作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
直线和圆的位置关系教案直线和圆的位置关系教学反思篇一
教学目标:
1.使学生理解直线和圆的相交、相切、相离的概念。
2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。
3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。
重点难点:
1.重点:直线与圆的三种位置关系的概念。
教学过程:
一.复习引入
1.提问:复习点和圆的三种位置关系。
(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)
(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)
二.定义、性质和判定
1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。
(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。
(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。
如果⊙o半径为r,圆心o到直线l的距离为d,那么:
(1)线l与⊙o相交 d<r
(2)直线l与⊙o相切d=r
(3)直线l与⊙o相离d>r
三.例题分析:
例(1)在rt△abc中,ac=3cm,bc=4cm,以c为圆心,r为半径。
①当r= 时,圆与ab相切。
②当r=2cm时,圆与ab有怎样的位置关系,为什么?
③当r=3cm时,圆与ab又是怎样的位置关系,为什么?
④思考:当r满足什么条件时圆与斜边ab有一个交点?
四.小结(学生完成)
五、随堂练习:
(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。
(2)已知⊙o的直径为13cm,直线l与圆心o的距离为d。
①当d=5cm时,直线l与圆的位置关系是;
②当d=13cm时,直线l与圆的位置关系是;
③当d=6。5cm时,直线l与圆的位置关系是;
(3)⊙o的半径r=3cm,点o到直线l的距离为d,若直线l 与⊙o至少有一个公共点,则d应满足的条件是()
(a)d=3(b)d≤3(c)d3 d=""
(4)⊙o半径=3cm。点p在直线l上,若op=5 cm,则直线l与⊙o的位置关系是()
(a)相离(b)相切(c)相交(d)相切或相交
(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)
想一想:
在平面直角坐标系中有一点a(—3,—4),以点a为圆心,r长为半径时,思考:随着r的变化,⊙a与坐标轴交点的变化情况。(有五种情况)
六、作业:p100—
2、3
直线和圆的位置关系教案直线和圆的位置关系教学反思篇二
1、理解直线和圆相交、相切、相离的概念。
2. 初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。
想,培养学生观察、分析、概括、知识迁移的能力;
2. 通过例题教学,培养学生灵活运用知识的解决能力。
让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。
利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。
学生看投影并思考问题
调动学生积极主动参与数学活动中.
今天我们学习7.7直线和圆的位置关系。
1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。
2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。
例1(课本第89页例)
例2 如图,正方形abcd,边长
为5,ac与bd交于点o,过点
o作ef∥ab分别交ad、bc于
点e、f。以a为圆心, 为
半径作圆,则⊙a与直线bd 、ef、bc位置关系怎样,说明理由。
学生观察、讨论、概括、总结后回答
学生讨论试解看清条件与图形做出正确的判断
从多个角度对所学知识加以运用
练习1:教材p.90中1,2.
学生在练习本上笔答,互相帮助、纠正
培养了团结协作,相互交流的精神,也培养了学生正确的书写习惯
直线和圆的位置关系:
指导学生回答
.
1、课本第101页7.3 a组第2、3题
2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。
直线和圆的位置关系教案直线和圆的位置关系教学反思篇三
3.1直线与圆的位置关系(2)
教学目标:
教学难点:定理的运用中,辅助线的添加方法。
教学过程:
一、回顾与思考
投影出示下图,学生根据图形,回答以下问题:
(2)在上边三个图中,哪个图中的直线l 是圆的切线?你是怎样判断的? 教师指出:根据切线的定义可以判断一条直线是不是圆的切线,但有时使用定义判定很不方便,为此我们还要学习切线的判定方法。(板书课题)
二、探索判定定理
1、学生动手操作:在⊙o中任取一点a,连结oa,过点a 作直线l⊥oa。思考:(可与同伴交流)
o启发学生得出结论:由于圆心o到直线l 的距离等于圆的半径,因此直线l 一定与圆相切。
请学生回顾作图过程,切线l 是如何作出来的?它满足哪些条件?
①经过半径的外端;②垂直于这条半径。
从而得到切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、做一做(1)下列哪个图形的直线l 与⊙o相切?()
oooo
a llala labcd小结:证明一条直线为圆的切线时,必须两个条件缺一不可:①过半径外端 ②垂直于这条半径。
(2)课本第52页课内练习第1题(3)课本第51页做一做
小结:过圆上一点作圆的切线分两步:①连结该点与圆心得半径;②过该点作已连半径的垂线。过圆上一点画圆的切线有且只有一条。
三、应用定理,强化训练
例
1、已知:如图,直线ab经过⊙o上的点c,并且oa=ob,ca=cb。求证:直线ab是⊙o的切线。
分析:欲证ab是⊙o的切线,由于ab过圆上一点c,若连结oc,则ab过半径oc的外端点,因此只要证明oc⊥ab,因为oa=ob,ca=cb,易证oc⊥ab。
o学生口述,教师板书
证明:连结oc,∵oa=ob,ca=cb
a∴oc⊥ab(等腰三角形三线合一性质)bc∴直线ab是⊙o的切线。
例
2、如图,已知oa=ob=5厘米,ab=8厘米,⊙o的直径为6厘米。求证:ab与⊙o相切。
分析:因为已知条件没给出ab和⊙o有公共点,所以可过圆心o作oc⊥ab,垂足为c,只需证明oc等于⊙o的o半径3厘米即可。
∴在rt△aoc中,ocoa2ac252423厘米,又∵⊙o的直径长为6厘米,∴oc的长等于⊙o的半径 ∴直线ab是⊙o的切线。
(1)若直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证明直线和半径垂直。
(3)过直径的外端并且垂直于这条直径的直线是圆的切线;(4)和圆有一个公共点的直线是圆的切线;(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切。采取学生抢答的形式进行,并要求说明理由。
练习
2、如图,⊙o的半径为8厘米,圆内的弦 ab=83厘米,以o为圆心,4厘米为半径作小圆。
求证:小圆与直线 ab相切。
练习
3、如图,已知ab是⊙o的直径,点d在ab的延长线上,bd=ob,点c在圆上,∠cab=30°。
o求证:直线dc是⊙o的切线。
ca
c
d boa
练习2、3请两名学生板演,教师巡视,个别辅导。
四、小结:
(2)根据圆心到直线的距离来判定:即与圆心的距离等于 的直线是圆的切线。(3)根据切线的判定定理来判定:即经过半径的 并且 这条半径的直线是圆的切线。
3、证明一条直线是圆的切线常用的辅助线有两种:(1)如果已知直线过圆上某一点,则作,后证明。(2)如果直线与圆的公共点没有明确,则,后证明。
五、布置作业
古林镇中学 沈海波
b 2010-7-2
直线和圆的位置关系教案直线和圆的位置关系教学反思篇四
教学目标:
一、引入:
(1)圆心到直线的距离
(2)判别式法
2、回顾予留问题:
教师引导学生要注重的几个基本问题:
1、问题变化、发展的一些常见方法,如:
⑨求y=的最值.圆锥曲线的定义及其应用
[教学内容]
圆锥曲线的定义及其应用。
[教学目标]
通过本课的教学,让学生较深刻地了解三种圆锥的定义是对圆锥曲线本质的刻画,它决定了曲线的形状和几何性质,因此在圆锥曲线的应用中,定义本身就是最重要的性质。
1.利用圆锥曲线的定义,确定点与圆锥曲线位置关系的表达式,体现用二元不等式表示平面区域的研究方法。
2.根据圆锥曲线定义建立焦半径的表达式求解有关问题,培养寻求联系定义的能力。
3.探讨使用圆锥曲线定义,用几何法作出过圆锥曲线上一点的切线,激发学生探索的兴趣。
4.掌握用定义判断圆锥曲线类型及求解与圆锥曲线相关的动点轨迹,提高学生分析、识别曲线,解决问题的综合能力。
[教学重点]
寻找所解问题与圆锥曲线定义的联系。
[教学过程]
1.由定义确定的圆锥曲线标准方程。
2.点与圆锥曲线的位置关系。
3.过圆锥曲线上一点作切线的几何画法。
二、圆锥曲线定义在焦半径、焦点弦等问题中的应用。
例1.设椭圆+=1(ab0),f1、f2是其左、右焦点,p(x0, y0)是椭圆上任意一点。
(1)写出|pf1|、|pf2|的表达式,求|pf1|、|pf1|·|pf2|的最大最小值及对应的p点位置。
(2)过f1作不与x轴重合的直线l,判断椭圆上是否存在两个不同的点关于l对称。
(3)p1(x1,y1)、p2(x2,y2)、p3(x3, y3)是椭圆上三点,且x1, x2, x3成等差,求证|pf1|、|pf2|、|pf3|成等差。
(4)若∠f1pf2=2,求证:δpf1f2的面积s=btg
(5)当a=2, b=最小值。
时,定点a(1,1),求|pf1|+|pa|的最大最小值及|pa|+2|pf2|的2例2.已知双曲线-=1,f1、f2是其左、右焦点。
(1)设p(x0, y0)是双曲线上一点,求|pf1|、|pf2|的表达式。
(2)设p(x0, y0)在双曲线右支上,求证以|pf1|为直径的圆必与实轴为直径的圆内切。
(3)当b=1时,椭圆求δqf1f2的面积。
(1)以|ab|为直径的圆必与抛物线的准线相切。
(2)|ab|=x1+x2+p
(3)若弦cd长4p, 则cd弦中点到y轴的最小距离为
2(4)+为定值。
(5)当p=2时,|af|+|bf|=|af|·|bf|
三、利用定义判断曲线类型,确定动点轨迹。
例4.判断方程=1表示的曲线类型。
例5.以点f(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为b,点p是bf的中点,求动点p的轨迹方程。

一键复制