。
一个数只有1 和它本身两个因数,这个数叫做质数。
1既不是质数,也不是合数。
第6课时
[教学目标]
1、用 “画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、探索加法中数的奇偶性变化的过程,发现加法中数的奇偶性变化规律,体验研究的方法,提高推理能力。
[教学重、难点]
1、运用数的奇偶性解决生活中的一些简单问题。
2、在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学过程]
活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,教师适当进行“列表”“画示意图”等解决问题策略的指导。
试一试:
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。教师总结得出:偶次数时和原来的状态相同,奇次数时和原来的状态相反。
活动2:探索奇数、偶数相加的规律
先研究“偶数+偶数”的规律,在经历“列式计算—得出结论—举例验证—得出结论”的过程后,接着探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。
[板书设计]
数的奇偶性
偶数+偶数=偶数 奇数+奇数=偶数
奇数+偶数=奇数
倍数与因数的关系篇四
教学年级:五年级
设计者 :李庆辉(沈阳市大东区辽沈街第三小学) 一、教学内容分析本节课是《新世纪(版)义务教育课程标准实验教科书•数学》(新世纪小学数学教材)五年级上册第一单元《倍数与因数》的第5小节《找质数》。本节课的主要内容是使学生掌握质数与合数的意义,并能正确判断一个数是质数或合数;使学生掌握一定的学习方法,从中感受数学文化的魅力。
本节课是在学生掌握了2,3,5的倍数特征以及如何找一个数的因数的基础上进行教学的。通过本节课的学习,可以为后续学习公因数、约分、公倍数、通分等打下坚实的基础。所以,本节课起到了承前启后的作用。教材在编写上提供了具有丰富现实背景的题材,使学生体会到数学与生活的紧密联系;在分类中认识质数与合数并关注知识、方法的形成过程;通过开展有特色的实践活动,提高学生解决问题的综合能力。
本教学设计结合了本地区的学生特点,对教材进行了大胆的改革,以“栏目录制”为切入点,以“快乐40分”为主线,其目的是为学生创设良好的学习情境。在教学质数与合数的意义时,我采用了按因数个数的不同进行分组的方法,并以“起名字”的方式使学生对抽象的概念产生一种亲切感,以充分体现学生的主体地位,同时采取“分组竞争”的方式,提高学生的参与意识,并通过小组交流的方式分析问题、解决问题,使数学核心思想得到充分体现。 二、 学生分析通过调查发现,学生课前已经掌握了2,3,5的倍数的特征以及熟练找一个数的因数的方法,初步掌握了合作交流的学习方法。
学生都非常喜欢看与本节课相类似的电视节目,如“七星大擂台”“非常6+1”等,可以说学生具备了一定的这方面的生活经验,同时学生的主动参与意识都比较强,在趣中学、在乐中学是学生所追求的。
质数与合数的概念比较抽象,因此学生接受起来会很困难,再有找质数不像找奇数、偶数,不像找因数那样规律性较强,因此在教学时要注重找质数的方法的多样性及灵活性。
通过课前调查发现,学生对于数学的学习兴趣不是很浓,原因是数学不同于其他学科,比较抽象,他们总以为数学是不可捉摸的“天外来物”,学生学习数学的方式比较单一,同时学生虽然已初步掌握了合作交流的学习方法,但大部分都是浮于表面,没有做到切实有效。
基于以上几点,在教学设计上我根据学生已有的知识经验,抓住了学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连,这样大大地激发了学生的学习兴趣,使学生感受到数学并不陌生,它就在我们身边,就在我们的生活中。学生积极参与的同时,也使抽象的数学简单化了,同时也就减轻了接受上的难度。在找1~50中的质数这一环节,我给学生以充足的时间和空间,让学生独立思考,然后同桌、组内、组间充分交换意见,这样学习方式就变得多样化了,同时也使学生感受到了合作交流的重要性,从而自发地掌握了学习方法。
三、 学习目标
1. 能够理解质数与合数的意义,能正确判断一个数是质数或合数。
2. 掌握独立思考、合作交流的学习方法。
3. 在研究过程中感受数学文化的魅力。
三、 学习目标
1. 能够理解质数与合数的意义,能正确判断一个数是质数或合数。
2. 掌握独立思考、合作交流的学习方法。
3. 在研究过程中感受数学文化的魅力。
《3的倍数特征》教学案例研讨
〖教学过程〗
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢,把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9能被3整除。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这时一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
〖案例点评〗
本案例主要有以下几个特点。
1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。
2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。
〖讨论与思考〗
2.如何为学生提供有利于观察、探索的学习材料?
倍数与因数的关系篇五
倍数和因数一课是苏教版数学第八册中的内容。这一内容是在学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数,较为系统地掌握了十进制记数法,同时也基本完成了整数四则运算基础上进行的教学,主要是要使学生初步认识倍数和因数的意义,学会在1-100的自然数中找10以内某个数的所有倍数和100以内某个数的所有因数的方法。这是学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算的基础,对以后的学习起着重要的作用。
1、知识与技能目标:使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,并能找一个数的倍数和因数。
2、过程与方法目标:引导学生自主探究找一个数倍数和因数的方法,体会数学知识之间的内在联系,提高数学思考的水平。
3、情感与态度目标:在学习活动中激发学生学习数学的兴趣和自信心。
4、重点:理解因数和倍数的含义,知道它们呢的关系是相互依存的。
5、难点:探索并掌握求一个数的倍数和因数的方法。
认识倍数和因数时,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,引导学生在操作中得到乘积相同的不同乘法算式,并进一步引出倍数和因数的概念。倍数和因数是指两个数之间的关系,不能单独说某数倍数或因数,这一点学生往往搞不清,为了使学生明白倍数和因数是一种相互依存的关系,我举了生活中的兄弟关系,母女关系的例子帮助学生理解,让学生感受到数学与生活的联系,同时也让学生明白,用数学知识解决生活问题是学习数学的真正目的。
(二)探索求一个数的倍数的方法
从例1中得出:12是3的倍数,又把学生举的一个3的倍数的例子有目的地写在黑板上结合起来看,引导学生说出3的倍数还有哪些。学生在举例子时说出来的数是无序的,这时教师引导学生思考怎样才能按从小到大的顺序有条理地找出3的倍数,促使学生去关注思想方法,并在学生讨论交流中感受有序的思想方法。
在学生掌握方法的基础上,采用比赛的形式要求学生有序地写出2、5的倍数,然后在整体观察2、3、5倍数的基础上通过学生讨论,一个数倍数的特点。培养了学生观察、比较、归纳概念的能力。
(三)探索求一个数的因数的方法
从例中看出4、3、6、2、12、1都是12的因数,那我们可以怎样找一个数的因数呢?先让学生独自找36的因数,再指名几个学生说说是怎么找的,通过几位学生找的方法的比较得出较合理的方法。接着又找了15、16的因数,归纳出一个数因数的特点。
(四)全课小结
(五)巩固练习
为了提高学生学习兴趣,巩固所学知识,我又补充了两个练习:
1、判断题目的是强化学生对基础知识的掌握。
2、出示几张数字卡片。从中选择只有倍数和因数关系,比谁选择得多。
倍数与因数的关系篇六
课时 安 排
第三课时
1、经历探索2,5的倍数特征的过程,理解2,5的倍数的特征,能正确判断一个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或偶数。
:1、经历探索2,5的倍数特征的过程,理解2,5的倍数的特征,能正确判断一个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或偶数。
:五年级学生的观察、动手操作、归纳概括能力已逐步形成,他们很愿意自己通过观察、动手操作、归纳整理、找出规律。他们在探索新知识的过程中,主动性已比较强了,他们有能力去探索2、5的倍数特征。但是概括2的倍数特征比5的倍数特征难一些,教师要适当地进行指导。
(一)情景创设,导入新课
师:同学们,你们喜欢玩数学游戏吗?我们今天玩一个数学游戏。同学们可以随便说出一个数,老师马上就能判断出这个数是不是2或5的倍数。如果同学们有疑问,还可以用计算器进行验证。
(学生分别报数:如32、485、674、260……)
师:你们想知道其中的奥秘吗?
师:今天我们一起来研究“2,5的倍数的特征”(板书课题:2,5的倍数的特征)。
(二)问题探究,解决问题
(媒体出示课本第4页的百数表,学生拿出学具中的百数表。)
1、提出问题
师:同学们,你们能在百数表中找出5的倍数吗?利用自己喜欢的表示方式在5的倍数上做上记号(可用—、√、○、△等符号)。
2、自主探索,合作交流,发现规律
(学生开始找5的倍数并做记录。)
师:谁能说一说你找出了哪些5的倍数?
师:(引导学生观察、思考)你发现5的倍数有什么特征?
师:(引导学生归纳5的倍数的特征)你们说的都不错,个位上是0或5的数都是5的倍数。
师:(引导学生验证举例)刚才我们观察的是100以内的数,也就是说观察的是一位数或两位数。那么是不是任何一个自然数,只要是5的倍数,个位上一定是0或5呢?请同学们任意写一个个位上是0或5的多位数,大家判断一下。
3、自主探索2的倍数的特征
师:刚才同学们合作的非常好,通过认真地观察、思考发现了5的倍数的特征。下面我们继续来研究2的倍数的特征。请同学们在百数表中用不同的方式标出2的倍数。(学生动手做。)
师:谁来说一说2的倍数有哪些?(根据学生回答,教师板书。)
师:观察上面的数,你发现了什么规律?
(板书:个位上是0、2、4、6、8的数都是2的倍数)
师:(引导验证结论)请小组内的同学任意写几个个位上是0、2、4、6、8的数验证一下。
师:刚才我们研究了2的倍数的特征。是2的倍数的数叫偶数,偶数也叫双数。 不是2的倍数的数叫奇数,奇数也叫单数。
师:谁来举例说一下生活中的偶数和奇数。
师:那么0是偶数吗?说出你的理由。(0是偶数。)
师:你能说明一下你的理由吗?
4、深入探究
(教师出示下面的两组数。5、10、15、20、25、30;2、4、6、8、10、12、14、16、18、20。)
师:仔细观察上面的两组数,你发现了什么?
师:什么样的数既是5的倍数,也是2的倍数?
生:个位上是0的数既是2的倍数又是5的倍数。
(三)应用拓展
1、观察、交流、合作。(学生的学号从1——50)
(1)请学号是2的倍数的同学站起来。
(2)请学号是5的倍数的同学站起来。
(3)请学号既是5的倍数又是2的倍数的同学站起来。
(4)请学号是偶数的同学站起来。
(5)请学号是奇数的同学站起来。
师:通过刚才的活动你发现什么?说出你的学号与同学交流。
师:请站起来3次的同学说出你的学号。
师:同学们观察一下这些数的特点,说说你发现了什么?
生:既是2的倍数又是5的倍数的最小两位数是10。
2、游戏
(每组准备一个信封,信封内装有0~9的数字卡片)
师:想一想,摸出几和5组成的两位数是2的倍数。
师:摸出几可以和“5”组成5的倍数。
3、生活中的数
4、实践应用
师:用1、2、3、5、0中的三个数字组成是2的倍数的三位数,同时是2、5的倍数的三位数,看谁写的又对又快(完成后交流)。
(四)总结
师:通过今天的学习,你有什么收获?
(五)练习:第5页的1、2题。
个性化教学思路
在学生认识奇数和偶数后,安排了“请学号是奇数的同学起立”、“请学号是偶数的同学起立”的练习,以及判断自己的学号“是不是2或5的倍数”的练习,这些练习内容使枯燥的数字练习变得生动了。在课的导入阶段,我组织学生进行猜想,由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在“乱猜”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。

一键复制