人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
逻辑联结词是哪本书篇一
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判定相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.
二、教学重点难点:
重点是判定复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判定的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
(教师利用投影片,和学生讨论以下问题.)
例1 判定以下各语句是不是命题,若是,判定其真假:
2.讲授新课
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判定真假的语句叫做命题.
(2)介绍逻辑联结词“或”、“且”、“非”.
命题可分为简单命题和复合命题.
(4)命题的表示:用 , , , ,……来表示.
(教师根据学生回答的情况作补充和强调,非凡是对复合命题的概念作出分析和展开.)
对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .
3.巩固新课
(1) ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若 ,则 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
例3 写出下表中各给定语的否定语(用课件打出来).
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
至多有 个
其否定语分别为
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有 个”的否定语是“至少有 个”.
(假如时间宽裕,可让学生讨论后得出结论.)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
4.课堂练习:第26页练习1,2.
5.课外作业:第29页习题1.6 1,2.
逻辑联结词是哪本书篇二
(2)理解“或”“且”“非”的含义;
(3)能用和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
二、难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、
1.新课导入
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
(教师利用投影片,和学生讨论以下问题.)
例1 判断以下各语句是不是命题,若是,判断其真假:
2.讲授新课
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
(2)介绍“或”、“且”、“非”.
命题可分为简单命题和复合命题.
(4)命题的表示:用 , , , ,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
3.巩固新课
(1) ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若 ,则 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
例3 写出下表中各给定语的否定语(用课件打出来).
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
至多有 个
其否定语分别为
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有 个”的否定语是“至少有 个”.
(如果时间宽裕,可让学生讨论后得出结论.)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
4.课堂练习:第26页练习1,2.
5.课外作业 :第29页习题1.6 1,2.
逻辑联结词是哪本书篇三
(2)理解“或”“且”“非”的含义;
(3)能用和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
二、难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、
1.新课导入
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
(教师利用投影片,和学生讨论以下问题.)
例1 判断以下各语句是不是命题,若是,判断其真假:
2.讲授新课
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
(2)介绍“或”、“且”、“非”.
命题可分为简单命题和复合命题.
(4)命题的表示:用 , , , ,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .
3.巩固新课
(1) ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若 ,则 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
例3 写出下表中各给定语的否定语(用课件打出来).
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
至多有 个
其否定语分别为
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有 个”的否定语是“至少有 个”.
(如果时间宽裕,可让学生讨论后得出结论.)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
4.课堂练习:第26页练习1,2.
5.课外作业 :第29页习题1.6 1,2.
逻辑联结词是哪本书篇四
地位和作用:逻辑是研究思维形式及其规律的一门基础学科。学习数学需要全面的理解概念,正确的进行表述,判断和推理,这就离不开对逻辑知识掌握和应用。在日常生活,学习,工作中,基本的逻辑知识是认识问题,研究问题不可缺少的工具。而本部分内容逻辑联结词又是逻辑知识的基础,也是学生在初中数学中学习过简单的命题知识进一步深化和推广。
由于逻辑联结词是逻辑知识的基础,也是学生能否掌握和判断一个事物并形成正确的逻辑思维能力的关键,所以逻辑联结词“或”,“且”,“非”的含义以及含有逻辑联结词的复合命题的理解和应用应是本节的重点,也是本节的难点。
为了突出重点,突破难点,在教学上采取了以下的措施:
(1)从学生已有的知识出发,精心设置一组例子,逐步引导学生观察,探讨,联想,归纳出逻辑联结词的含义,从中体会逻辑的思想。
(2)通过简单命题与复合命题的对比,明确它们存在的区别和联系,加深对复合命题构成的理解,抓住其本质特点。
(一)认知目标:
(二)能力目标:
1经历抽象的逻辑联结词的过程,培养学生观察,抽象,推理的思维能力
2通过发现式的引导,培养学生发现问题,解决问题的能力
(三)情感目标:
为了要达到教学目标的要求,我采用如下的方法:
依据现有学生的年龄特点和心理特征,结合他们的认识水平,在遵循启发式教学原则的基础上,在本节采用发现法为主,以谈话法,讲解法,练习法为辅的教学方法,意在通过老师的引导,调动学生学习知识的积极性,从而培养学生观察问题,发现问题和解决问题的能力。为此,在教学活动中,通过列举两组例子,让学生观察,找出两组例子的区别和联系,从中发现问题,并通过简单的指导,启发学生与已有的知识做模拟,来加深对理性知识的理解。
现代教学理论认为,教师的“教”不仅要让学生“学会知识”,更重要的是让学生“会学知识”,而正确的学法指导是培养学生这种能力的关键,因此在本节的教学中,教师指导学生运用观察,分析讨论,模拟归纳等手段来进行本节课的学习,实现对知识的理解和应用。
为了更好,更形象,直观地突出难点,增大容量,提高教学效率,本节课采用小黑板辅助教学,并用彩色粉笔加以强调突出,从而实现最优化的教学。
教具:小黑板,彩色粉笔
学具:笔,草稿纸
〈一〉创设情景,导入新课
王惠,张红,李欣同学中的一位在放学后把教室打扫干净了,事后,老师问他们三个人是谁做的好事。王惠说:“是李欣做的”;李欣说:“不是我做的”;张红说:“不是我做的”。已知只有一个人说的是实话,你能判断是谁做的吗?由于学生已具有一些生活的简单的逻辑常识,所以此问题解决不难。由此引出本节课的内容,极大地体现了逻辑知识与现实生活的紧密性,增加了学生学习数学的兴趣,从而培养了学生学习数学的积极性和趣味性。
〈二〉自主探索,归纳新知
如果上一环节解决了如何引出问题,那么本环节将解决如何认识问题。在有了上面知识的引入,相信学生已对逻辑知识有了良好的兴趣,紧接着对学生说:要解决以上的这种问题,就需要学习以下的知识。
拿出小黑板,上面有如下的题目:
并提出两个问题(1)根据你们已有的知识,请同学们判断一下,上面的四个语句是不是命题?(2)依据你们的判断能给命题下一个定义吗?让学生自我总结什么是命题,最后给出命题的定义,并强调指出语句是不是命题的关键在于它是否能判断其真假。
再次出示小黑板,上面有以下的题目:
(2)提出简单命题,复合命题的概念“或”,“且”,“非”与集合中的并,交,补的意义是相同的,并阐述这里的“或”,“且”,“非”与生活中的“或”,“且”,“非”的区别和联系,从而强化对逻辑联结词“或”,“且”,“非”的理解。
提出下面的两个问题:
(1)三个命题应是上面的那种形式
(2)三个命题是由哪些简单命题和联结词构成
让学生自我发现,探索,发现问题,然后抽学生来回答,看学生在理解这些知识的情况,针对他们出现的问题,给出解决的方案,从而达到对知识的理解。
本环节中通过设计“问题串”,作比较等方式,使学生对概念的理解不仅仅停留在表面,而是抓住其实质,从而轻松的掌握了本节的教学难点:“或”,“且”,“非”定义的理解和复合命题的构成形式,同时进一步培养了学生的分析、概括的能力,以及表达和交流的能力。
〈三〉巩固练习,深化知识
适当的巩固性,应用性练习是学习新知识、巩固性知识必不可少的。为了加深对本节知识的掌握,为此用习题26页的习题2进行课堂练习,在学生做时,进行课堂巡视,针对学生解题时出现的问题,教师及时的加以强调和总结。
〈四〉课时小结,反思提高
让学生总结,并进行组内交流,互相补充,请小组代表发言,来了解学生对整节课的理解情况,最后对这节课进行补充,强调这节的难点和重点,使学生在理解时具有针对性。这种小结方式通过师生之间的有效互动使学生由被动变为主动,有利于构建自己知识体系,形成知识的正向迁移。
〈五〉布置作业
为了巩固本节的新知识,为下一节的学习作准备,适当的作业是必要的。
1课本p29习题1.6.11题
2预习提纲a复习命题判断真假的方法是什么?
b复合命题’p或q’,’p且q’,’非p’的判断
真假的规律是什么?
作为一节概念课,在教法上,我打破了传统的教学模式。精心设计问题情景,积极引导,启发学生思考,经过观察,模拟,归纳,最终突出本节的难点,突破本节的难点。同时教学的好坏,取决于学生对知识的理解和掌握,本节通过对课堂实施的情况和学生反馈信息作出即及时性评价,并顺势从教学内部进行调节,从而达到预期的教学效果。
1.命题的定义4.逻辑联结词的意义例题
3.简单命题,复合命题的定义

一键复制