人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
小升初数学训练题小升初数学必考基础题篇一
;一、(本大题共4小题,每小题6分,共24分)计算下列各题(要求写出计算步骤)
1)
解:因为 所以,原式 2)设,求。
解:因为 …… …… 所以。
3)求,其中。
解:
4)求幂级数的和函数,并求级数的和。
解:设,则有 上式两边关于求导得 。
二、(本题共16分)设为数列,为有限数,求证:
1)如果,则 2)如果存在正整数,使得,则。
证明:1)因为所以存在有。
对任意的,存在整数,当时有 又因为存在整数当有,所以取 当时有 这就证明。
2)设,则有 。
三、(本题共15分)设函数在闭区间上具有连续的三阶导数,且。求证:在开区间内至少存在一点,使得。
证明:因为,在之间, 所以, 其中, 又因为在上连续在之间,由介值定理可得,存在使得。
四、(本题共15分)在平面上,有一条从点向右的射线,其线密度为。在点处(其中)有一质量为的质点。求该射线对质点的引力。
解:用微元法计算,设此射线上一小段为,其上一点的坐标为,此小段对质点的引力方向为,大小为,由此可得该射线对质点的引力为 五、(本题共15分)设是由方程所确定的隐函数,且具有二阶连续偏导数。求证:和。
证明:此题是错题。
六、(本题共15分)设函数连续,为常数,是单位球面。记第一型曲面积分为。求证:
证明:当时, 。
当不全为零时,用微元法证明。
用平面去 切球面,其中 设平面切球面所得半弦长,则 所切小环带展开后长为,宽为 。
相关热词搜索:;小升初数学训练题小升初数学必考基础题篇二
一、注意审题,细心计算。(30%)
(一) 直接写出得数。(8%)
245= 0.80.02=
3.7+3.07= 0.50.6=
(二) 用你喜欢的方法计算。(22%)
(1) 358+4235 (2) 0.8( ) (3)
(4) 400.5-3.72.1 (5) (6)
(7) (8)
三、我用火眼金睛辨是非。(5%)
1.最小的质数是最小合数的50%。 ( )
2.把一个圆柱削成一个最大的圆锥,圆柱和圆锥体积比为1:3。 ( )
3.中位数是用来表示一组数据一般水平的数。 ( )
4.把 化成最简分数比为3.5 。 ( )
5.在x0.8=0.70.01中,若把x与0.8同时扩大100倍,则商为70,余数为1。 ( )
四、我会谨慎思考,认真填写。(31%:第2题1分,其余每题2分)
1.福建省的陆地面积是十二万一千四百平方千米,这个数写作()平方千米,也就是( )万平方千米。
2.妈妈买了一桶油共4l,每天炒菜用去200ml,这桶油能用( )天。
3.():16= =27:( )=()%=
4.一个等腰三角形,顶角和一个底角的比为1:2,它的顶角是()度,底角是( )度。
5.三个连续的奇数,中间的数是m,其余两个数是( )和( )。
6.从图中最能清楚地看出数量增减变化情况的`统计图是( )。
7.种一批树共200棵,死去了3棵,这批树的成活率是( )。
8.( )一定,( )和( )成正比例。
9.光明饭店十月份的营业额为20万元,按照税法规定,须缴5%的营业税,应缴( )元。
10.一项工程,单独做,甲要10天,乙要15天,两队合作,( )天能完成这项工程。
11.一个圆柱形铁皮烟囱,底面直径30厘米,长40厘米,做这个烟囱至少需要()平方厘米的铁片。
12.在一幅比例尺为 的地图上量得北京到上海的距离是5cm,北京到上海的实际距离是( )km。
13.把一个圆等分成若干个小扇形后拼成一个近似的长方形,周长比原来增加了12厘米,这个圆的面积是( )平方厘米。
14.鸡兔同笼,有30个头,96只脚,鸡有( )只。
五、我能画,我会算。(6%)
请你画一个边长为2厘米正方形,在正方形中画一个最大的圆,求出圆的面积。
六、我能运用知识解决实际问题。(28%)
(一)只列式,不计算(12%)
3、客厅里有一面钟,时针长15厘米,它的尖端一天能走多少厘米?
(二)列出算式并解答(16%)
小升初数学训练题小升初数学必考基础题篇三
ab两地相距120千米,已知人的步行速度是每小时5千米,摩托车的速度是每小时50千米,摩托车后座可带一人,问有三人并配备一辆摩托车从a地到b地最少需要多少小时? (保留1位小数,还要有人驾驶车,共做2人)
参考解答:设三人为abc,c步行,同时a带b之x千米处b步行;a返回带c,这时c走了y;同时到达目的地。
列方程:y=x/10+(9x/10)*(1/11)=2x/11
x/50+(2x/11)/5=120 , x=1320/13
所需时间=1320/13/50+1320*2/13/5=5.7小时。
以下由[jhmath]解答:此题结合下图去考虑会更好理解,三人分别取名为甲、乙、丙,甲从a开摩托载着乙到c点,乙步行继续前行,甲返回b接丙,与乙同时到d点,根据题意知ab=dc,全程可分为6.5份(想一想为什么,可以根据速度去考虑),然后由一个人(比如甲)行a--c--b--d时间就是最少时间. 精确结果是:5又65分之47小时。
小升初数学训练题小升初数学必考基础题篇四
1.马匹喝水。
老王要养马,他有这样一池水:
如果养马30匹,8天可以把水喝光;
如果养马25匹,12天把水喝光。
老王要养马23匹,那么几天后他要为马找水喝?
2.竞赛成绩。
小强参加学校举行的小学生知识能力竞赛,比赛结束后,乐乐问小强得了第几名,小强故意卖关子,说:"我考的分数、名次和我的年龄的乘积是1958,你猜猜看。"乐乐想了没多久就说出了小强的分数、名次和年龄。
那么,你知道小强多大吗?他的竞赛名次和分数呢?
3.买卖衣服。
4.鸡妈妈数数。
5.过桥。
6.卖苹果。
7.青蛙跳井。
8.分桃子。
幼儿园的老师给三组小孩分桃子,如只分给第一组,则每个孩子可得7个;如只分给第二组,则每个孩子可得8个;如只分给第三组,则每个孩子可得9个。
9.运大米。
10.如何分酒?
11.赔了多少?
一天,小赵的店里来了一位顾客,挑了20元的货,顾客拿出50元,小赵没零钱找不开,就到隔壁小韩的店里把这50元换成零钱,回来给顾客找了30元零钱。过一会,小韩来找小赵,说刚才的是假钱,小赵马上给小李换了张真钱。
问:在这一过程中小赵赔了多少钱?
第二步:25匹马12天喝光水,马匹数加上所用天数是37;
第四步:如果23匹马把水喝光所用天数加上马匹数就应该是36,所以答案应该为3623=13天,即23匹马13天能把水喝光。
第二步:将1958因式分解,得质因数1、2、11、89;
第四步:小强的分数是89,相应的竞赛名次是2。
第三步:第一步小丽赚了30元,但第二步她赔了10元,所以赚的钱数是3010=20元。
总的来说小丽还是赚了,并且赚了20元。
第三步:鸡妈妈的孩子总数应该是15,而不是17,鸡妈妈数错的原因是她数了两次都把她自己数进去了。
第四步:过完桥他们还要走两分钟的路,走完路需要时间是两分钟46秒,此时离三分钟还有14秒,所以他们赶的上公交车。过桥顺序是奶奶和妹妹,洛洛和妈妈,爸爸,过桥用了46秒。
6.这50箱苹果可以均分为5份,也就是分5次卖完。由于马车一次运10箱苹果,一箱有30个苹果,也就是商人进一次城时运300个苹果,走一公里商人的儿子都要吃一个,当到达城里时,他的儿子已经吃了49个苹果,第二次同样他的儿子都要吃掉49个苹果,第三次、第四次、第五次也一样,所以最后他儿子一共吃了49*5=245个苹果,所卖苹果总数是50*30245=1255个苹果。
7.此题易混淆人的做题思路。多数人认为青蛙一次跳3m,两次就可以跳6米,超过了井的深度,两次就可以跳出井。这是错误的。因为题中说"井壁非常光滑",说明青蛙在跳到3米高度时,会因为触到井壁而重新落回井底,所以无论这只青蛙跳多少次,它都跳不到井外去,除非它一次跳的高度超过井的深度。
8.设有n个桃子,一组x个孩子,二组y个孩子,三组z个孩子,则有n/x=7,n/y=8,n/z=9。由上式知道桃子数量是7、8、9的公倍数;然后算出最小公倍数504,分别除以7、8、9,得出小组的数量比:72:63:56;最后用504除以7、8、9的和,得出每个孩子分到的桃是21个。
9.首先可以设大牛车用x辆,中型牛车y辆,小型牛车z辆,依题意知x+y+z=100,3*x+2*y+z/2=100,然后分情况讨论即可得出答案。
10.第一步,先将10斤酒倒满7斤的桶,再将7斤桶里的酒倒满3斤桶;第二步,再将3斤的桶里的酒全部倒入10斤桶,此时10斤桶里共有6斤酒,而7斤桶里还剩4斤;第三步,将7斤桶里的酒倒满3斤桶,再将3斤桶里的酒全部倒入10斤桶里,此时10斤桶里有9斤酒,7斤桶里只剩1斤;第四步,将7斤桶里剩的酒倒入3斤桶,再将10斤桶里的酒倒满7斤桶;此时3斤桶里有1斤酒,10斤桶里还剩2斤,7斤桶是满的;第五步,将7斤桶里的酒倒满3斤桶,即倒入2斤,此时7斤桶里就剩下了5斤,再将3斤桶里的酒全部倒入10斤桶,这样就将酒平均分开了。
11.首先,顾客给了小赵50元假钞,小赵没有零钱,换了50元零钱,此时小赵并没有赔,当顾客买了20元的东西,由于50元是假钞,此时小赵赔了20元,换回零钱后小赵又给顾客30元,此时小赵赔了20+30=50元,当小韩来索要50元时,小赵手里还有换来的20元零钱,他再从自己的钱里拿出30元即可,此时小赵赔的钱就是50+30=80元,所以小赵一共赔了80元。
小升初数学训练题小升初数学必考基础题篇五
;初中数学教学中的变式训练
所谓数学变式训练,即是指在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征却不变。数学教学,使学生理解知识仅仅是一个方面,更主要的是要培养学生的思维能力,掌握数学的思想和方法。
变式其实就是创新。当然变式不是盲目的变,应抓住问题的本质特征,遵循学生认知心理发展,根据实际需要进行变式。实施变式训练应抓住思维训练这条主线,恰当的变更问题情境或改变思维角度,培养学生的应变能力,引导学生从不同途径寻求解决问题的方法。通过多问、多思、多用等激发学生思维的积极性和深刻性。下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
一、培养学生正确概括的思维能力
从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。
通过对式子的变形,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,因此教师在以后的练习中也明确类似知识点的考查方向,防止教师盲目出题,学生盲目练习,在有限的时间内使得效益最大化。
二、培养学生多向变通的思维能力
数学思维的发展,还赖于掌握、应用定理和公式,去进行推理、论证和演算。由于定理和公式的实质,也是人们对于概念之间存在的本质联系的概括,所以掌握定理和公式的关键在于明确理解定理和公式中概念的联系,对于这种联系的任何形式的机械的理解,是不能熟练、灵活应用定理和公式的根源,它是缺乏多向变通思维能力的结果。因此在定理和公式的教学中,也可利用变式,展现相关定理和公式之间的联系以及定理、公式成立依附的条件,培养学生辨析与定理和公式有关的判断,运用。
三、培养学生联想、转化、推理、归纳、探索的思维能力
1.多题一解,适当变式,培养学生求同存异的思维能力。
许多数学习题看似不同,但它们的内在本质(或者说是解题的思路、方法是一样的),这就要求教师在教学中重视对这类题目的收集、比较,引导学生寻求通法通解,并让学生自己感悟它们之间的内在联系,形成数学思想方法。
2.一题多解,触类旁通,培养学生发散思维能力,培养学生思维的灵活性。
一题多解的实质是以不同的论证方式,反映条件和结论的必然本质联系。在教学中教师应积极地引导学生从各种途径,用多种方法思考问题。这样,既可暴露学生解题的思维过程,增加教学透明度,又能使学生思路开阔,熟练掌握知识的内在联系。这方面的例子很多,尤其是几何证明题。通过一题多解,让学生从不同角度思考问题、解决问题,可以引起学生强烈的求异欲望,培养学生思维的灵活性。
3.一题多变,总结规律,培养学生思维的探索性和深刻性。
通过变式教学,不是解决一个问题,而是解决一类问题,遏制“题海战术”,开拓学生解题思路,培养学生的探索意识,实现“以少胜多”。
如应用题教学是初中教学中的一个难点,在教学中就可以把同类型的题目通过变式的方式展现给学生,把学生的思维逐步引向深刻。
在讲解一元一次方程的实践和探究这节课时,教师从奥运冠军孟关良训练为题材编了一题关于追及问题的应用题,一?f快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20米孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?然后教师可对本例作以下变式。
变式1:一?f快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?(从先行20米改为先行了20秒)
变式2:我们学校有一块300米的跑道在比赛跑步时经常会涉及到相遇问题和追及问题
现有甲、乙两人比赛跑步,甲的速度是10米/秒,乙的速度是8米/秒,他们两人同地出发
(1)两人同时相向而行经过几秒两人相遇。
(2)两人同时同向而行经过几秒两第一次相遇。
(3)乙先出发5秒,然后甲开始出发,问甲经过几秒两人第一次相遇。
这题该为平时学生熟悉的操场环形跑道,这里三题也是一组变式题,(1)、(2)是同时同地出发的相遇和追及问题,(3)是不同时出发相遇和追及问题,这题还蕴涵着分类讨论的思想。
变式3:一?f快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了10秒,教练要求他用45秒追上快艇,孟关良为了追上快艇,必须奋力前划,他以每秒6米的速度划行,划了5秒后他发现用这样的速度不能在规定的时间内追上,请问他的想法用45秒不能追上快艇对不对?如果他要追上请你算一算孟关良后来要用多少速度才能在规定的时间内追上快艇?
4.一题多问,通过变式引申发展,扩充、发展原有功能,培养学生的创新意识和探究、概括能力。
牛顿说过:“没有大胆的猜想就做不出伟大的发现。”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。
教学中要特别重视对课本例题和习题的“改装”或引申。数学的思想方法都隐藏在课本例题或习题中,我们在教学中要善于对这类习题进行必要的挖掘,即通过一个典型的例题,最大可能的覆盖知识点,把分散的知识点串成一条线,往往会起到意想不到的效果,有利于知识的建构。
4
相关热词搜索:;小升初数学训练题小升初数学必考基础题篇六
要证平行四边形,两个条件才能行,
一证对边都相等,或证对边都平行,
一组对边也可以,必须相等且平行.
对角线,是个宝,互相平分“跑不了”,
对角相等也有用,“两组对角”才能成。
梯形问题的辅助线
移动梯形对角线,两腰之和成一线;
平行移动一条腰,两腰同在“△”现;
延长两腰交一点,“△”中有平行线;
作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线。
添加辅助线歌
辅助线,怎么添?找出规律是关键.
题中若有角(平)分线,可向两边作垂线;
线段垂直平分线,引向两端把线连;
三角形边两中点,连接则成中位线;
三角形中有中线,延长中线翻一番。
圆的证明歌
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆弦,直圆周角立上边,
它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,
圆周、圆心、弦切角,细找关系把线连.
同弧圆周角相等,证题用它最多见,
圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,
外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆;
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,
直线与圆有共点,证垂直来半径连,
直线与圆未给点,需证半径作垂线;
四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键,
两圆相切作公切,两圆相交连公弦。
小升初数学训练题小升初数学必考基础题篇七
求一个数比另一个数多(少)百分之几、纳税问题
1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
例1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 × 分率 = 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。就用“多(少)的量 ÷ 单位1”。
例3、(难点突破)
一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%
点评在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1”的'量。从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。”这句话是错的。为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能相等的。
例4、(考点透视)
分析与解:降低到3000元,即现价为3000元,说明降低了2000元。求降价百分之几,就是求降低的价格占原价的百分之几。
5000 – 3000 = 2000(元)
2000 ÷ 5000 = 40%
答:降价40﹪。
例5、(和应纳税额有关的简单实际问题)
分析与解:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。
方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)
方法2:16000 ×(1 + 10%) = 16000 ×1.1 = 17600(元)
答:王叔叔买这辆摩托车一共要花17600元钱。
万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。
答:“十一”黄金周期间应缴纳营业税13.5万元。
一、填空。
1、篮球个数是足球的125%,篮球比足球多( )%,足球个数是篮球的( )%,足球个数比篮球少( )%。
2、排球个数比篮球多18%,排球个数相当于篮球的( )%。
3、足球个数比篮球少20%。排球个数比篮球多18%,( )球个数最多,( )球个数最少。
4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的( )%,其余的果树占总棵数的( )%。
5、女生人数占全班的百分之几 = ( )÷ ( )
杨树的棵数比柏树多百分之几 = ( )÷ ( )
实际节约了百分之几 = ( )÷ ( )
比计划超产了百分之几 = ( )÷ ( )
6、20的40%是( ),36的10%是( ),50千克的60%是( )千克,800米的25%是( )米。
7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( )元。
二、解决实际问题
1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

一键复制