阅读是表达自己思想和情感的有效方式。总结时要注意避免的一些误区有哪些?以下是小编为大家搜集的相关资料,供大家参考。
用方程解决问题10道篇一
1、请学生估计一下,我们的教学楼有多高?(学生回答大概12米,有的说10米)板书:10米。
讨论:教学楼的高度和后面专用教室的高度有什么关系?
生1:教学楼的高度是后面专用教室的高度的3倍还多1米。
生2:教学楼的高度比后面专用教室的高度的3倍多。
生3:教学楼的高度比后面专用教室的高度高得多。
生4:10米减去1米,再除以3,等于3米。检验一下是对的。
生5;后面专用教室的高度*3+1米=10米。
4、解方程。
就是教学楼的高度=后教室的高度*3倍还+1米或者等号两边对调:
后教室的高度*3倍还+1米=教学楼的高度。
这样的效果果然很好,起码让学生怎么找数量间的相等关系。只是觉得后进生可能会不动脑筋,只会望文生义,没有真正弄懂数量关系。3、本节课还有一个不容忽视的地方就是要让学生养成勤于检验的好习惯。
用方程解决问题10道篇二
情形(1)。
情形(2)。
【学生活动:在老师指导下,尝试列表、分析解决问题】3.4.列方程组求解(略)3.5.检验合理性(略)4.拓展与延伸:两列火车分别在两平行的铁轨上行驶,其中快车长168m慢车长184m,如果相向而行,从相遇到离开需4s;如果同向而行,从快车追上慢车到离开需要16s;求两车的速度.4.1先让学生自行审题,画出示意图,想象情境.【学生活动:尝试分析问题,想象情境,试画出示意图】4.2动画演示情境,帮助学生理解题意.【学生活动:观察动画,丰富自己的知识经验】4.3列表列方程解决问题.【学生活动:在老师指导下,尝试列表、分析解决问题】5.巩固练习:课本p119页1、2【学生活动:练习,板演】6.小结:用示意图和表格分析问题各有什么特点?【学生活动:分小组议一议,在教师组织下达成共识】7.作业:课本p120-121:5、7板书设计:(略)。
用方程解决问题10道篇三
情形(1)。
情形(2)。
【学生活动:在老师指导下,尝试列表、分析解决问题】3.4. 列方程组求解(略)3.5. 检验合理性(略)4. 拓展与延伸:两列火车分别在两平行的铁轨上行驶,其中快车长168m慢车长184m,如果相向而行,从相遇到离开需4s;如果同向而行,从快车追上慢车到离开需要16s;求两车的速度.4.1先让学生自行审题,画出示意图,想象情境.【学生活动:尝试分析问题,想象情境,试画出示意图】4.2动画演示情境,帮助学生理解题意.【学生活动:观察动画,丰富自己的知识经验】4.3列表列方程解决问题.【学生活动:在老师指导下,尝试列表、分析解决问题】5.巩固练习:课本p119页1、2【学生活动:练习,板演】6.小结:用示意图和表格分析问题各有什么特点?【学生活动:分小组议一议,在教师组织下达成共识】7.作业:课本p120-121:5、7板书设计:(略)。
用方程解决问题10道篇四
教学目标:1.理解掌握方程、方程的解、解方程等概念。
2.理解方程与等式的关系。
3.会用加、减、乘、除各部分间关系解一步简易方程并会检验。
4.培养观察、抽象、总结、概括能力、发展思维。
5.使学生感受数学知识间的联系,渗透转化的数学思想。
教学重点:使学生初步掌握解方程的方法和书写格式,并会检验。
教学难点:帮助学生建立“方程”的概念,并会应用。
关键:帮助学生建立“方程”的概念,并会应用。
教学过程:
一、导入新课。
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、解决问题。
出示p57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?
杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
2、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
3、练习。(做一做)。
齐读题目要求。
=5×3。
=15。
=方程右边。
所以,x=3是方程的解。
用同样的方法检查x=2是不是方程5x=15的解。
三、作业。
独立完成练习十一第4题,强调书写格式。
四、小结。
通过这节课学到了什么?还有什么问题?
用方程解决问题10道篇五
首先,在学用方程解决问题之前,必须让学生熟练理解方程的意义。1)把含有未知数的等式叫做方程。2)其中最关键的理解是,在等式的基础上含有未知数。
其次,要正确理解实际要解决问题的题意,分析各数量之间所包含的关系,根据关系用文字和数字列出准确的等式关系,反复琢磨自己所列出的等式关系,并验证。
最后,将未知数x通过解设引入的方程中,作为重要的方程成员,利用列出的等式关系将需要的未知数及各数字带入等式中,准确地列出方程,并且计算出方程的解,再一次将方程的解带入原方程进行验证,完全符合等式关系后,作答。
小学阶段用方程解决问题也是一个很重要的内容,最初学习简单的方程的时候,课本上就涉及到一些用方程解决的一些简单的应用题,在教学的时候,尤其在讲例题的时候,是重点强调方程的方法,但是因为题目比较简单,题目中的等量关系也比较简单,学生很轻松地就会用算术解法,所以很多同学不愿意用方程去做,因为用方程解决的话,还要写解设,学生就想省事,不喜欢用方程来解决问题。
但是,在学习稍复杂的方程的时候,也是通过实际问题,来引入的稍复杂的方程,进一步讲解学习稍复杂的方程的解法,解稍复杂的方程一般用到的把其中一项看做一个整体的方法比较多。当然,相对来说,课后的解决问题的题目类型一般也是用稍复杂的方程来解决的问题,我记得当时教学的时候还强迫孩子用方程的方法来解决问题。但是,我总感觉孩子的用方程解决问题的能力弱一些。
比如含有两个未知数的类型的应用题,用方程来解决问题是相当好的,比如小学数学广角的鸡兔同笼问题,其实鸡兔同笼问题用算术解法是相当抽象的,但是方程的方法是顺向思维,比较好理解。所以,前几天,有同学拿着考济宁外国语的数学题来问我,就是含有两个未知数的类型,也就是先设一个未知数,用含有未知数的式子来表示另一个未知数,然后,找到题目中的等量关系列出方程就可以解决出来了,其实所谓的难题也不过如此。
可见,用方程解决复杂的应用题的必要性。
用方程解决问题10道篇六
用方程解决的一些简单的应用题,在教学的时候,尤其在讲例题的时候,是重点强调方程的方法,但是因为题目比较简单,题目中的等量关系也比较简单,学生很轻松地就会用算术解法,所以很多同学不愿意用方程去做,因为用方程解决的话,还要写解设,学生就想省事,不喜欢用方程来解决问题。
在学习稍复杂的方程的时候,也是通过实际问题,来引入的稍复杂的方程,进一步讲解学习稍复杂的方程的解法,解稍复杂的方程一般用到的把其中一项看做一个整体的方法比较多,我总感觉孩子们用方程解决问题的能力弱一些。
含有两个未知数的类型的应用题,用方程来解决问题是相当好的,比如小学数学广角的.鸡兔同笼问题,其实鸡兔同笼问题用算术解法是相当抽象的,但是方程的方法是顺向思维,比较好理解。所以,就是含有两个未知数的类型,也就是先设一个未知数,用含有未知数的式子来表示另一个未知数,然后,找到题目中的等量关系列出方程就可以解决出来了,其实所谓的难题也不过如此,由此可见,用方程解决复杂的应用题的必要性。
11。
用方程解决问题10道篇七
列方程解实际问题,与学生在这之前所采用的列算式解决实际问题,它们的共同点是,都以四则运算和常见数量关系为基础,都需要分析数量关系。它们的区别主要是思考方法不同。列方程解实际问题时,未知数能以一个字母为代表和已知数一起参加列式运算,解决了列算式解决实际问题中的局限性较大的缺点。需逆向思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路是顺向的,体现了列方程解应用题的优越性。可见学好列方程对于学生具有重要意义。
解答这类实际问题的关键是找题里数量间的相等关系。为了帮助学生找准题目中的等量关系。我从身边的事物入手,让数学知识更贴近生活。这样的教学既拉近的师生之间的距离,又为学习新知识做了很多的铺垫。
由于用方程解决实际问题具有思考过程比较直接、简明,能使某些实际问题的解决化难为易。学生通过比较复习题与例题的异同,强化了理解题意这个环节,然后,我大胆放手,让学生用自己学过的方法来解答例题。有困难可与小组同学讨论,也可以借助画线段图帮助理解题意。学生在动手画,动口说的过程中,理解数量关系。学生利用已有的经验自己试一试,想一想,说一说,突出了学生的主体地位。学生试解例题后。从不同角度理解题意,老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理。其中最重要的一条是把这道题存在的等量关系弄清,再从中选择最佳解题方案。我认为这样教学既能预防错误定势的形成,又突出了最佳解题思路,强化了列方程解题的优越性和解题的.关键,促进了学生逻辑思维的发展。
解决问题的教学,关键是理清思路,教给方法,提高解题能力。这节课的教学中,由于大胆放手,让学生自己解答,充分相信学生,让学生成为学习的主人,参与到教学的全过程中去。画线段图理解题意这种方法学生比较陌生,教师给予适当的指导,让学生学会画图分析题意找等量关系:直观形象地加深了对数量关系的理解。在画图过程中,出现问题比较多的是“比倍多(或少)”个别学生不知是包括里面还是外面,从而找不准等量关系。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习的方法比教会知识更重要。
用方程解决问题10道篇八
义务教育课程标准实验教科书数学(人教版)小学《数学(第九册)》第57、58页的内容。
(二)教学目标。
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学习习惯的培养。
(三)教学重、难点。
(1)“方程的解”和“解方程”之间的联系和区别。
(2)利用天平平衡的道理理解比较简单的方程的方法。
(四)教学准备。
多媒体课件、单行纸一张。
(五)教学过程。
1.揭示课题,复习铺垫。
生:(100+x)克。
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)。
师:请你根据图意列一个方程。
生:100+x=250(课件显示:100+x=250)。
师:这个方程怎么解呢?就是我们今天要学习的内容――解方程。(板书课题:解方程)。
2.探究新知,理解归纳。
(1)概念教学:认识“方程的解”和“解方程”的两个概念。
师:(出示课件)那你猜一猜这个方程x的值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150。
师:xxx同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)。
师:你能根据操作过程说出等式吗?
生:100+x-100=250-100(课件显示:100+x-100=250-100)。
师:这时天平表示未知数x的值是多少?
生:x=150(课件显示:x=150)。
师:是的,xxx同学的想法是正确的,方程左右两边同时减100,就能得出x=150。我们表扬他。
师:根据刚才的实验,我们来认识两个新的概念―――“方程的解”和“解方程”。
师:(课件显示x=150的下画线)指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)。
师:(课件显示:方框)。
100+x=250。
100+x-100=250-100。
指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)。
师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)。
师:同时还要注意“=”对齐。
师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的?
(学生独立思考,再在小组内交流。)。
师:谁来说说你想法?
生1:“解方程”是指演算过程。
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]。
(2)教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]。
师:四人小组讨论方程左右两边为什么同时减3?
[学生独立思考,再在小组内交流。]。
师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。
生:x+3=9(板书:x+3=9)。
师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。
师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩x,而天平保持平衡。
生:天平左右两边同时拿走3个方块,使天平左边只剩x,天平保持平衡。(教师随着学生的回答演示课件)。
师:根据操作过程说出等式?
生:x+3-3=9-3(板书:x+3-3=9-3)。
师:这时天平表示x的值是多少?
生:x=6(板书:x=6)。
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩x。
生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?
生:验算。
师:对了,验算方法是什么?
生:将x=6代入原方程,看方程的左边是否等于方程的右边。
(板书:
验算:方程的左边=6+3=9。
方程的右边=9。
方程的左边=方程的右边。
所以,x=6是方程的解。)。
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。
用方程解决问题10道篇九
水费/元。
4
8
21。
5
9
27。
解:设基本价格为x元/m3,超过6m3部分按y元/m3收费.根据题意,得:6x+2y=216x+3y=27。
解这个方程组,得x=1.5。
y=6。
答:基本价格是1.5元/m3,超过6m3部分的价格是6元/m3.
做一做:1、在上面的问题中,如果某户居民1月份用水4m3,那么需交水费元,如果该户居民6月份用水11m3,那么需交水费元.
2、在上面的问题中,如果某户居民某月交水费45元,那么用水量应为m3.
四、思维拓展:
先由同学互相交流,然后由学生写出解题步骤两生板演。
(参考答案:小明答对18题,答错6题.不答1题)。
练习:p1171、2。
五、小结:用表格分析实际问题的一般步骤是什么?
六、布置作业:
用方程解决问题10道篇十
仔细分析题意,在括号里设未知数,写出等量关系。
1、今年妈妈42岁,天天14岁,几年后妈妈的年龄是天天的2倍?
设(),等量关系是()。
设(),等量关系是()。
设(),等量关系是()。
设(),等量关系是()。
设(),等量关系是()。
设(),等量关系是()。
设(),等量关系是()。
8.长方形的周长是42厘米,长比宽多8厘米,长方形的长、宽各是多少厘米?
设(),等量关系是()。
二、选择题。
1.甲、乙两个工程队合修一条41200米的公路,计划20天完成。甲队每天修26米,乙队每天修多少米?设乙队每天修x米,根据题意列方程正确的是()。
a.b.
c.d.
2.学校添置教学设备,去年开支了0元,去年比今年的少120元,今年开支多少元?设今年开支x元,根据题意列方程正确的是()。
a.b.
c.d.
3.某养猪厂今年养猪0.8万头,比去年多,去年养猪多少万头?设去年养猪x万头,根据题意列方程正确的是()。
a.b.
c.d.
4.一块三角形的布,面积是24平方厘米,它的底边长是8厘米,高是多少厘米?设高是x厘米,根据题意列方程正确的是()。
a.b.c.d.
三、判断题。
1.六年级同学参加计算机小组的有20人,参加趣味数学小组的`人数比计算机小组的2倍多2人,参加趣味数学小组的有几人?如果设参加趣味数学小组的有x人,那么方程是.()。
2.三根绳子总长120米,第一根比第二根长18米,第二根比第三根长21米,三根绳子各长多少米?如果设第二根绳子长x米,那么第一根绳子的长度可以表示为(x+18)米,第三根绳子的长度可以表示为(x+21)米。()。
3.鸭和羊共88只,共有脚232只,甲和羊各有多少只?如果根据题意所列的方程是,那么是设鸭有x只。()。
四、根据题意把方程补充完整。
1.李刚买了4本笔记本,每本3.2元,又买了x只圆珠笔,每支1.5元,共一共用去21.8元。
方程可以这在列:___________=21.8或____________=3.2×4.
2.一个畜牧场养猪和羊共500头,猪的头数比羊的2倍少41头。羊和猪各有多少头?
如果以“一个畜牧场养猪和羊共500头”为等量,可以设_________,方程是___________。如果以“猪的头数比羊的2倍少41头”为等量,可以设可以设_________,方程是___________。
用方程解决问题10道篇十一
列方程是问题解决的一种策略,利用等式的基本性质来解方程是解方程的本质,李老师抓住了“列方程方法解决问题”主线,创建有效的教学情境,让学生经历了解决问题的具体过程,感受了用数学的方法解决现实生活中的问题。以下谈几点这节课的的亮点和本人一些不成熟的想法。
亮点:
1、创设有效的联系学生实际的问题情境。
在李老师的课上,李老师从学生熟知的学校的跳绳比赛入手,学生的兴趣高涨,避免了教材提供的主题中的高于学生生活常识的起点,使学生能更好地投入数学学习之中。这也告诉我们,我们要学会灵活的运用教材,只有学生在熟知的前提下才能有效地进行数学学习。
2、素材呈现简约但不单一。
李老师的'课上通过选取学生生活中的事件贯穿课堂,素材虽单一,但是具有数学味,而且在练习中通过有线段图、文本、图画等形式,让学生在即将进入倦怠时期马上又焕发新的神采,激发他们去学习,去攻克问题的斗志。
3、注重对数量关系的分析。
李老师注重引导,让学生会概括、归纳数量关系式,这对于学生学会列方程、列对方程很有好处,方程本身就是“等式”。而且通过列数量关系式能让学生对于数学信息了解的透彻,又便于解决。
想法:
1、我觉得老师要引导学生从正向思维去解决问题,出现了由算术思维引发的方程式,我想最好老师能引导学生通过找关键数学信息列方程,一个避免了学生的列错算式,一个由于方程式是有算式转换过来的,其实是学生进行了转化思想,也浪费了时间。
2、在李老师上练习巩固课时,我觉得第一题练习出现时,李老师直接为学生设好x太快了,可以先让学生说说通过看,你得到了哪些数学信息,只有在了解数学信息的基础上才能更好地理解题意。我想先让学生说说题意,培养孩子审题的习惯是非常重要的。
用方程解决问题10道篇十二
教学目标:
1、学会获得有用的数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的'口算。
2、培养学生观察、比较和抽象概括的能力,以及应用所学知识解决实际问题的能力。
教学重点:
会获得有用的数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的口算。
教学难点:
教法:
讲解法、练习法。
学法:
说一说、做一做、练一练。
课前准备:
小黑板。
教学过程:
一、铺垫练习,揭示课题(5分)。
1、口算:
2+2+2=3+3+3=4+4+4=。
5+5+5=6+6+6=7+7+7=。
二、出示目标(1分)。
1、学会获得有用的数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的口算。
2、培养学生观察、比较和抽象概括的能力,以及应用所学知识解决实际问题的能力。
三、探索新知(14分)。
出示主题图。
他们在做什么呢?
1、从这幅图中,你能获得哪些数学信息?
2、学生汇报,板书。
3、怎样求一共折了多少个星星呢?讨论。
汇报板书6+6+6=18(个)。
口答:他们一共折了(18)个小星星。
这就是我们今天学的新课“用连加解决问题”
4、这道题为什么是用连加的方法来解决呢?
学生发言,说自己的想法。
5、跟踪练习:
妈妈买了3盒铅笔,每盒10支,一共买了多少支铅笔?
四、巩固练习(10分)。
课本第77页做一做。
五、课堂小结(1分)。
今天,你们学会了什么?学生说一说今天的收获。
六、堂清练习(9分)。
练习十八第1、2题。
板书设计:
用方程解决问题10道篇十三
1.知识与技能.
理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念;能利用一元一次方程解决商品销售中的一些实际问题.
2.过程与方法.
经历运用方程解决销售中的盈亏问题,进一步体会方程是刻画现实世界的有效数学模型.
重、难点与关键。
2.难点都是如何把实际问题转化为数学问题,列方程解决实际问题.
3.关键:理解销售中,相关词语的含义,建立等量关系.
教具准备。
投影仪.
教学过程。
一.引入新课.
前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程,可以看出方程是分析和解决问题的一种很有用的数学工具,本节我们将进一步探究如何用一元一次方程解决实际问题.
二.新授.
用方程解决问题10道篇十四
1、掌握列二元一次方程组解应用题的基本方法。
2、培养学生独立思考、积极参与的学习习惯,帮助学生了解数学知识在生活中的应用价值。
分析题意,列二元一次方程组解简单的实际问题。
探索新知。
想一想:你能找出题目中的两个数量关系吗?
讨论:列二元一次方程组解应用题的一般步骤是什么?
例2、一个两位数,其个位与十位的数字之和为6,现把十位数字与个位数字对调,产生的新的两位数比原来的两位数大18。求原来的两位数。
1、已知甲、乙两数之和为40,甲数的2倍等于乙数的3倍,求甲、乙两数。可设甲数为x,乙数为y,可得方程组()。
a、b、c、d、
2、已知钢笔每支4元,圆珠笔每支2元,一共买了10支笔,共用去26元,问买钢笔、圆珠笔各多少支?可设买钢笔x支,圆珠笔y支,可列方程组正确的是()。
a、b、c、d、
1、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚。
2、大数和小数的差为12,这两个数的和为60,则大数是,小数是()。
3、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是。
用方程解决问题10道篇十五
1、掌握列二元一次方程组解应用题的基本方法。
2、培养学生独立思考、积极参与的学习习惯,帮助学生了解数学知识在生活中的应用价值。
【重点难点】。
分析题意,列二元一次方程组解简单的实际问题。
【课前预习】。
【探索新知】。
想一想:你能找出题目中的两个数量关系吗?
讨论:列二元一次方程组解应用题的一般步骤是什么?
【例题教学】。
例2、一个两位数,其个位与十位的数字之和为6,现把十位数字与个位数字对调,产生的新的两位数比原来的两位数大18,求原来的两位数.
【课堂检测】。
a、b、c、d、
2、已知钢笔每支4元,圆珠笔每支2元,一共买了10支笔,共用去26元,问买钢笔、圆珠笔各多少支?可设买钢笔x支,圆珠笔y支,可列方程组正确的是()。
a、b、c、d、
【课后巩固】。
1、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚。
2、大数和小数的差为12,这两个数的和为60,则大数是,小数是。
3、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是。
用方程解决问题10道篇十六
列方程解应用题是学生学习的一个难点,它和用算术方法解应用题一样都是以四则计算和常见的数量关系为基础,但在解题思路上有所不同。学生在一至四年级的应用题学习中,已经养成用算术方法解题的习惯。因此,本课教学以让学生初步掌握用方程来描述等量关系为重点。在根据题意寻找等量关系的过程中,倡导学生能说出2~3个等量关系。通过自主选择等量关系列式的环节,构建新旧知识的矛盾冲突,从而自然的引出“将未知数设为x来列式”的新知。在师生共同探究得到列方程解应用题的基本格式后,通过再次自主选择以巩固解题步骤。例2则以尝试题的形式出现,充分发挥学生的自主能动性。
教学设想。
本课教学设计力求体现:改变课程内容繁、难、窄、旧和偏重书本知识的现状,加强课程内容与学习生活以及现代社会发展的联系,关注学生的学习兴趣和经验,精选包括信息技术在内的终身学习必备的基础知识和技能。
1.改革例题呈现方式,增大学生探索空间。
数学的学习不应成为简单的概念、法则、公式的掌握和熟练的过程,而应该更具有探索性和思考性,鼓励学生经历数学的学习过程,让学生在解决问题的过程中发展学生的探索与创新精神。基此认识,我们把要讲解的例题变成适合学生探究瓶的素材,呈现出真实的有探讨价值的实际生活问题情境,以《今天我当家》中的上街购物用钱找钱的实际情境,让学生在尝试解决身边具体问题的过程中学习数学,体验数学的价值,逐步掌握解决问题的方法,而且增强应用数学的信心,学会用数学的思维方式去观察、分析社会,去解决日常生活中的问题,从而增强学生的数学意识。
2.突破练习常规作法,激发学生发散思维。
现代的数学教育观认为,每个学生都可以学数学,不同的学生要学不同水平的数学,允许学生以不同的方式去学数学。只有个性化的学习,才能使不同的人学到不同的数学,得到不同的发展。
教师所要做的,就是让这些具有不同思维特点的学生有机会表达自己的思想,而不是用统一的模式要求所有的学生。为此,我们打破传统教学的“巩固练习”常规,把数学教学与儿童的生活实际紧密结合起来,在课堂上设计富有情趣的数学教学活动,提供具有一定开放性、灵活性、多变性的生活情境,给学生的求异思维创设了一个广阔的空间,有助于激发学生的创新意识,养成创新习惯,发展思维的创造性,提高学生分析问题、解决问题的能力采取合作学习、自主探索的方式,面向全体,满足不同层次学生的需要,以促使学生主动参与学习,真正体现学生的主体性。
3.优化数学建模过程,加强学生思维训练。
以真实生活的原型进行数学建模,通过建模解模培养学生的抽象思维能力。根据学生的认知规律和思维特点,结合教学内容,积极创设思维情境,引导学生在视听采顿有关数据中掌握多种类型的问题特点的基础上将应用问题与数学问题联系起来,从己知的数量关系推理、联想、判断出属于哪类问题,如本节课的开放性练习,建立相应的数学模型之后,运用数学知识和方法来解答纯数学问题。学生解答应用题的过程就是在获取问题信息、理解题意的基础上,把实际问题抽象转化成数学问题,建立相应的数学模型,-再利用数学知识对数学模型进行分析研究,得到数学答案,然后再把数学答案返回到实际问题中去。即引导学生解模的过程正是对学生思维训练的过程,从而培养学生思维的科学性、深刻性、灵活性、多样性。
用方程解决问题10道篇十七
一、选择题。
1、甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为()。
a、6b、8c、10d、11。
a、25b、12.5c、6d、无法确定。
3、某项工作,甲单独做要a天完成,乙单独做需b天完成,现在甲单独做2天后,剩下工作由乙单独做,则乙单完成剩下的工作所需天数是()。
a、b、c、d、
二、填空题。
1、若一个三位数,十位数字是x,个位数字是十位数字的3倍,百位数字比十位数字的2倍少1,则这个三位数可表示为______________.
2、一个两位数,个位上的数字是十位上的数字的3倍,它们的和为12,那么这个两位数为________.
3、某项工程由甲独做需m天,由乙独做需n天,两人合作4天后,剩下的工程是.
4、做一批零件,如果每天做8个,将比每天做6个提前1天完成,这批零件共有_____个.
1、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.
3、一个两位数,个位数字是十位数字的4倍,把个位数字与十位数字对调,得到的两位数比原来大54,求原数.
【知能升级】。
2、小明中考时的.准考证号码是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为1;(2)把千位上的数字1向右移动,使其成为个位数字,那么所得的新数比原数的5倍少49.请你根据以上特征推出小明的准考证号码.
答案。
一、选择题。
1、c2、c3、b。
二、填空题。
1、100(2x-1)+10x+3x2、393、4、24。
三、列方程接应用题。
1、甲每小时加工16个零件,乙每小时加工14个零件.
2、剩下的部分需要6小时完成.3、原数为28.
【知能升级】。
1、停电40分钟.
2、小名的准考证号码为1990.
用方程解决问题10道篇十八
本节课的教学内容是列方程解应用题的例3。让学生在已有列方程解应用题的经验基础上,在解答较复杂的应用题中,探索解题思路。现对于本节课谈一些自己的感想。
一、利用实物帮助解题。
教师在依托教材进行教学的同时,要结合学生的学习程度学会对数学教材进行适当的“加工”,这样更有利于提高教学质量。例如,这节课在教学例3时,我改变了直接看应用题列方程的做法,而是让学生带来了家里的水费帐单,这样做有两点好处:一是分散了解应用题的难点,让学生根据帐单说应用题的解题思路,从而逐步渗透到等量关系;二是为后面的变式应用题打下基础,让学生潜移默化通过例3感受到在解答较复杂应用题时,如何根据所给条件正确找出等量关系相等,从内心上接受用列方程的方法解此类应用题的优势所在。
二、合理组织安排教材。
教材中的教学内容是通过例题、模仿变式练习题和综合练习题(练一练、试一试)所呈现的。其呈现的内容不是在同一个背景下,而是以独立的形式逐一呈现,这样的分割呈现方式不利于学生进一步提炼解此类应用题的一般解题思路。因此,设想改变教材内容的呈现方式,在学生已有的生活经验与数学学习经验基础上创设情景,让学生解决实际问题。由于要解决的问题以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明此类应用题的一般特征,根据特征有利于学生在各种关系的比较中寻找解答此类应用题的共同方法,便于学生进一步提炼解此类应用题一般解题思路。
三、教师要关注学生的学习方式。
自主探索是小学生学习数学的重要方式,五年级的学生已有丰富的生活经验和知识的积累,有一定的认知水平和解题策略。因此,教师要努力为学生创造民主的学习氛围,把学习的自主权和评价的自主权还给学生,让所有学生都参与到数学学习中。如在这节课的教学中,学生通过亲身经历看水费帐单说等量关系、小组讨论、尝试解方程、相互评价,学生的自主性得到了充分的发挥,学生在评价中学习的热情很高,充分体验自主探索获取成功的喜悦。
应用题教学有利于学生灵活地综合应用已有的数学知识和技能解决数学实际问题,教师要善于培养学生观察、发现、概括和综合解决问题的能力,提炼数学方法,形成正确的价值观。

一键复制