写心得体会可以让我们更加深入地了解自己,发现自己的优点和潜力。要充分发掘自己的优点和不足,实事求是地总结自己的体会。阅读这些心得体会,让我们的思维得到了开拓和提升。
学习几何的心得体会篇一
11月30日,参加了工作室组织的《几何教学活动》,上午听了四位老师的课。分别是牛老师、郝老师执教的《长方形和正方形的认识》、刘老师、穆老师执教的《平行四边形的面积》。下午由工作室的每位成员进行评课和议课,虽然只有短短的一天的活动,却让我受益匪浅,活动已经结束两天了,现在想起来还是历历在目,下面就我本次活动的收获写出来与大家分享:
新课标指出:“动手实践、自主探究和合作交流是学生学习数学的重要方式。在课堂教学中,应该放手让学生去探索、去发现、去交流得出结论。”这几节课很好的体现了这点。每一位老师都注重让学生在动手实践的过程中去体验、去感悟,发现新知,并且在学生动手之前让学生进行了大胆的猜测,再进行探索、交流、验证。这样的学习方式,真正的把课堂还给了学生,体现了学生是学习的主人,教师是学习的组织者、引导者和合作者。
随着课改改革的发展,我们的老师也为了体现小组合作学习这一理念,在课堂中常常用到,包括我也是这样的。但在我的课堂中小组合作学习的效果却不是很理想,我也找了原因想了办法,问题还是没能很好的解决。今天听了几位老师的课,让我一下子找到了自己小组合作学习存在的真正的问题:合作之前没给学生明确合作要求和目的。在几位老师的课堂中都是先告诉学生学习要求,然后学生带着要求去合作。由此他们的课堂中学生的合作学习才真正的起到了实效性。所以在我接下来的课堂中,我要向他们一样,先明要求后动手。
从几位老师的练习题的设计来看,都是精心设计的,比如:刘水桃老师设计了这样的一道练习题:下面哪个平行四边形的面积可以用2乘3来计算。这一道题就解决了平行四边形这节课中学生最容易犯的一个错,不用老师三番五次的去强调,通过题目,学生自己就能发现,学生自己就能总结出结论,由此可见,练习题的设计很关键,它不只是对新知的巩固,更是对新知的升华和延伸。
板书是一节课的重点和主线,从板书纵就能看出本节课的内容,四位老师都很注重板书的设计,板书不仅美观,还看出他们在教学过程中的想法和意图,脉络很清晰,能让学生一眼看出本课的知识点。
总之通过这次活动,给了我很多启发,在今后的教学工作中不仅要努力工作,更要用心工作,不仅要在如何实现课堂的高效上下功夫,更要不断的加强自身的听课和评课的能力。
学习几何的心得体会篇二
《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一身。既是数学巨著,也是哲学巨著,并且第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年第一个印刷本出版,至今已有一千多种不同版本。
除《圣经》以外,没有任何其他著作,其研究、使用和传播之广泛能够和《几何原本》相比。汉语的最早译本是由意大利传教士利玛窦和明代科学家徐光启于1607年合作完成的,但他们只译出了前六卷。证实这个残本断定了中国现代数学的基本术语,诸如三角形、角、直角等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无缘一睹它的全貌,纳入家庭藏书更是妄想。
徐光启在译此作时,对该书有极高的评价,他说:“能精此书者,无一事不可精;好学此书者,无一事不科学。”现代科学的奠基者爱因斯坦更是认为:如果欧几里得未能激发起你少年时代的科学热情,那你肯定不会是一个天才的科学家。由此可见,《几何原本》对人们理性推演能力的影响,即对人的科学思想的影响是何等巨大。在高等数学中,有正交的概念,最早的概念起源应该是毕达哥拉斯定理,我们称之为勾股定理,只是勾3股4弦5是一种特例,而毕氏定理对任意直角三角形都成立。并由毕氏定理,发现了无理数根号2。在数学方法上初步涉及演绎法,又在证明命题时用了归谬法(即反证法)。可能由于受丢番图(diophantus)对一个平方数分成两个平方数整数解的启发,350多年前,法国数学家费马提出了著名的费马大定理,吸引了历代数学家为它的证明付出了巨大的努力,有力地推动了数论用至整个数学的进步。1994年,这一旷世难题被英国数学家安德鲁威乐斯解决。
多少年来,千千万万人(著名的有牛顿(newton)、阿基米德(archimedes)等)通过欧几里得几何的学习受到了逻辑的训练,从而迈入科学的殿堂。
学习几何的心得体会篇三
通过最近的选修内容的学习,使我充分认识到几何画板这一软件在教学中的应用价值,促使我迫不及待的进行自学这一软件,并应用于自己的教学实践,让我受益匪浅。我了解了几何画板的有关知识,掌握了几何画板的一些基础应用,如一些基本图形的构造、图形的平移与旋转、函数图象的绘制等。
联想到我日常教学中,比如圆和圆的位置关系、直线和圆的位置关系、二次函数图像的变换、三角形的全等和相似、还有一些常见题目的动画演示等,这些知识若通过几何画板演示,学生就能直接观察到它们的运动路径,使抽象的知识变得更加形象和直观,学生接受起来就很容易了。
同时,如果学好了几何画板,直接在课堂上操作,通过多媒体演示,既节省了时间,又提高了课堂效率。由此我体会到几何画板在数学教学中的用途如此之大,与我日常教学息息相关,我一定要认认真真地把它学好。同时准备动员我校全体数学教师进一步开发研究几何画板的使用,提高其使用技能下面是我学习的几点体会。
首先必需熟练运用好直线,线段,三角形,圆形,椭圆,垂线,二次函数等图形的绘画操作。在学习过程中,我也是遇到了不少的难题和困惑。我感觉单单用这个软件去制作课件并不难,难的是制作之前的构思巧妙与否,如何才能达到最佳效果。其次自己的自学能力毕竟有限,有许多地方都不明白,如果有老师给予一定的引导会更加好一些。
问题与解决是数学的心脏。提出问题并解决问题是数学发展的原动力。由于各种原因,今天的初中数学教材中,难以体现出“问题与解决”的韵味,也没有机会让中学生接触丰富的数学遗产。问题提出的唐突化,过度的公式化、形式化及解题的模式化,使数学失去了原有的魅力。至使部分学生错误地认为数学只是符号与公式的组合,难以激发他们学习数学的热情和兴趣。而《几何画板》它的精髓是:动态地保持了几何图形中内在的、恒定不变的几何关系及几何规律。它的最大特点是:按给定的数学规律和关系来制作图形(或图象、表格),从中观察事物的现象,通过类比和分析提出问题,还可进行实验来验证问题的真与假,从而发现恒定不变的几何规律,以及十分丰富的数学图象的内在美、对称美。可以驾驶《几何画板》这一叶扁舟,在数学发展的历史长河中漫游,兴之所至,或探踪寻源,或荡舟而过。
将《几何画板》引入数学课堂教学,有助于提高课堂效率,增大知识的覆盖面。能给学生以更多的操作机会,培养学生的动手动脑的能力。有助于培养学生敏捷思维和观察问题、分析问题、解决问题的能力。利用现代化的教育手段进行快速训练,有助于个性特长的培养和发挥。《几何画板》的引入会给广大数学教师指出一条捷径,一条新路。它仅仅要求数学老师略懂计算机知识,就可使用《几何画板》,并能用它来编制课件,它是以数学基础为根本,以动态几何的特殊形式来表达设计者的思想。
《几何画板》为数学教师使用现代化教学媒体提供了方便。教师可以自己动手根据不同的教材,不同的生源素质开发出不同的教学辅助软件。在课堂教学中可以很自由地掌握教学节奏以及教学深度与广度。
《几何画板》能够突出要点,有助于学生理解概念掌握方法;画板动态反映了概念及过程,能有效地突破难点;画板强大的交互性,让学生有更多的参与机会;画板通过多媒体实验实现了对普通实验的扩充,并通过对真实情景的再现和模拟,培养学生的探索、创造能力;画板操作过程的可重复性,可以有效地克服学生的遗忘。
几何画板的探究使用过程还很漫长,我将一如既往的进一步研究它,使用它,直至能过熟练的应用于自己的教育教学之中。
学习几何的心得体会篇四
在我们的日常生活中,几何和概率无处不在。无论是购物、旅游、还是玩游戏,都会涉及到这两个学科。学习几何和概率不仅可以帮助我们更好地理解这些现象,还可以帮助我们提高逻辑思维和解决问题的能力。在本文中,我将分享我的学习几何和概率的心得体会,希望能够对大家有所帮助。
几何是一门抽象而美妙的学科。在学习几何的过程中,我发现,几何的基础知识非常重要。只有掌握了基础知识,才能更好地理解高级概念和推导过程。此外,几何的推导过程非常有趣,一步步地推导出结论,不仅可以让我们感受到数学的美妙,还可以提高我们的逻辑思维和推理能力。另外,几何的应用非常广泛,涉及到建筑、工程、计算机等多个领域,掌握几何知识对未来的职业发展也非常有帮助。
概率是描述随机事件发生概率的学科。在学习概率的过程中,我发现,概率的计算方法有很多种,需要根据具体情况选择不同的方法。此外,概率的理论虽然抽象,但是具有很强的应用性。在现实生活中,经常会遇到诸如买彩票、投资、风险评估等需要用到概率的情况,学习概率可以帮助我们更好地理解这些问题,并做出正确的决策。
几何和概率有很多联系,其中最明显的就是在统计学中的应用。比如我们平时常用的平均数、方差、标准差等统计指标,都是基于概率分布模型的基础上计算出来的。而这些概率分布模型则要用到几何中的函数图像、面积等概念。此外,在实际应用中,几何的一些方法也可以用于概率的计算中。比如模拟法、随机游走等方法都是基于几何的一些基本概念发展而来的。
第五段:总结。
综上所述,学习几何和概率是我们日常生活不可缺少的一部分。通过学习几何和概率,我们不仅可以更好地理解现象,提高逻辑思维和解决问题的能力,还可以在未来的职业发展中更加得心应手。因此,在我们学习过程中,我们需要注重基础知识的掌握,并且时刻积极地运用我们学到的知识去解决实际问题。
学习几何的心得体会篇五
进修学校短期培训了《几何画板》软件的使用后,收获很大。几何画板是一个在数学领域里进行创造、探索和分析等方面有着广泛应用的软件系统,对于数学教学应用的价值较大。利用几何画板,我们可以构造交互式的数学模型,可用于从事形与数的基础研究,构造高级的、动态的复杂系统的插图。
通过这一期的学习,我了解了几何画板的有关知识,掌握了几何画板的一些基础应用,如一些基本图形的构造、图形的平移与旋转、的绘制等。
要对这节课完全理解,从原理上明白这节课的实质内容,再细化到如何去制作,才能简单明了的理解这节课,是在制作过程中的关键点。
这个单元的单元练习需要一些图形,我用了刚刚学会的几何画板画插图,画出了标准而美观的图画。其实通过这么短的学习是很不够的,目前对几何画板的掌握还不太熟练,还需要不断的学习运用,我相信通过自己的努力一定可更加熟练的掌握它,几何画板对我的帮助也会越来越大。
总之,《几何画板》是一个适用于教学和学习的工具软件平台。目前,各学校的电教化设施不断改进,多媒体设备已普及到班级,网络已深入课堂和家庭生活,我相信几何画板会被越来越多的数学老师掌握,它会深入课堂,深入学生。
学习几何的心得体会篇六
几何是一门研究空间和形状的学科,也是数学学科的重要组成部分。几何学不仅仅是一种理论学科,更是一门实践性很强的学科。通过几何学的学习,我们能够理解世界的形状和结构,培养直观思维能力。在我的学习过程中,我不仅掌握了几何的基本概念和定理,还深刻体会到几何学的魅力和应用价值。
首先,几何的直观性给了我一种强烈的感受。相比其他抽象的数学学科,几何学更加贴近我们生活的方方面面。我们随处可见的房屋、桌子、树木等,都是几何形状的体现。通过学习几何学,我们能够认识到这些形状之间的关系,理解它们的本质。比如,通过几何的学习,我明白了棱柱和棱锥的区别,从而能够正确地选择不同种类的纸箱保存不同形状的物品。几何的直观性使我在日常生活中能够更加敏锐地观察事物,提高自己的空间思维能力。
其次,几何学的学习让我体会到了其强大的应用价值。几何学在现实生活中有着广泛的应用,尤其是在建筑、工程和制造业等领域。通过几何学的学习,我们能够了解和运用平面几何和立体几何的概念和方法,解决现实世界中的实际问题。比如,在建筑设计中,几何学的知识是不可或缺的。建筑师需要根据建筑的形状和结构来进行细致的规划和设计。在我校修建新教学楼的过程中,几何学专家的建议起到了至关重要的作用。几何学的学习为我打开了很多职业发展的大门,让我有更多的选择机会。
第三,几何学的学习注重于培养我们的分析和证明能力。几何学是一门严密的学科,它有着一套完整的推导和证明体系,要求我们逻辑思维严密、条理清晰。在学习过程中,我们需要通过观察图形、运用定理和公式来推导和证明一个命题。这种分析和证明的过程无疑是对我们逻辑思维能力的一次很好的锻炼。在我的学习过程中,我不仅掌握了几何学的基本知识,也学会了如何分析问题、运用逻辑思维来求解问题。学习几何让我意识到,只有通过合理的推理和证明,才能真正理解和掌握知识。
最后,几何学的学习还培养了我解决抽象问题的能力。几何是一门抽象的学科,它研究的是不同形状和结构之间的关系。在学习过程中,我们需要通过观察、比较和分析来理解这些抽象的概念和定理。这种抽象的思维能力,对我们解决其他学科中的抽象问题也有很大的借鉴意义。比如,在数学课上,我发现通过几何学的学习,我能够更好地理解和解决代数中的问题。几何学的学习开阔了我的视野,提升了我的思维水平。
总之,学习几何直观心得体会,让我深刻体会到几何学的直观性、应用价值以及对分析和证明能力的培养作用。几何学的学习不仅仅是为了应付考试,更是为了我们的人生发展和终身学习。通过几何学的学习,我们能够培养直观思维和几何观察的能力,提升自己的分析和证明能力,解决现实世界中的问题。几何学的学习不仅帮助我们认识世界,也帮助我们认识自己,发现自己的潜力和机遇。
学习几何的心得体会篇七
几何,一个涉及点、线、面、角等几何图形与性质的学科。对于许多人来说,几何似乎是一个抽象、难懂的学科。但是,在学习几何的过程中,我逐渐发现了一些心得和体会,愿意在这里分享给大家。
第二段:理论知识的掌握。
学习几何首先需要掌握的是一些理论知识,如线段相等、角度相等、垂直等概念。这些知识点是学习几何的基础,掌握它们对于学习几何的深入和理解很重要。在学习过程中,我会认真听讲、认真思考每个概念,还会拿起尺子画图,比较线段、角度的大小,让自己更加直观地理解这些概念。
第三段:图形的绘制。
几何学习不仅仅是理论知识,还有很多与图形的绘制相关的部分。绘制图形需要手眼协调和一定的技巧,需要掌握规范、精确的绘图方法。我会常常拿起尺子、直尺和画板,认真绘制题目中的图形,目的是为了训练自己的绘图技巧,以便能够更好地完成几何题目。
第四段:实际应用。
几何学习不仅仅是一些理论知识和绘图技巧,它也有很大程度上的实际应用。几何的应用广泛,包括建筑、地图、道路、机器设计等多种领域。在我的学习中,我始终注重联系实际,学习几何虽然是一项理论知识,但可以通过实际应用将其内化为自己的技能。
第五段:总结。
在学习几何的过程中,我总结出了自己的几个心得:首先,学习几何需要掌握基础的理论知识,不能忽略任何一个概念。其次,绘图技巧的训练是十分必要的,因为它可以帮助我们更好地理解和完成几何题目。最后,联系实际是学习几何的重要环节,可以帮助我们更好地掌握几何学科知识并将其运用到实际生活中。
细心的学习,注重细节的准备以及实际的应用都是我学习几何的心得。几何学科拓宽了我对世界的认识,也让我受益匪浅,希望我的心得能够对准备学习几何的同学有所帮助。
学习几何的心得体会篇八
几何画板作为一种学习几何知识的工具,具有重要的作用。通过几何画板,我们可以直观地理解几何概念,掌握几何定理,培养几何思维能力。在学习几何过程中,我深感几何画板对于加深对几何问题的理解及解决问题的能力的提升有着重要的帮助。
第二段:几何画板带来的直观理解。
几何学习的抽象性给很多同学带来了困扰,难以理解几何概念和定理。而几何画板作为一种具有直观性的工具,可以帮助学生形象地认识几何概念。例如,通过使用几何画板,我们可以直观地感受到平行线、垂直线等几何概念,帮助我们更好地理解这些抽象概念,从而提高学习效果。
在使用几何画板的过程中,我们需要灵活运用几何划规、画弧、测量等操作,这种操作过程需要我们对几何形状的特点有一个深入的了解,进而促进我们的几何思维能力的培养。例如,通过绘制几何形状的对称关系,我们可以锻炼我们的观察能力,提高我们对几何形状的认识和理解能力。
在解决几何问题的过程中,几何画板可以发挥独特的作用。通过使用几何画板,我们可以将问题抽象为几何图形,在画板上通过引入辅助线、构造特殊图形等方法,帮助我们找到解决问题的思路和方法。几何画板不仅可以帮助我们验证定理的正确性,还可以帮助我们通过观察、比较等方式找到解决问题的线索,提高我们的问题解决能力。
第五段:适度运用几何画板的小结。
几何画板是我们学习几何知识的好工具,但需要适度运用。过分依赖几何画板可能会使我们对几何的认识变得机械化,失去灵活性。因此,我们在学习几何过程中,应该既注重几何画板的使用,又注重观察、思考和证明的能力的培养。只有在几何画板的辅助下,培养我们的几何思维,发展我们的逻辑思维,我们才能更好地掌握几何知识。
总结:通过几何画板的学习,我深感到几何画板对于加深对几何问题理解的重要性。几何画板不仅可以帮助我们直观地认识几何概念,提高我们的几何思维能力,还可以帮助我们解决几何问题,提高我们的问题解决能力。因此,我们应该适度运用几何画板,在发挥其优势的同时,注重培养自己的思考和证明能力。只有这样,我们才能在学习几何过程中取得更好的成绩。
学习几何的心得体会篇九
在我的中学生涯中,几何和概率一直是我认为最难的数学学科之一。然而,在这段时间中,我逐渐发现了学习几何和概率的有效方法,这些成功的方法不仅帮助我在考试中获得更好的成绩,而且帮助我提高数学思维能力,也帮助我在解决日常生活问题时更具有创造性。今天,我将分享我在学习几何和概率时的心得体会。
第一段:理解应用场景。
在学习几何和概率时,我发现最重要的是要理解应用场景。几何和概率往往需要应用到很多领域中,例如工程设计、物理学和数据分析等。当我能理解几何和概率在这些领域中的使用方法时,我就能够更好地理解如何应用它们解决相关的问题。例如,我可能需要计算物品的几何体积或者需要计算随机事件发生的概率,这些都需要应用到不同的几何和概率概念。
第二段:了解数学公式。
第二个重要的方面是理解数学公式。几何和概率通常有许多公式需要掌握,例如勾股定理、椭圆方程和贝叶斯定理等。当我能够了解这些公式的含义,并能够准确地应用它们时,我就能够更有效地解决与几何和概率相关的数学问题。在掌握这些公式时,我会阅读教科书和其他相关的参考资料,并进行刻意练习来巩固学习成果。
第三段:培养图像思维。
第三个重要的方面是培养几何和概率的图像思维能力。这些学科往往需要我们想象出某种形状或者场景,并从中推导出正确的答案。当我能够将几何和概率的概念转化为形象化的图像时,我就能够更好地理解和记忆这些概念。在这方面,我常常通过练习绘制几何图形,来加深对几何概念的理解。
第四段:习惯性思考。
第四个重要的提高是习惯性思考。几何和概率往往需要运用各种复杂的数学公式和思维技巧。如果缺乏思维训练,这些技巧就很难自然形成习惯。因此,我认为最重要的是在练习过程中逐渐习惯性思考,使自己具有良好的数学思维模式。在实践中,我喜欢运用“自己的语言重新演述问题”来加深理解,这种方法可以帮助我更好地理解问题和找到解决问题的方法。
第五段:灵活思考。
最后,灵活思考也是非常重要的。在面对复杂的几何和概率问题时,无法简单地遵循固定的模式去解决。相反,我们需要灵活运用所学的技巧和知识来解决问题。当我面对新问题时,尽管首先思考一下以前学过的相关知识,但是如果无法回答问题,我就会开始思考像变换变形、结合条件概率和推理逻辑等更高级的技巧。在这样的过程中,我可以培养创新能力,学习到更多的数学策略,也更好地理解数学的本质。
总之,学习几何和概率是一项重要的任务。通过了解应用场景、理解数学公式、培养图像思维能力、习惯性思考和灵活思考,我能够提高自己的几何和概率技能和思维能力。这些收益不止于数学教育,也能帮助我解决各种日常生活中的问题。无论是在学校还是在日常生活中,这些技能都会给我带来无数的好处。
学习几何的心得体会篇十
第一段:引言和背景知识介绍(200字)。
几何学是数学中的重要分支,也是大部分学生感到困惑和压力的科目之一。为了提高学生对几何学的理解和掌握,学校采用了几何画板教学方法,让学生通过实践和观察来理解几何概念。在我个人的学习过程中,我找到了一些有效的学习几何画板的方法和心得体会,希望能与大家分享。
第二段:观察与实践(200字)。
学习几何画板最基本的要求是观察和实践,通过观察几何图形的特征和关系,再进行实际操作,利用画板上的工具进行实践。在观察和实践的过程中,我发现几何图形之间的关系更加清晰了。例如,在学习平行四边形的性质时,通过观察画板上的平行四边形,我发现它们的对角线交于一点,并且根据实践验证,其交点一定在中点上。这样的观察和实践帮助我更好地理解和记忆几何概念。
第三段:独立思考和解决问题(200字)。
除了观察和实践,学习几何画板也需要学生进行独立思考和解决问题。几何画板上的几何图形是静态的,而在实际生活中,几何图形是动态的。因此,学生需要将学习到的几何概念与实际生活中的问题相结合,进行独立思考和解决问题。例如,在学习三角形的相似性质时,我尝试用画板上的三角形构建实际生活中的问题,并用几何画板进行解决。通过这样的实践,我不仅加深了对几何概念的理解,还提高了解决实际问题的能力。
第四段:合作学习和交流(200字)。
学习几何画板并不意味着孤立地一个人工作。在实践几何画板的过程中,我发现与他人的合作学习和交流对于理解几何概念非常重要。通过与同学合作讨论和交流,我们可以互相借鉴和启发,发现问题的不同解法和思路。例如,在学习角的大小和关系时,我与同学进行了小组讨论,我们互相分享了不同的方法和观点,通过交流达到了更好地理解几何概念的效果。
第五段:总结和反思(200字)。
学习几何画板的过程中,我不仅提高了对几何概念的理解和记忆能力,而且培养了观察、实践、独立思考和合作学习的能力。通过观察几何图形的特征,实践几何概念,独立思考和解决问题,并与他人进行交流,我逐渐掌握了几何学的基本知识和技能。学习几何画板不仅是一种学习方法,更是培养学生综合能力的途径。我希望通过我的经验和体会,能帮助更多的学生更好地学习几何画板。
学习几何的心得体会篇十一
引言:
大学解析几何是数学专业中的一门基础课程,它的学习不仅是为了解决实际问题,也是为了培养学生的逻辑思维和分析能力。在学习这门课程的过程中,我深深感受到了它的重要性和挑战性。在这篇文章中,我将分享我在学习大学解析几何过程中的体会和心得。
第一段:对解析几何的初步认识。
刚开始学习解析几何的时候,我对它还不是很了解。我只是听说过它和笛卡尔坐标系有关,但是具体是什么样的内容,我并不清楚。通过上课和自学,我逐渐了解到解析几何是通过数学的工具和方法,研究几何图形的性质和变化规律。并且,它和其他数学分支有很多的联系,比如微积分和线性代数等。这让我对解析几何产生了浓厚的兴趣,并对它的学习充满了热情。
第二段:掌握基本概念和技巧。
学习解析几何的关键是要掌握基本概念和技巧。在课堂上,老师为我们讲解了直线、圆、椭圆、抛物线和双曲线等的基本定义和性质。同时,老师也教给了我们一些常用的解析几何的技巧,比如如何证明两个图形相似,如何求解两条直线的交点等。通过反复的练习和实践,我逐渐熟练掌握了这些知识和技巧。此外,我还学会了使用计算机软件来绘制和分析解析几何图形,这进一步加深了我对解析几何的理解。
第三段:培养逻辑思维和分析能力。
解析几何的学习不仅仅是为了背诵公式和应用技巧,更重要的是培养逻辑思维和分析能力。在解决实际问题时,我需要以一种严密而逻辑的方式,去分析问题的本质和关键点,然后利用所学的知识和技巧加以解决。这个过程不仅要求我具备扎实的数学基础,还需要我有良好的思考和分析能力。通过解析几何的学习,我逐渐提升了我的逻辑思维和分析能力,这对我今后学习其他数学课程和解决实际问题都有很大的帮助。
第四段:应用到实际问题中。
解析几何不仅是一门学科,更是一种解决实际问题的工具。在学习解析几何的过程中,我们经常会遇到一些与实际问题相关的例题。通过解析几何的知识和技巧,我们可以将复杂的几何问题化简为简单的计算和分析,从而得到精确而可靠的结果。例如,利用解析几何的方法,我们可以计算两个物体之间的距离、角度和相对位置等。这些解析几何的应用不仅在学术研究中有很大的意义,也在工程设计和计算机图形学等领域有着广泛的应用。
第五段:总结和展望。
通过学习大学解析几何,我不仅掌握了基本概念和技巧,还培养了逻辑思维和分析能力。我深刻认识到解析几何的重要性和挑战性,也体会到了它对解决实际问题的巨大作用。在今后的学习和工作中,我将继续努力,进一步深化对解析几何的理解和应用,为数学的发展和实际问题的解决做出更大的贡献。
结语:
解析几何的学习让我受益匪浅,不仅提高了我的数学水平,也锻炼了我的思维能力。我相信通过持续的学习和实践,我一定能够在解析几何领域取得更大的进步,并将解析几何的知识与其他学科相结合,为创造更美好的世界贡献自己的力量。
学习几何的心得体会篇十二
今天是定安县九年级数学教师参加的第一次跟进培训,主要由韦琼运老师主讲“几何画板的一些基本知识和技能的使用”。通过这次培训我收获很大,学会了几何画板的基本知识和技能使用。
问题与解决是数学的心脏。提出问题并解决问题是数学发展的原动力。由于各种原因,今天的中学数学教材中,难以体现出“问题与解决”的韵味,也没有机会让中学生接触丰富的数学遗产。问题提出的唐突化,过度的公式化、形式化及解题的模式化,使数学失去了原有的魅力。至使部分学生错误地认为数学只是符号与公式的组合,难以激发他们学习数学的热情和兴趣。而《几何画板》它的精髓是:动态地保持了几何图形中内在的、恒定不变的几何关系及几何规律。它的最大特点是:按给定的数学规律和关系来制作图形(或图象、表格),从中观察事物的现象,通过类比和分析提出问题,还可进行实验来验证问题的真与假,从而发现恒定不变的几何规律,以及十分丰富的数学图象的内在美、对称美。可以驾驶《几何画板》这一叶扁舟,在数学发展的历史长河中漫游,兴之所至,或探踪寻源,或荡舟而过。这是其它的教学媒体所办不到的,也是一般cai软件功能所不及的。
将《几何画板》引入数学课堂教学,有助于提高课堂效率,增大知识的复盖面。能给学生以更多的操作机会,培养学生的动手动脑的能力。有助于培养学生敏捷思维和观察问题、分析问题、解决问题的能力。利用现代化的教育手段进行快速训练,有助于个性特长的培养和发挥。《几何画板》的引入给广大数学教师指出一条捷径,一条新路。它仅仅要求数学老师略懂计算机知识,就可使用《几何画板》,并能用它来编制课件,因为gsp的操作不需要任何程序语言,它是以数学基础为根本,以动态几何的特殊形式来表达设计者的思想。《几何画板》为数学教师使用现代化教学媒体提供了方便。教师可以自己动手根据不同的教材,不同的生源素质开发出不同的教学辅助软件。既注重脚本的质量,又处理好教材中教学内容、多媒体辅助教学的功能、教师施教的手段、学生掌握知识的过程这四个坏节之间的相互关系。在课堂教学中可以很自由地掌握教学节奏以及教学深度与广度。《几何画板》能够突出要点,有助于学生理解概念掌握方法;画板动态反映了概念及过程,能有效地突破难点;画板强大的交互性,让学生有更多的参与机会;画板通过多媒体实验实现了对普通实验的扩充,并通过对真实情景的再现和模拟,培养学生的探索、创造能力;画板操作过程的可重复性,可以有效地克服学生的遗忘。

一键复制