无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学思维培养课程篇一
人是感性的,亦是理性的,超脱于本能区别于动物的便是我们的思维,而这种思维的最直观体现就存在于我们的数学之上。那么,我们该如何培养数学思维呢?就让小编来告诉你答案吧。
指在数学活动中的思维,是人脑和数学对象(空间形式、数量关系、结构关系)交互作用并按照一定思维规律认识数学内容的内在理性活动。它既具有思维的一般性质,又有自己的特性。最主要的特性表现在其思维的材料和结果都是数学内容。
集中思维与发散思维:集中思维是朝着一个目标、遵循单一的模式,求出归一答案的思维,又称为求同思维;发散思维则表现在解决问题时,能根据已提供的条件,利用已有的知识经验,从多个方向、不同途径去探索思考,以寻求新的解决问题和途径和方法,发散思维又称为求异思维。
再造性思维与创造性思维:再造性思维是指原有的经验和已经掌握的解题方法、策略,在灯似的情境中直接解决问题的思维方式。创造性思维是指在强烈的创新意识的指导下,指导头脑中已有的信息重新加工,产生具有进步意义的新设想、新方法的思维。
观察与实验: 观察:是受思维影响的,有目的、有计划地通过视觉器官去认识事物、状态及上线关系的一种主动活动。观察是思维的窗口。实验:是有目的、有控制地创设一些有利观察对象,并对其衽观察和研究的活动方式。
初步逻辑思维能力及其培养:
逻辑思维是数学思维的核心。逻辑思维是一种确定的、前后一贯的、有条有理的、有根有据的思维。 概念明确:概念是反映客观事物本质属性的一种思维方式。判断准确:判断是对某个事物的性质,现象作出肯定或否定的思维方式。
数学判断是对数量关系和空间形式有所肯定或否定的一咱方式。表达数学判断的语句又称数学命题。判断是由主概念、谓概念和联系词三部分组成。 推理符合逻辑:推理是由一个或几个已知的判断推出一个新判断的形式。 推理分归纳推理、演绎推理和类比推理三种。
归纳推理(从特殊到一般);演绎推理(从一般到特殊);类比推理(从特殊到特殊)培养初步逻辑思维能力的基本途径: 要挖掘教材中的智力因素,把培养思维能力贯穿于教学的全过程。要给学生提供足够的材料。
要顺着学生的思维,重视学习过程。 要重视数学语言的表述。初步形象思维能力及其培养形象思维:是依托对形象材料的意会,从而对事物作出有关理解的思维。 形象思维的基本形式是表象、直感和想像。
我们大家都知道,数学的证明是最讲究逻辑推理的。逻辑推理一直贯穿着数学研究的始终。人们最早在欧氏几何中学习许多逻辑推理,英国的数学家、逻辑学家、哲学家罗素在《数学原理》中就提出了所谓逻辑主义的主张,想把所有数学归结为逻辑。但由于推导过程还要用到两条非逻辑公理:即选择公理和无穷公理,从而使得从逻辑推出全部数学是不可能实现的。
在数学中,大部分采用形式化的推理过程与代数演算具有相似性。这类推理的正确性仅依赖于它们的形式,而与内容无关。例如三段论法,由于形式推理在公理化数学中用得最多,表达得也最精确,因此,逻辑推理的主要内容就是数学公理系统的形式化。
最后说个笑话:
子:“不知道!在学校里,我们都是用苹果数数的,从来不用橘子。 )
“数学,对学生来说,就是利用自己的生活经验对数学现象的一种‘解读’。”数学最基本的特性是抽象性。抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校中学的是抽象的乘法表——总是数字的乘法表,而不是男孩的数目乘上苹果的数目,或是苹果的数目乘上苹果的价钱等等。
学会数学思维的首要涵义是学会数学抽象(模式化)。数学是模式的科学。这就是指,数学所反映的不只是某一特定事物或现象的量性特征,而是一类事物或现象在量的方面的共同性质。帮助学生学会数学抽象的关键是应超越问题的现实情境过渡到抽象的数学模式。( “去情境化”)数学教学必定包括“去情景化、去个人化和去时间化”。 模式化的一个重要手段是引入适当的图形或符号,从而实现与具体情境在一定程度上的分离。
数学思维培养课程篇二
1、培养学生主动学习的愿望刚入学的一年级孩子,大部分都受到学前教育,所以说,他们对数学并不是一无所知,但对于学习数学的兴趣却是不尽相同的。因此,在上第一节数学课《生活中的数》时,我先让学生观察他们新的学习环境--教室,让他们寻找教室中的数,又领学生到校园进行参观,寻找校园中的数,然后告诉学生:“这就是数学,其实数学就在我们身边,使学生对数学逐渐产生了亲切感。
2、有意识创设活跃的学习氛围和生动有趣的学习情境“好玩”是孩子的天性,怎样才能让孩子在玩中获得知识呢?我针对每课不同的学习内容,编排设计了很多不同的游戏、故事。。。。。。如:在上“认识物体和图形”一课时,我让孩子带来了 许多物体和图形,先让他们以小组为单位介绍自己带来的物品, 后放到一起数一数,看看每种物体、图形各有几个。这样不仅使学生认识了数,还为以后的分类课打好了基础,更培养了孩子的合作学习习惯。再如:上《小猫钓鱼》一课时,先让学生观察猫家四兄弟的不同神态,再让学生戴上小猫的头饰,进行模拟表演,充分发挥学生的想象力。让他们自编、自演故事,真正使学生在“玩”中获得了知识。
3、引导学生从不同角度去观察、思考、解决问题.大家都知道本册数学教材的练习题中,有很多题的答案都不是唯一的。这就需要我们抓住时机,鼓励学生多动脑筋,勤思考。刚开始,当我问道:“谁还有不同的方法?”时,很多学生的表情都很茫然,所以这时,只要有学生能通过思考来回答问题,不管他答对与否,我都给与相应的鼓励,表扬他是个爱动脑筋的孩子。给我印象最深的是当我讲《跳绳》这一课时,大多数学生都列算式为:2+6 (2个摇绳的,6个跳绳的),这时,有个小女孩却胆怯怯的举起了小手,她列的算式是:4+4 我故作惊讶地问:“你为什么要列成4+4呢?”她说:“有4个小男孩,4个小女孩,共有8个小朋友在玩跳绳。”我当时特别高兴,就借机说:“你真是个爱动脑筋的好孩子,棒极了!”并奖给她一个“智慧果”。然后,我对其他孩子说:“其实通过这幅图还能列出很多不同的算式,谁还能做一个爱动脑筋的孩子?”经过这一启发,学生的思维顿时活跃起来,最后一直深挖到根据衣服、袜子的不同颜色来列算式,甚至更有的学生列出了连加算式。从这以后,在每每拿出一道题,学生都能积极主动去寻找不同的方法来解决问题。可见,只要我们能适时抓住机会,并加以正确引导,相信孩子们是有潜能可挖的。
数学思维培养课程篇三
在中高考这些国内数学考试中,出题人会大量的给考生设置陷阱,诱导一部分人犯错,从而拉开考生档次。然而与国内考试不同,gre数学是水平能力测试,旨在考查考生对基本数学概念的理解和基本数学技能的应用,而不是要拉开考生的档次,所以gre数学的出题人并不会给考生大量的设置陷阱。
所以对于任何一道gre数学题,大家要做的就是读懂这道题,找到这道题的核心,理解出题人想要考察的方面。除此之外其他一切都无需多想,只需循着题目的内在逻辑一步步解题,最终一定会得到正确答案。
i. -3
ii. 1
iii. 5
(a) i only
(b) ii only
(c) i and ii only
(d) ii and iii only
(e) i, ii, and iii
这道题目的核心就是考察t和t+2的关系,内在逻辑就是由t可以推出来t+2,也就是t à t+2. 那么现在我们知道这个集合里面有 -1,根据t à t+2的定义,集合里面一定有 -1 + 2 = 1,ii正确。那么我们接下来去验证i和iii: 对于i. -3,如果 -1在集合里面的话,-1 + 2 -1,也就是说集合里面的其他数字肯定都大于 -1,而-3比 -1还要小,我们无法推出 -3也在集合中,所以i错误。对于iii. 5,既然1在集合里,那么1 + 2 = 3也一定在集合里,如果3在集合里,那么3 + 2 = 5也一定在集合里,此时得到了iii正确。
这道题目做到这里就已经圆满完成了,我们完整的follow了题目的内在逻辑:t à t+2,最后得到正确答案就是 (d) ii and iii only. 可是,大部分同学此时都会有点不放心,都会不约而同地回去纠结于i. -3这个选项。这就造成了很多的'不必要的失误。
建议大家要时刻提醒自己不要想太多,不要让国内的考试思维影响到自己,对于gre数学题,只需读懂题目,找准核心,理解问题,然后循着题目的内在逻辑一步步解题即可。
做错的题目一定要总结错误原因,列出错题表并分析自己的问题所在。对于由思维方式差异而导致的错题,一定要去看题目的讲解(og中的题目都附有出题人写的详细讲解),然后对比自己的思路与出题人的思路,找到差异,总结考点。
想太少也不行,在大部分国内数学考试中,题目中时不时都会出现一些没用的条件,也就是出题人挖下的陷阱,旨在对考生起到迷惑作用,干扰考生的解题思路。然而在gre数学中,是绝对不会有没用的条件的,题目中的每一个条件都会在解题发生作用。所以同学们在做题过程中,如果发现自己走进了 “死胡同”,思路无法继续时,请务必回头重新读一下题目,看看自己是否用到了题目的所有条件,尤其是一些相对比较隐蔽的条件,如 positive/negative, odd/even, integer, nonzero, consecutive number等等。
以上就是关于新gre数学思维方面的解说,主要希望考生们提起注意,不要把新gre数学想象的过于难,也不用想象的过于复杂,因为已经复习的很好,所以专心做题即可,即使是gre数学难题只要拥有了数学思维,也一样可以快速解决。
数学思维培养课程篇四
数学与基础数学的关系
众所周知,数学是奥林匹克数学竞赛的简称,它是国际上最有影响力的学科竞赛之一,同时也是公认水平的中学生数学竞赛。而中国的数学竞赛是1956年由数学家华罗庚倡导提出的,如今在某些学校,数学已经成为一门课程,即数学思维训练课。
家长在孩子到3年级之后可能会产生困惑,到底该不该让孩子学习数学?数学与基础数学的关系是什么?
其实,数学与基础数学的关系就可以比作竞走与正常走路,并不是每个孩子都会竞走,会竞走的孩子需要良好的运动能力和身体素质,所以扎实的基础数学知识是学好数学的必要条件。孩子所学的基础数学是螺旋式上升的过程,而数学的知识体系与基础数学完全不同,可以称得上是独立的知识构架,分专题、分模块式进行。
什么样的小学生适合学数学?
兴趣是的指导老师,以不抹杀孩子的兴趣为前提,数学奥林匹克的发展激发少年儿童对数学的喜爱。数学当中很多内容涉及到日常生活的实际问题,如技术问题、数论、逻辑问题……当学生感受到数学魅力的时候,就产生了学习兴趣。
良好的数学能力是小学生学习数学要具备的基本条件之一,良好的思维能力则是学习数学的前提。数学并不是通过刻苦学习就一定能完全掌握的,孩子应该摆正心态,正确对待数学。
如何学好数学?
对于刚开始接触数学的学生来说,不论是学习习惯还是学习方法,都需要全面的培养和正确的引导,如何学好数学令众多家长头疼不已。
首先,掌握数学精确计算能力,培养学生按规则办事的素养和习惯。其次,锻炼孩子数学抽象概括能力,当学生面对复杂问题时可以抓住重点,有理有据。逻辑思维能力也不容小觑,归纳总结在升学考试中起到至关重要的作用。此外,几何直观能力可以根据题目找出已知与未知,条件与结论之间的联系,做到调理清晰,结构分明。
数学思维培养课程篇五
思维是人脑对客观现实的概括和间接的反映,反映的是事物的本质及内部的规律性。所谓数学教学中实现学生思维能力的培养,是指学生在对数学感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握数学内容而且能对具体的数学问题进行推论与判断,从而获得对数学知识本质和规律的认识能力。数学思维虽然并非总等于解题,但我们可以这样讲,中学生数学思维的形成是建立在对中学数学基本概念、定理、公式理解的基础上的;发展学生数学思维最有效的方法是通过解决问题来实现的。然而,在学习数学过程中,我们经常听到学生反映上课听老师讲课,听得很明白,但到自己解题时,总感到困难重重,无从入手。事实上,有不少问题的解答,学生发生困难,并不是因为这些问题的解答太难以致学生无法解决,而是其思维形式或结果与具体问题的解决存在着差异,也就是说,这时候,学生的数学思维存在着障碍。这种思维障碍,有的是来自于我们教学中的疏漏,而更多的则来自于学生自身,来自于学生中存在的非科学的知识结构和思维模式。因此,研究中学生的数学思维障碍对于增强中学生数学教学思维培养的针对性和实效性有十分重要的意义。
1.注重数学思想方法体现中培养学生思维能力
数学思想方法是数学思想和数学方法的总称。数学思想是对数学知识与方法形成的规律性的理性认识,是解决数学问题的根本策略。数学方法是解决问题的手段和工具。数学思想方法是数学的精髓,只有掌握了数学思想方法,才算真正掌握了数学,才可以为数学教学中学生思维能力的培养奠定坚实的基础。因而,数学思想方法体现必须成为学生思维能力培养的重要组成部分。现行教材中蕴含了多种数学思想和方法,在教学时,我们应充分挖掘由数学基础知识所反映出来的数学思想和方法,设计数学思想方法的教学目标,结合教学内容适时渗透、反复强化、及时总结,用数学思想方法武装学生,使学生真正成为数学的主人。
2.注重探究方式运用中培养学生思维能力
数学探究性教学,就是教师引导学生以探究的方式学习数学。这种教学方法强调从学生已有的生活经验出发,让学生充分自由表达、质疑、探究、讨论问题,从而主动地获取知识并应用知识解决问题,目的是使学生在思维能力培养方面得到发展。而教师引导学生探究的首要任务就是如何创设探究学习的情境。在数学教学中,探究情境的设计应充分利用外在的物质材料,展示内在的思维过程,揭示知识的发生、发展过程。应具有促进学生智力因素和非智力因素的发展。还应使问题情境结构、数学知识结构、学生认识结构三者和谐统一,促进数学知识结构向学生认识结构的转化,既要创设与当前教学要解决的问题,又要创设与当前问题有关,并能使学生回味思考的问题。
3.注重教学方法优化中培养学生思维能力
教师的教法常常影响到学生思维能力的培养,事实上,富有新意的教学方法能及时为学生注入灵活思维的活力。特别是数学教学过程中的导入出新,它也可以被理解为引人入胜教学法。如通过叙述故事、利用矛盾、设置悬念、引用名句、巧用道具等新颖多变的教学手段,使学生及早进入积极思维状态。为此,在数学教学中,我们教师必须着重了解和掌握学生的基础知识状况,尤其在讲解新知识时,要严格遵循学生认知发展的阶段性特点,照顾到学生认知水平的个性差异,强调学生的主体意识,发展学生的主动精神,培养学生良好的意志品质;同时要培养学生学习数学的兴趣。兴趣是最好的老师,学生对数学学习有了兴趣,才能产生数学思维的兴奋灶,也就是更大程度地预防学生思维障碍的产生。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标,提高学生学好数学的信心。
4.注重主体活动参与中培养学学生思维能力
由于数学教学的本质是数学思维活动的展开,因此数学课堂上学生的主要活动是通过动脑、动手、动口参与数学思维活动。教师不仅要鼓励学生参与,而且要引导学生主动参与,才能使学生主体性得到充分的发挥和发展,只有这样,才能不断提高数学活动的开放度。这就要求我们在教学过程中为学生创造良好的主动参与条件,提供充分的参与机会。学生活动参与过程中,我们要特别注意运用变式教学,确保学生参与教学活动的持续热情。变式教学是对数学中的定理和命题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质特征,揭示不同知识点间的内在联系的一种教学设计方法。通过变式教学,使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲,促使其产生主动参与的动力,保持其参与教学过程的兴趣和热情。
5.注重主体阅读过程中培养学生思维能力
诚然,阅读是学生自主学习获取知识的一种学习过程,是人类汲取知识的主要手段和认识世界的重要途径。但是,迄今为止,对于阅读与学生思维能力的培养研究尚未有明确的定论,笔者结合自己的教学实践以及通过研究学生思维发展模式清楚地发现,数学教学中科学引导学生阅读文本对于培养学生的思维能力大有裨益。诚然,数学是一种语言。数学教育家斯托利亚尔说过:“数学教学也就是数学语言的教学”。而语言的学习是离不开阅读的,所以,数学的学习不能离开阅读,阅读能使学生的思维发展严密,显得有逻辑。因此,数学教学中应将阅读引入课堂,并纳入到数学课堂教学的基本环节中去,引导学生在阅读过程中进行积极思维,对教材中提供的原材料主动进行逻辑推理,通过发现与文本下文所给结论相同或相似的结论,体验发现者的成就感,培养推理与发现的思维,从而提高和发展学生的思维能力。
总之,义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。因此,我们要充分重视数学教学中学生思维能力的培养。
数学思维培养课程篇六
数学是思维的体操,能有效培养学生的思维习惯、思维能力,从而培养创新思维。实施新课标以来,我把培养学生的思维能力,作为一个广泛而深刻的探究课题。
心理学家鲁宾斯坦说:“思维通常是由问题的情境产生的,并且以解决问题的情境为目的的。”因此,在数学课堂教学中,应该有效创设问题情境,变传授数学结论为知识发生发展的过程体验,使学生处于高效的积极思维之中。
数学来源于生活,又抽象于直观。学生应当具备比较丰富的直观印象累积,才能顺利的、有效的、长久的构建抽象的数学模型。
例1:在学习“平面直角坐标系”一节时,要把直线上的点拓展到平面上的点,把用一个数表示点的位置拓展到用一个有序实数对应表示点的位置,跨越较大,如同学生当时学习数轴一样困难。这时,不妨提出如下问题:一页文字要知道某个字的位置,进影剧院要很快找到某个座位,应该知道哪几个条件?学生不仅茅塞顿开,还培养了应用意识。
兴趣是最好的老师,感兴趣的问题能激发学生的探究精神,学生通过积极的动脑、动手、动口,自主地去学习,合作地去学习。
例2:一只蚂蚁在圆筒外壁的a点,想吃到圆筒内壁的b点处残留的一点蜂蜜,怎样走路程最短?这是几何体表面的最短路径探究问题,学生必须综合用到圆柱体侧面展开图,关于直线对称图形,两点之间线段最短等知识点。学生需要用一张矩形纸,合成圆柱再还原成平面纸,通过探究才能完成。探究是很有意义的,学生的成功感也是难以言表的。
兴趣有惯性,学习亦有惯性。新知识是旧知识的延伸,在旧知识的基础上,用新的问题去启迪,有利于构建数学的知识结构,增强数学知识的逻辑联系。
例3:在学习一元二次方程的根与系数的关系时,可先提出问题:①求一元二次方程x2-3x-18=0的两根之和与两根之积。②不解方程,求此方程的两根之和与两根之积。对于问题①,学生很容易想到先解方程,求出两根后,再求两根之和与两根之积;而对于问题②,学生则感到不知所措。为了寻找答案,学生的学习欲望被激发,思维处于积极状态。通过自学和探究,学生不难掌握。
可见,问题是思维的灵魂,创设有效的问题情境是高效激发思维的良方,教师要善于把握学生的思维特点,在教学的'重点、难点、关键处有效设计问题,创设问题情境,启动学生的思维,提高学生探究、合作、自主解决问题的能力。
随着时代的发展和科学的进步,数学知识的学习越来越深入,数学知识的运用越来越广泛,知识的时代、信息的时代,也就是数学的时代,要做到与时俱进,必须科学思维、创新思维。
在教学过程中,不仅要让学生“学会”,即掌握知识,而且还要让学生“会学”,即掌握思维方法。要让学生“会学”,重要的一点就是要明晰数学思维活动的过程,展现数学知识产生和发展的过程,使数学教学成为数学思维活动的教学。
例4:甲步行从a地去b地需11小时,乙骑自行车从a地去b地需5小时,若甲先出发4小时,问乙出发几小时后追上甲?题中存在的相等关系是:甲先行的路程+乙出发后甲再行的路程=乙的行程。可设乙出发后x小时追上甲,这时要表示路程须知道速度,但现在的问题是甲、乙的速度都未知。由此,需要像对待方程问题一样,把a与b两地之间的路程看着单位“1”,甲、乙的速度于是分别为1/11、1/5,于是列出方程为:4/11+x/11=x/5,从而解决问题。
要使学生在遇到新问题时,善于归纳转化,形成明确的解决问题思路,教师应重视对一般规律的揭示,加强思维的定向训练,培养思维的敏捷性。对于一元一次方程的解法,应强化训练教科书中归纳的5个步骤,前4步的目标就是转化为最简形式ax=b(a≠0),建立了这一模型,学生便能依据方程特点,灵活采取解题步骤,尽快实现解题目标。
思维定势往往有其消极的一面,所以在思维训练中,还要引导学生打破不合理的思维定势,进行逆向思维训练,以培养思维的深刻性。学生很容易认为,方程(a+1)x2-5x+2(a+1)=0一定有两个实数根,其积为2.其实当a=-l时,方程为一元一次方程,只有一个实数根x=0。这里没有逆向考虑利用根与系数关系的前提是方程为一元二次方程,即二次项系数不能为零。又如,学生很容易误判方程x2-5x+7=0两个实数根之和为5.这里又没有逆向考虑方程的判别式应大于或等于0的前提,其实,方程没有实数根,就更别谈两个实数根的和了。
通过对一道习题进行多方位、多层次、多角度的变式训练,引导学生从一道习题抓一类问题,从特殊问题抓一般问题,这样不但能激发学生的兴趣,而且能取得举一反三、达到训练思维、提高能力的作用。例5:已知oa是圆o的半径,以oa为直径的圆c与圆o的弦ab相交于点d。求证:点d是ab的中点。学生自主完成后,通过交流,有①连结cd、ob,②连结od,③作圆0的直径ae,连结od、be等方法,学生思维的闸门被有效打开。
平面几何教学中,对命题条件进行类比变化,对命题的结论从不同的角度进行演变,可培养学生思维的发散性。对于等腰三角形“三线合一”性质的证明,既能达到举一反三的目的,又能培养学生的思维能力。
在复习课中,注意引导学生将繁杂的知识简约化,零散的知识系统化,交叉的知识立体化,纵横的知识网络化。一次函数复习课可以设计为:①知识点层面:一次函数的概念、一次函数的图像、一次函数的性质、一次函数的应用。②相关知识的网状结构:一次函数、一元一次方程、一元一次不等式之间的联系。按这个层次结构,挖掘知识的内涵和外延,有利于把握数学知识之间的内在联系,培养学生思维的逻辑性。
总之,培养学生的思维能力,是数学教学中一项长期而又艰巨的系统工程。在数学教学中,要重视数学思想的渗透,数学方法的训练,使学生掌握科学的思维方法,形成良好的思维习惯从而让学生一生受益。

一键复制