当前位置:网站首页 >> 文档 >> 2025年归纳法证明不等式成立5篇(优秀)
范文文档
2025年归纳法证明不等式成立5篇(优秀)
  • 时间:2025-04-06 19:30:49
  • 小编:二十年重过南楼x
  • 文件格式 DOC
下载文章
一键复制
猜你喜欢 网友关注 本周热点 精品推荐
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。排序不等式证明应用研究
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面我给大家整理了一些优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。国际新闻播音
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀
总结是对过去经验和教训的总结,可以帮助我们不断进步和成长。着重描述实际行为和取得的成就,可增加自己的亲身体验。下面是一些优秀的语文范文,供大家参考。3.16国际
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
人们常常会通过总结来反思并改善自己的工作和学习表现。在写总结之前,我们可以先列出要总结的重点和要点,然后逐一进行叙述和分析。如果你常常感到时间不够用,不妨试试下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以
总结是在忙碌的生活中停下脚步,反思和审视自己的成长和进步。如何克服困难,取得成功?让我们一起探讨这个问题。接下来,我们一起来看看一些经典的范例,以供参考。均值不
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。幼儿园教育案
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小
社会制度是社会运行的基础,它规范了人们的行为和权利义务。写总结时可以借鉴一些优秀的范文和经验,参考前人的经验和总结方法。以下是一些学习方法的总结,欢迎大家参考借
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?接下来小编就给大家介绍一
演讲稿是一种用于演讲或演讲比赛的准备稿件。在总结中可以添加一些关键词或关键句,以帮助读者更好地理解文章的重点。接下来是一些总结精华,希望对您的写作有所帮助。均值
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。相信许多人会觉得计划很难写?以下我给大家整理了一些优
“方”即方子、方法。“方案”,即在案前得出的方法,将方法呈于案前,即为“方案”。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?下面是小编帮大家整理的方案范文
总结可以帮助我们总结经验,提高工作效率。总结的语言要简洁明了、准确精练,避免出现冗长和啰嗦的表达方式。以下是一些锻炼身体的小技巧,希望能帮助大家保持健康。2.2
总结可以帮我们梳理思绪,优化方法,更好地实现个人和团队的目标。如何实现人与自然和谐共存?这是全球生态环境保护的关键。最后,希望大家在情感表达中能够真实、自然地表
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。不
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。5月26日新闻时事
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面我给大家整理了一些优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
成功需要勤奋和毅力,付出总有回报。怎样提高写作水平,让文章更具有说服力?看看下面的一些范文,可以帮助我们更加清楚地理解和掌握写作的要领。毕业生自我鉴定200字篇
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。优质的心得体会该怎么样去写呢?下面是小编帮大家整理的心得体会范文大全,
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?接下来小编就给大
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。浅谈山
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里
抒情是一种表达个人情感和思想的文学形式,既可以通过文字表达,也可以通过声音、画面等方式表达出来。一个完美的总结应该包括对过去一段时间工作和学习的全面概括和评估。
随着社会一步步向前发展,报告不再是罕见的东西,多数报告都是在事情做完或发生后撰写的。那么报告应该怎么制定才合适呢?下面是小编带来的优秀报告范文,希望大家能够喜欢
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?这里我整理了一
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
总结能够帮助我们更好地理解事物的规律性,提高我们的认知水平。健康饮食对于保持身体健康至关重要,我们要有良好的饮食习惯。以下是一些经典的总结案例,供大家参考和借鉴
总结是我们成长过程中必备的一环。注意总结的语气和感情色彩,使得文章更加生动和有感染力。总结是一个积累和总结的过程,我们可以从他人的总结中获得借鉴和启发。薪酬激励
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理
总结是对过去经验的总结和提炼,可以帮助我们更好地规划未来。如何培养良好的人际关系小编为大家精选了一些写总结的好例子,希望能够帮助到大家。不等式证明题实用篇一一、
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一
报告能够系统地整理和梳理信息,帮助我们更好地理清思路。除了文字表达,我们还可以使用图表、表格等辅助工具来展示和解释相关数据与情况。我们为大家准备了一些精选的报告
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面我
报告的语言要简练、明确,避免使用模糊或主观的表达方式,确保读者能够准确理解。规划报告的结构和内容,将报告划分为合适的章节和段落,确保逻辑层次清晰有序。这是一份关
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。展
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
无论是学术性报告还是商业性报告,都需要准确、简洁、逻辑清晰地陈述观点和分析。报告的结构应该合理,要考虑读者的需求和背景。在这些报告范文中,我们能够看到不同领域和
无论是在学术界还是商业领域,报告都扮演着重要的角色。在撰写报告之前,我们可以参考一些相关的范文或样本,以帮助我们更好地把握写作要点。以下是小编为大家收集的报告范
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?接下来
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。绿色建筑材料论文篇一姓名:苏
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。总结怎么写才能发挥
自然环境的保护与可持续发展,关乎着我们未来的生存和发展。多读名著是提升语文能力的有效途径之一。这里整理了一些成功人士的自我总结经验,希望能帮助大家更好地认识自己
现今社会公众的法律意识不断增强,越来越多事情需要用到合同,合同协调着人与人,人与事之间的关系。拟定合同的注意事项有许多,你确定会写吗?下面是小编带来的优秀合同模
在人们越来越相信法律的社会中,合同起到的作用越来越大,它可以保护民事法律关系。合同的格式和要求是什么样的呢?下面是我给大家整理的合同范本,欢迎大家阅读分享借鉴,
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是小编
随着人们法律意识的加强,越来越多的人通过合同来调和民事关系,签订合同能够较为有效的约束违约行为。合同对于我们的帮助很大,所以我们要好好写一篇合同。下面是我给大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
在人民愈发重视法律的社会中,越来越多事情需要用到合同,它也是实现专业化合作的纽带。那么大家知道正规的合同书怎么写吗?下面是小编为大家带来的合同优秀范文,希望大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面是
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?以下是小编为大家收集的优
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。谈一谈
在现在社会,报告的用途越来越大,要注意报告在写作时具有一定的格式。那么什么样的报告才是有效的呢?下面我就给大家讲一讲优秀的报告文章怎么写,我们一起来了解一下吧。
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?

2025年归纳法证明不等式成立5篇(优秀)

格式:DOC 上传日期:2025-04-06 19:30:49
2025年归纳法证明不等式成立5篇(优秀)
    小编:二十年重过南楼x

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

归纳法证明不等式成立篇一

在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。例1:设a、b、c是三角形的边长,求证

abc≥3 bcacababc证明:由不等式的对称性,不妨设a≥b≥c,则bca≤cab≤abc

且2cab≤0,2abc≥0

 ∴abcabc3111

bcacababcbcacababc2abc2bac2cab2abc2bca2cab≥0

bcacababccabcabcababc≥3 bcacababc2bac无法放缩。所以在运用放

cab[评析]:本题中为什么要将bca与abc都放缩为cab呢?这是因为2cab≤0,2abc≥0,而2bac无法判断符号,因此缩法时要注意放缩能否实现及放缩的跨度。

例2:设a、b、c是三角形的边长,求证

abc(bc)2(ca)2(ab)2≥ bccaab1 [(ab)2(bc)2(ca)2]

3证明:由不等式的对称性,不防设a≥b≥c,则3abc0,3bca≥bccca

bca0

左式-右式3abc3bca3cab(bc)2(ca)2(ab)2 bcacab3bca3cab(ca)2(ab)2 abab2(bca)3bca3cab(ab)2(ab)2(ab)2≥0 ababab ≥ ≥[评析]:本题中放缩法的第一步“缩”了两个式了,有了一定的难度。由例

1、例2也可知运用放缩法前先要观察目标式子的符号。

例3:设a、b、cr且abc1求证

111≤1 1ab1bc1ca证明:设ax3,by3,cz3.且 x、y、zr.由题意得:xyz1。

∴1abxyzx3y3

∴x3y3(x2yxy2)x2(xy)y2(yx)(xy)2(xy)≥0 ∴x3y3≥x2yxy2

∴1abxyzx3y3≥xyzxy(xy)xy(xyz)

1z1≤

xy(xyz)xyz1abyx11≤,≤ ∴命题得证.xyzxyz1bc1ca同理:由对称性可得[评析]:本题运用了排序不等式进行放缩,后用对称性。

39例4:设a、b、c≥0,且abc3,求证a2b2c2abc≥

22证明:不妨设a≤b≤c,则a≤1又∵(44。∴a0。33ab23a23434)≥bc,即()≥bc,也即bc(a)≥(3a)2(a)。2223833∴左边(abc)22(abbcca)abc

23434 92a(bc)bc(a)≥92a(3a)(3a)2(a)

2383

3416339(3a)[(3a)(a)a]9(3a)[a2a4]9(a32a2a12)8338899393a(a22a1)a(a1)2≥

2282893 ∴a2b2c2abc≥

22[评析]:本题运用对称性确定符号,在使用基本不等式可以避开讨论。

例5:设a、b、cr,pr,求证:

abc(apbpcp)≥ap2(abc)bp2(abc)cp2(abc)

证明:不妨设a≥b≥c>0,于是

左边-右边ap1(bca2abca)bp1(cab2bcab)cp1(abc2cabc)

ap1(ab)[(ab)(bc)]bp1(ab)(bc)cp1[(ab)(bc)](bc)ap1(ab)2(ab)(bc)(ap1bp1cp1(bc)2

≥(ab)(bc)(ap1bp1cp1)如果p1≥0,那么ap1bp1≥0;如果p1<0,那么cp1bp1≥0,故有(ab)(bc)(ap1bp1cp1)≥0,从而原不等式得证.例6:设0≤a≤b≤c≤1,求证:

abc(1a)(1b)(1c)≤1

bc1ca1ab1abcabc≤,再证明以 bc1ca1ab1ab1证明:设0≤a≤b≤c≤1,于是有下简单不等式

abcab1c1(1a)(1b)(1c)≤1,因为左边(1a)(1b)(1c)

ab1ab1ab1

11c[1(1ab)(1a)(1b)],再注意(1ab)(1a)(1b)≤(1abab)

ab1(1a)(1b)(1a)(1b)(1a)(1b)(1a2)(1b2)≤1得证.在用放缩法证明不等式a≤b,我们找一个(或多个)中间量c作比较,即若能断定a ≤c与c≤b同时成立,那么a≤b显然正确。所谓的“放”即把a放大到c,再把c放大到b,反之,所谓的“缩”即由b缩到c,再把c缩到a。同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及。

归纳法证明不等式成立篇二

不等式证明方法大全

1、比较法(作差法)

在比较两个实数a和b的大小时,可借助ab的符号来判断。步骤一般为:作差——变形——判断(正号、负号、零)。变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。

abab。例

1、已知:a0,b0,求证:

2ababab2ab(ab)2

ab。证明:ab0,故得22222、分析法(逆推法)

从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆。

2、求证:71。

证明:要证571,即证122162,即2,35194,416,4,1516,由此逆推即得571。

3、综合法

证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。

ab例

3、已知:a,b同号,求证:2。ba

证明:因为a,b同号,所以abababab0,0,则22,即2。babababa4、作商法(作比法)

在证题时,一般在a,b均为正数时,借助

商——变形——判断(大于1或小于1)。

4、设ab0,求证:aabbabba。

aaabba证明:因为ab0,所以1,ab0。而bababbabaa1或1来判断其大小,步骤一般为:作bb1,故aabbabba。

5、反证法

先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。

5、已知ab0,n是大于1的整数,求证:ab。证明:假设a,则bb1,即1,故ba,这与已知矛盾,所以a。aa6、迭合法(降元法)

把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。

6、已知:求证: a1b1a2b2anbn1。a1a2an1,b1b2bn1,证明:因为a1a2an1,b1b2bn1,所以a1a2an1,b1b2bn1。由柯西不等式

a1b1a2b2anbna1a2anb1b2bn111,所以原不等

22222

2222222

式获证。

7、放缩法(增减法、加强不等式法)

在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的。值得注意的是“放”、“缩”得当,不要过头。常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。

1359999

0.01。例

7、求证:

***

证明:令p,则

24610000

***32999921

1p222,222

22461000021411000011000110000

所以p0.01。

8、数学归纳法

对于含有n(nn)的不等式,当n取第一个值时不等式成立,如果使不等式在nk(nn)时成立的假设下,还能证明不等式在nk1时也成立,那么肯定这个不等式对

n取第一个值以后的自然数都能成立。

8、已知:a,br,nn,n1,求证:anbnan1babn1。证明:(1)当n2时,a2b2abab2ab,不等式成立;(2)若nk时,akbkak1babk1成立,则

ak1bk1a(akbk)abkbk1a(ak1babk1)abkbk

1=akbabk(a2bk12abkbk1)akbabkbk1(ab)2akbabk,即ak1bk1akbabk成立。

根据(1)、(2),anbnan1babn1对于大于1的自然数n都成立。

9、换元法

在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化。

9、已知:abc1,求证:abbcca。

1证明:设at,bat(tr),则c(1a)t,33

3111111

abbccatatat(1a)tt(1a)t

33333311

(1aa2)t2(因为1aa20,t20),33

所以abbcca。

10、三角代换法

借助三角变换,在证题中可使某些问题变易。

10、已知:a2b21,x2y21,求证:axby1。证明:设asin,则bcos;设xsin,则ycos 所以axbysinsincoscoscos()1。

11、判别式法

通过构造一元二次方程,利用关于某一变元的二次三项式有实根时判别式的取值范围,来证明所要证明的不等式。

11、设x,yr,且x2y21,求证:yaxa2。证明:设myax,则yaxm

代入x2y21中得x2(axm)21,即(1a2)x22amx(m21)0 因为x,yr,1a20,所以0,即(2am)24(1a2)(m21)0,解得ma2,故yaxa2。

12、标准化法

形如f(x1,x2,,xn)sinx1sinx2sinxn的函数,其中0xi,且

;当x1x2xn为常数,则当xi的值之间越接近时,f(x1,x2,,xn)的值越大(或不变)

x1x2xn时,f(x1,x2,,xn)取最大值,即

f(x1,x2,,xn)sinx1sinx2sinxnsinn

x1x2xn。

n

ab。

2标准化定理:当a+b为常数时,有sinasinbsin2证明:记a+b=c,则

f(a)sinasinbsin2

abc

sinasin(ca)sin2,22

求导得f`(a)sin(c2a),由f`(a)0得c=2a,即a=b 又由f``(a)cos(ba)0知f`(a)的极大值点必在a=b时取得 由于当a=b时,f`(a)0,故得不等式。同理,可推广到关于n个变元的情形。

abc

1sinsin。2228abc11

证明:由标准化定理得,当a=b=c时,sinsinsin,取最大值,故

22228

abc1sinsinsin。2228

例12、设a,b,c为三角形的三内角,求证:sin13、等式法

应用一些等式的结论,可以巧妙地给出一些难以证明的不等式的证明。例13(1956年波兰数学竞赛题)、a,b,c为abc的三边长,求证:

2a2b22a2c22b2c2a4b4c4。

证明:由海伦公式sabc其中p

(abc)。

2两边平方,移项整理得

p(pa)(pb)(pc),16(sabc)22a2b22a2c22b2c2a4b4c4 而sabc0,所以2a2b22a2c22b2c2a4b4c4。

14、函数极值法

通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的。

14、设xr,求证:4cos2x3sinx2。

831

证明:f(x)cos2x3sinx12sin2x3sinx2sinx

248当sinx

31时,f(x)取最大值2; 48

当sinx1时,f(x)取最小值-4。

故4cos2x3sinx2。

815、单调函数法

当x属于某区间,有f`(x)0,则f(x)单调上升;若f`(x)0,则f(x)单调下降。推广之,若证f(x)g(x),只须证f(a)g(a)及f`(x)g`(x)即可,x[a,b]。

例15、0x,求证:sinxxtanx。

2证明:当x0时,sinxxtanx0,而

(sinx)`cosx1x`sec2x(tanx)` 故得sinxxtanx。

16、中值定理法

利用中值定理:f(x)是在区间[a,b]上有定义的连续函数,且可导,则存在,ab,满足f(b)f(a)f`()(ba)来证明某些不等式,达到简便的目的。

16、求证:sinxsinyxy。

证明:设f(x)sinx,则sinxsiny(xy)sin`(xy)cos 故sinxsiny(xy)cosxy。

17、分解法

按照一定的法则,把一个数或式分解为几个数或式,使复杂问题转化为简单易解的基本问题,以便分而治之,各个击破,从而达到证明不等式的目的。

1例17、n2,且nn,求证:1n(n11)。

23n

证明:因为1

111111

n(11)111 23n23n

2

所以1

34n134n

1n2nn1 23n23n

n(n11)。23n18、构造法

在证明不等式时,有时通过构造某种模型、函数、恒等式、复数等,可以达到简捷、明

快、以巧取胜的目的。

18、已知:x2y21,a2b22,求证:b(x2y2)2axy2。证明:依题设,构造复数z1xyi,z2abi,则z11,z22 所以z1z2(xyi)2(abi)[a(x2y2)2bxy][b(x2y2)2axy]i

b(x2y2)2axyimz1z2z1z2

2

故b(x2y2)2axy2。

19、排序法

利用排序不等式来证明某些不等式。

排序不等式:设a1a2an,b1b2bn,则有

其中t1,t2,,tn是a1bna2bn1anb1a1bt1a2bt2anbtna1b1a2b2anbn,1,2,,n的一个排列。当且仅当a1a2an或b1b2bn时取等号。

简记作:反序和乱序和同序和。

19、求证:a2b2c2d2abbccdda。

证明:因为a,b,c,dr有序,所以根据排序不等式同序和最大,即

a2b2c2d2abbccdda。

20、几何法

借助几何图形,运用几何或三角知识可使某些证明变易。

ama

。例20、已知:a,b,mr,且ab,求证:

bmb

证明:以b为斜边,a为直角边作rtabc

延长ab至d,使bdm,延长ac至e,使edad,过c作ad的平行线交de于f,则abc∽ade,令cen,aabam

所以

bacbn

amama

。又cecf,即nm,所以

bmbnb

e

另外,还可以利用重要的不等式来证题,如平均不等式、柯西(cauchy)不等式、琴生(jensen)不等式、绝对值不等式、贝努利(lli)不等式、赫尔德(o.hölder)不等式、三角形不等式、闵可夫斯基(ski)不等式等,这里不再烦述了。

在实际证明中,以上方法往往相互结合、互相包含,证题时,可能同时运用几种方法,结合起来加以证明。

归纳法证明不等式成立篇三

主备人:审核:包科领导:年级组长:使用时间:

放缩法证明不等式

【教学目标】

1.了解放缩法的概念;理解用放缩法证明不等式的方法和步骤。

2.能够利用放缩法证明简单的不等式。

【重点、难点】

重点:放缩法证明不等式。

难点:放缩法证明不等式。

【学法指导】

1.据学习目标,自学课本内容,限时独立完成导学案;

2.红笔勾出疑难点,提交小组讨论;

3.预习p18—p19,【自主探究】

1,放缩法:证明命题时,有时可以通过缩小(或)分式的分母(或),或通过放大(或缩小)被减式(或)来证明不等式,这种证明不

等式的方法称为放缩法。

2,放缩时常使用的方法:①舍去或加上一些项,即多项式加上一些正的值,多项式的值变大,或多项式减上一些正的值,多项式的值变小。如t22t2,t22t2等。

②将分子或分母放大(或缩小):分母变大,分式值减小,分母变小,分

式值增大。

如当(kn,k1)1111,22kkk(k1)k(k1),③利用平均值不等式,④利用函数单调性放缩。

【合作探究】

证明下列不等式

(1)

(2),已知a>0,用放缩法证明不等式:loga

(a1)1111...2(nn)2222123nloga(a1)1

(3)已知x>0, y>0,z>0求证

xyz

(4)已知n

n,求证:1

【巩固提高】

已知a,b,c,d都是正数,s

【能力提升】

求证: ...abcd求证:11aba

1ab

1b

本节小结:

归纳法证明不等式成立篇四

放缩法证明不等式

不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如

(2)利用基本不等式,如:

(3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

2.放缩法

欲证a≥b,可将b适当放大,即b1≥b,只需证明a≥b1。相反,将a适当缩小,即a≥a1,只需证明a1≥b即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。归纳法证明不等式成立篇五

归纳法证明不等式

由于lnx>0则x>

1设f(x)=x-lnxf'(x)=1-1/x>0

则f(x)为增函数f(x)>f(1)=1

则x>lnx

则可知道等式成立。。。。。(运用的是定理,f(x),g(x)>0.且连续又f(x)>=g(x).则在相同积分区间上的积分也是>=)

追问

请问这个“定理”是什么定理?

我是学数学分析的,书上能找到么?

回答

能你在书里认真找找,不是定理就是推论埃。。

叫做积分不等式性

数学归纳法不等式的做题思路:

1、n等于最小的满足条件的值,说明一下这时候成立,一般我们写显然成立,无须证明

2、假设n=k的时候成立,证明n=k+1的时候也是成立的,难度在这一步。(含分母的一般用放缩法,含根号的常用分母有理化。)

3、总结,结论成立,一般只要写显然成立。这题大于号应该为小于号。当n=1,1<2显然假设n=k-1的时候成立即1+1/√2+1/√3+...+1/√(k-1)<2√(k-1)则当n=k时,1+1/√2+1/√3+......+1/√(k-1)+1/√k<2√(k-1)+1/√k如果有2√(k-1)+1/√k<2√k就可,只要1/√k<2√k-2√(k-1)=2(√k-√(k-1)=2/,即只要√(k-1<√k,而这显然。所以1+1/√2+1/√3+......+1/√n>2√n

已知f(n)=1+1/2+1/3+...+1/n(n属于正整数),求证:当n>1时,f(2^n)>n+2/

2(1)n=2时代入成立

(2)假设n=a时候成立

则n=a+1时

f(2^(a+1))=f(2^a)+1/(2^a+1)+1/(2^a+2)+1/(2^a+3)+……1/(2^(a+1))>

f(2^a)+1/(2^(a+1))+1/(2^(a+1))+1/(2^(a+1))+……1/(2^(a+1))

后面相同项一共有2^a个

所以上面又=f(2^a)+2^a/(2^(a+1))=f(2^a)+1/2

因为f(2^a)>(a+2)/2故上面大于<(a+1)+2>/2

因此n=a时上式成立的话n=a+1也成立

1/2^2+1/3^2+1/4^2+…+1/n^2<1-1/n(n≥2,n∈n+)

“1/2^2”指2的平方分之

1证明:数学归纳法:

1、∵当n=2时有1/2^2=1/4<1-1/2=1/

2∴符合原命题。

2、假设当n=k时1/2^2+1/3^2+1/4^2+…+1/k^2<1-1/k(k≥2,k∈n+)成立,则当n=k+1时有1/2^2+1/3^2+1/4^2+…+1/k^2+1/(k+1)^2<1-1/k+1/(k+1)^2=(k^3+k^2-1)/(k(k+1)^2)<(k^3+k^2)/(k(k+1)^2)=k/(k+1)=1-1/(k+1)∴原命题成立

综上可得1/2^2+1/3^2+1/4^2+…+1/n^2<1-1/n(n≥2,n∈n+)成立!。

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 软件
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。排序不等式证明应用研究
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面我给大家整理了一些优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。国际新闻播音
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀
总结是对过去经验和教训的总结,可以帮助我们不断进步和成长。着重描述实际行为和取得的成就,可增加自己的亲身体验。下面是一些优秀的语文范文,供大家参考。3.16国际
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
人们常常会通过总结来反思并改善自己的工作和学习表现。在写总结之前,我们可以先列出要总结的重点和要点,然后逐一进行叙述和分析。如果你常常感到时间不够用,不妨试试下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以
总结是在忙碌的生活中停下脚步,反思和审视自己的成长和进步。如何克服困难,取得成功?让我们一起探讨这个问题。接下来,我们一起来看看一些经典的范例,以供参考。均值不
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。幼儿园教育案
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小
社会制度是社会运行的基础,它规范了人们的行为和权利义务。写总结时可以借鉴一些优秀的范文和经验,参考前人的经验和总结方法。以下是一些学习方法的总结,欢迎大家参考借
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?接下来小编就给大家介绍一
演讲稿是一种用于演讲或演讲比赛的准备稿件。在总结中可以添加一些关键词或关键句,以帮助读者更好地理解文章的重点。接下来是一些总结精华,希望对您的写作有所帮助。均值
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。相信许多人会觉得计划很难写?以下我给大家整理了一些优
“方”即方子、方法。“方案”,即在案前得出的方法,将方法呈于案前,即为“方案”。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?下面是小编帮大家整理的方案范文
总结可以帮助我们总结经验,提高工作效率。总结的语言要简洁明了、准确精练,避免出现冗长和啰嗦的表达方式。以下是一些锻炼身体的小技巧,希望能帮助大家保持健康。2.2
总结可以帮我们梳理思绪,优化方法,更好地实现个人和团队的目标。如何实现人与自然和谐共存?这是全球生态环境保护的关键。最后,希望大家在情感表达中能够真实、自然地表
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。不
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。5月26日新闻时事
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面我给大家整理了一些优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
成功需要勤奋和毅力,付出总有回报。怎样提高写作水平,让文章更具有说服力?看看下面的一些范文,可以帮助我们更加清楚地理解和掌握写作的要领。毕业生自我鉴定200字篇
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。优质的心得体会该怎么样去写呢?下面是小编帮大家整理的心得体会范文大全,
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?接下来小编就给大
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。浅谈山
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里
抒情是一种表达个人情感和思想的文学形式,既可以通过文字表达,也可以通过声音、画面等方式表达出来。一个完美的总结应该包括对过去一段时间工作和学习的全面概括和评估。
随着社会一步步向前发展,报告不再是罕见的东西,多数报告都是在事情做完或发生后撰写的。那么报告应该怎么制定才合适呢?下面是小编带来的优秀报告范文,希望大家能够喜欢
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?这里我整理了一
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
总结能够帮助我们更好地理解事物的规律性,提高我们的认知水平。健康饮食对于保持身体健康至关重要,我们要有良好的饮食习惯。以下是一些经典的总结案例,供大家参考和借鉴
总结是我们成长过程中必备的一环。注意总结的语气和感情色彩,使得文章更加生动和有感染力。总结是一个积累和总结的过程,我们可以从他人的总结中获得借鉴和启发。薪酬激励
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理
总结是对过去经验的总结和提炼,可以帮助我们更好地规划未来。如何培养良好的人际关系小编为大家精选了一些写总结的好例子,希望能够帮助到大家。不等式证明题实用篇一一、
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一
报告能够系统地整理和梳理信息,帮助我们更好地理清思路。除了文字表达,我们还可以使用图表、表格等辅助工具来展示和解释相关数据与情况。我们为大家准备了一些精选的报告
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面我
报告的语言要简练、明确,避免使用模糊或主观的表达方式,确保读者能够准确理解。规划报告的结构和内容,将报告划分为合适的章节和段落,确保逻辑层次清晰有序。这是一份关
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。展
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
无论是学术性报告还是商业性报告,都需要准确、简洁、逻辑清晰地陈述观点和分析。报告的结构应该合理,要考虑读者的需求和背景。在这些报告范文中,我们能够看到不同领域和
无论是在学术界还是商业领域,报告都扮演着重要的角色。在撰写报告之前,我们可以参考一些相关的范文或样本,以帮助我们更好地把握写作要点。以下是小编为大家收集的报告范
musicolet
2025-08-21
Musicolet作为一款高质量音乐播放器,确实不负众望。它不仅汇集了海量的音乐资源,包括网络热歌与歌手新作,即便是小众歌曲也能轻松找到,满足不同用户的音乐需求。更重要的是,该软件干扰,提供清晰音质和完整歌词,为用户营造了一个纯净、沉浸式的听歌环境。对于追求高品质音乐体验的朋友来说,Musicolet绝对值得一试。
Anyview阅读器的历史版本是一款出色的在线小说阅读软件,它提供了详尽而全面的小说分类,涵盖了都市、武侠、玄幻、悬疑等多种类型的小说。用户可以随时在线阅读自己喜欢的小说,并且该软件还支持多种阅读模式和功能设置,让用户能够自由地免费阅读感兴趣的内容。这不仅为用户带来了全方位的追书体验,还配备了便捷的书架管理功能,方便用户轻松收藏热门小说资源,并随时查看小说更新情况,以便于下次继续阅读。欢迎对此感兴趣的用户下载使用。
BBC英语
2025-08-21
BBC英语是一款专为英语学习设计的软件,它提供了丰富多样的专业英语学习资源。无论你是想提高口语水平还是锻炼听力能力,这里都有专门针对这些需求的训练内容。此外,该软件还能智能地评估和纠正你的口语发音,帮助你使发音更加标准、记忆更加准确。
百度汉语词典
2025-08-21
百度汉语词典是一款专为汉语学习设计的软件。通过这款软件,用户能够访问到丰富的汉语学习资源,包括详细的学习计划和学习进度统计等功能,提供了非常全面的数据支持。该软件还支持汉字查询,并且可以进行多种词典内容的关联搜索,从而在很大程度上满足了用户对于汉语学习的各种需求。
屏幕方向管理器是一款专为用户提供手机方向控制服务的应用程序。作为一款专业的管理工具,它能够强制调整手机屏幕的旋转方向。这款应用程序提供了多种功能,使用户能够轻松选择个性化的屏幕旋转方式。此外,屏幕方向管理器还具备丰富的设置选项,让用户可以通过简单的操作实现更多个性化配置,使用起来既方便又快捷。

关于我们 | 网站导航 | 网站地图 | 购买指南 | 联系我们

联系电话:(0512)55170217  邮箱: 邮箱:3455265070@qq.com
考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved. 工信部备案号: 闽ICP备2025091152号-1