通过总结,我们可以追溯自己的成长轨迹,看到自己的进步。撰写总结时,我们要注意用正面的语言表达自己的成就。以下是相关方面的总结范文,希望对大家的写作有所启发和参考。
思维导图数学篇一
因为在最初指导学生认识思维导图的时候,我给学生展示的就是树形图。所以学生运用树形图对数学知识进行梳理比较熟练。学生在生活中早已认识了树的形状,对树干、树枝、树叶及分枝的感知非常清晰,也就很容易的联想到树干、树枝与主题、分主题的逻辑关系。所以学生运用树形图的时候比较多,也绘制的比较好。如图1是苏科版数学八年级下册第10章分式的树形思维导图.
树形图的优点是主干分支非常明确,但画起来比较麻烦。为了更简单的运用思维导图,后来我们发动学生研究更简单的思维导图形式,大家确认就把树干简化为一个圆、椭圆或正方形等简单易画的图形,如图2:学生把树干简化成一个圆环,涂上不同颜色,画上一个指针,这是苏科版数学八年级下册第8章第二节数学实验室中的转盘模型变形图,学生的这一构想即贴近课本又有一定的创造性。
箭头或框架样式的思维导图,老师在日常备课或给学生做知识梳理的时候会经常使用,非常简洁明了,而且容易绘制。只是以前我们没有把它作为一种学习方法并上升到理论高度去重视。这种结构图实际上就是一种很简单好用的思维导图,特别适合在课堂中应用。在具体的运用中我们要先总结出本节课的主题,用一个关键词表示。然后直接用箭头往下分支出二级、三级等主题,也是常见的框架结构图,学生运用起来非常简单容易上手。有好多学生把框架结构变形为椭圆形箭头图、鱼骨头型箭头图。如图3是学生梳理二次根式的箭头式思维导图。
学生的思维被打开以后,他们的想象力非常丰富,画出了许多实物型思维导图,如风筝、蝴蝶、花篮、风车等等。如图4:花篮即是主干,也就是主体部分。学生冠上各个关键词后,就能对学过的知识进行清晰的梳理和记忆。学生也非常喜欢进行这样的勾画。
我们在数学教学中经常会运用表格来进行知识的梳理和比较,能让学生一目了然的了解知识的区别与联系。这实际上也可以看作是一种思维导图,利用表格来绘制思维导图,学生比较容易接受和理解,所以,表格式思维导图也是学生比较喜欢的的一种形式。如图5是学生在学习完苏科版数学八年级下册第11章反比例函数后绘制的表格式思维导图,总结比较了一次函数与反比例函数的知识。
以上是我在指导学生运用思维导图梳理数学知识时最常用的几种方法,在具体指导的过程中,笔者首先给学生逐渐展示一些不同类型的思维导图,让学生先获得一些感性认识,在头脑中有思维导图的概念和形象,然后引导学生勾画。慢慢学生就学会了,而且非常有兴趣。学生在绘制思维导图时学到了思维的方法,找到了学习的方法。思维导图让学生真正的学会了学习,提高了学习的效率。教师真正的做到了授之以渔。学生在绘制思维导图时,把零碎的知识整理成相互联系的知识框架图。这样的过程不仅培养了学生的思维能力,又提升了学生的记忆力,同时更好的复习了所学的知识,这是一种很好的教与学的方法。
思维导图数学篇二
1、有两个角互余的三角形是直角三角形。
2、三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
3、三角形的外角等于与它不相邻的两个内角的和。
4、在平面内,有一些线段首尾顺次相接组成的封闭图形叫做多边形。
5、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
6、各个角都相等,各条边都相等的多边形叫做正多边形。
7、n边形内角和等于(n-2)x180°。
8、多边形外角和等于360°。
9、可以看到,形状,大小相同的的图形放在一起能够完全重合的两个图形叫做全等形。
10、能够完全重合的两个三角形叫做全等三角形。
11、把两个全等三角形重合在一起,重合的顶点叫做对应顶点,重合的便叫做对应边,重合的角叫做对应角。
12、全等三角形对应边相等,全等三角形对应角相等。
13、直角三角形的两个锐角互余。
思维导图数学篇三
我们的思维是跳跃的,是多彩的,将思维的过程用图画的方式展现出来就是一个思维导图的过程。小学阶段的孩子们以形象思维为主的思考,让我们对孩子的教育方式有了新的突破性思考。
形象思维的发展程度在一定程度上决定了其他思维的发展程度。国内外研究表明,形象思维先于其他思维的发展,形象思维的发展程度在一定程度上决定了其他思维的发展程度。
爱因斯坦曾这样描述过他的思维过程:“我思考问题时,不是用语言进行思考,而是用活动的跳跃的形象进行思考,当这种思考完成以后,我要花很大力气把它们转换成语言。”另一位诺贝尔奖莸得者李政道从上世纪80年代起,每年回国两次倡导科学与艺术的结合。他在北京召开“科学与艺术研讨会”,请黄胄、华君武、吴冠中等著名画家“画科学”。李政道的画题都是近代物理最前沿的课题,涉及量子理论、宇宙起源、低温超导等领域。艺术家们用他们擅长的右脑形象思维的方式,以绘画的形式形象化的表现了这些深奥的物理学原理。
从两位大家的言行中我们看到形象思维的在思维中的地位。而小学阶段学生形象思维占优的特点让我们想到此时是培养学生形象思维的最佳时机。
抽象性与逻辑性是我们对数学的一般理解。但在《新课标》中对小学数学的学习内容和目标上的阐述,让我们对小学数学有了另一番理解。
《小学数学新课标》中对小学数学的学习内容定义了以下几个方面并给定了其达成目标。在数与代数方面,《新课标》指出“应帮助学生建立数感和符号意识,发展运算能力,树立模型思想。”;在图形与几何方面,《新课标》指出“应帮助学生建立空间观念。”“直观与推理是‘图形与几何’学习中的两个重要方面。”;在统计与概率方面,《新课标》指出“帮助学生逐渐建立起数据分析的观念是重要的。”;在综合与实践方面,《新课标》指出“‘综合与实践’是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。”
需要说明的是“模型思想”属于形象思维中的经验形象;“空间观念”、“数据观念”属于形象思维中的直观形象;“综合实践”方面的培养的正是形象思维中的创新形象。
由上可知,《新课标》下小学阶段的数学学习主要以培养学生的形象思维和开放性认知结构为主,这不仅符合小学生形象思维占优,思维活跃,跳跃性强的特点,更为学生的终身认知打下基础。
然而我们在对形象思维的理解上存在一些误区,认为数学中的形象思维须依据几何图形的教学,从而把数学形象思维能力的培养也简单地局限在几何图形的教学之中,甚或对形象思维简单地等同与空间思维,这样的理解是不利于我们开展课堂教学,并可能对学生的终身认知也产生负面影响。由此我们对《课标》的解读上也存在了一定的偏失。
由于认识上的一些偏失,在教学环节的设定上也存在一定的不符合形象思维培养特点的问题。如创设情境后,教师一般会问一句:“你能发现哪些数学问题吗?”学生会过多地从一些数学技巧性的方面去提出一些问题。学生的思维就此从情境中出脱离出来,回到平时所理解的“数学严谨抽象”的意义上来。
所以在数学中培养学生的形象思维是对教师认识上的一种纠偏,也是对学生负责的当务之急。
思维导图数学篇四
一位网友在微信交流上提出这样一个问题:画了导图,但如何来记忆。张海洋老师回复的是一层一层提取关键词进行联想回忆。我们以此图的做人法则和处世之道的内容为参考,将导图和记忆法共同结合起来讲如何记忆的问题。记忆方法我们推荐多种方法都要去运用,而且要灵活,不能为了方法而方法。
第一步:熟悉内容。
做人法则:诚信(言而必有信)、孝道(百善孝为先)、悔过(知错要悔改)、志向(匹夫不可夺志)、朋友(把握好交友的度)、宽容(是一种境界)。
不停的重复读读,带着一定的分析和理解去把握这些内容。理解有很多方式,善于运用我们的大脑就可以帮助我们记下这幅导图。比如做人法则包含哪些内容,有几个,可以分为哪几个领域的或者范围的内容。诚信和交往有一定关系,对家人,对他人都是需要的,孝只对父母的,朋友也是与人交往方面的,这个度强调的是与哪些人交往,哪类人交往,那么下面的宽容就是如何交往的方式,对待他人的态度结果这样一分,交往类有诚信、孝道、朋友、宽容,这四个中诚信、宽容可以看作是方式、态度,孝道是对家人,朋友是对他人,一个内一个外,这样一理很容易回想起来。再看看剩下的悔过,人都会犯错,要知错能改,这就是悔过,志向,咱们是匹夫,要立志干一番事业。
通过以上理解,做人法则的内容很容易回忆起来,这其实就是找到内容本身的逻辑,从其本身出发,不仅会对内容更进一步了解,也能加强我们对这些文字的印象。
下面我们再用张海洋老师提到的关键词串联,串联就不会把所有的内容都拿出来。
做人法则,诚信、孝道、悔过、志向、朋友、宽容。
人,诚、孝、过、志、友、容。
小纸锅容忍陈油(想象一个小纸锅里容纳一锅的陈放很久很久的油,忍在回忆的时候要想到做人法则)。
同样的,先理解这段内容,处世之道有几个方面的内容:言行,变通,同道,和为贵,执中致和。对他人要看言行,看看是不是同道中人,要在这个过程中懂得变通,以和为贵。总领的方式就是执中致和,这里吧我个人更喜欢用中庸来表达,因为我对中庸更熟悉一些,觉得执中致和还说起来还有点模糊有些复杂,不了解。但原图是执中致和,我们就以这个内容为记忆对象来处理。
这样一分析下来,其中有一个逻辑,处世要看人,看人的言行,是否是同道中人,要懂变通,是就多交往,不是就尽量远离,但不要太自大了,唯我独尊就不好了。剩下的都是和,以和为贵,执中致和,虽然和的意思有所不同,但都划在一起,方便回忆,有两和。
通过以上分析,处世之道其实能基本上回忆起来。
串联方式记忆:
处世,言行,变通,同道,两和。
厨师一只脚踩一条河,在两条河里找同道中人,看能不能研究出装星星的便桶来。(这是一个牛厨啊!呵呵!)。
思维导图数学篇五
我们的思维是跳跃的,是多彩的,将思维的过程用图画的方式展现出来就是一个思维导图的过程。小学阶段的孩子们以形象思维为主的思考,让我们对孩子的教育方式有了新的突破性思考。
形象思维的发展程度在一定程度上决定了其他思维的发展程度。国内外研究表明,形象思维先于其他思维的发展,形象思维的发展程度在一定程度上决定了其他思维的发展程度。
爱因斯坦曾这样描述过他的思维过程:“我思考问题时,不是用语言进行思考,而是用活动的跳跃的形象进行思考,当这种思考完成以后,我要花很大力气把它们转换成语言。”另一位诺贝尔奖莸得者李政道从上世纪80年代起,每年回国两次倡导科学与艺术的结合。他在北京召开“科学与艺术研讨会”,请黄胄、华君武、吴冠中等著名画家“画科学”。李政道的画题都是近代物理最前沿的课题,涉及量子理论、宇宙起源、低温超导等领域。艺术家们用他们擅长的右脑形象思维的方式,以绘画的形式形象化的表现了这些深奥的物理学原理。
从两位大家的言行中我们看到形象思维的在思维中的地位。而小学阶段学生形象思维占优的特点让我们想到此时是培养学生形象思维的最佳时机。
抽象性与逻辑性是我们对数学的一般理解。但在《新课标》中对小学数学的学习内容和目标上的阐述,让我们对小学数学有了另一番理解。
《小学数学新课标》中对小学数学的学习内容定义了以下几个方面并给定了其达成目标。在数与代数方面,《新课标》指出“应帮助学生建立数感和符号意识,发展运算能力,树立模型思想。”;在图形与几何方面,《新课标》指出“应帮助学生建立空间观念。”“直观与推理是‘图形与几何’学习中的两个重要方面。”;在统计与概率方面,《新课标》指出“帮助学生逐渐建立起数据分析的观念是重要的。”;在综合与实践方面,《新课标》指出“‘综合与实践’是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。”
需要说明的是“模型思想”属于形象思维中的经验形象;“空间观念”、“数据观念”属于形象思维中的直观形象;“综合实践”方面的培养的正是形象思维中的创新形象。
由上可知,《新课标》下小学阶段的数学学习主要以培养学生的形象思维和开放性认知结构为主,这不仅符合小学生形象思维占优,思维活跃,跳跃性强的特点,更为学生的终身认知打下基础。
然而我们在对形象思维的理解上存在一些误区,认为数学中的形象思维须依据几何图形的教学,从而把数学形象思维能力的培养也简单地局限在几何图形的教学之中,甚或对形象思维简单地等同与空间思维,这样的理解是不利于我们开展课堂教学,并可能对学生的终身认知也产生负面影响。由此我们对《课标》的解读上也存在了一定的偏失。
由于认识上的一些偏失,在教学环节的设定上也存在一定的不符合形象思维培养特点的问题。如创设情境后,教师一般会问一句:“你能发现哪些数学问题吗?”学生会过多地从一些数学技巧性的方面去提出一些问题。学生的思维就此从情境中出脱离出来,回到平时所理解的“数学严谨抽象”的意义上来。
所以在数学中培养学生的形象思维是对教师认识上的一种纠偏,也是对学生负责的当务之急。
思维导图数学篇六
1、认为“开明君主制度是最好的政治制度”的思想家是()。
a、伏尔泰。
b、孟德斯鸠。
c、卢梭。
d、狄德罗。
2、下列主张中,不属于伏尔泰的是()。
a.反对封建专制制度。
b.主张开明君主执政。
c.批判天主教会的黑暗腐朽。
d.倡导三权分立学说。
3、对近代自然科学发展影响最大的是()。
a、万有引力定律。
b、微积分的创建。
c、力学三定律。
d、《物种起源》的出版。
4、现代文明与科学进步密不可分。然而,某著名科学家却说:“原子释放出来的能量已改变了除我们的思维方式以外的一切,因此,我们正在走向空前的灾难。”这位科学家是()。
a、牛顿。
b、瓦特。
c、达尔文。
d、爱因斯坦。
5、18世纪中期以后,哪一种学说的兴起打破“生物是神创造的,是一成不变的”这一观点()。
a、原子—分子结构说。
b、万有引力定律。
c、生物进化学说。
d、太阳中心说。
6、“我要扼住命运的咽喉,它决不能使我完全屈服。”这是谁的名言?()。
a、梵高。
b、贝多芬。
c、托尔斯泰。
d、斯特劳斯。
7、以下作品中表达贝多芬反对君主制的是()。
a、《英雄交响曲》。
b、《命运交响曲》。
c、《月光交响曲》。
d、《蓝色多瑙河》。
8、要想了解俄国人民是如何反抗拿破仑的,你可以去图书室借阅()。
a、《战争与和平》。
b、《安娜卡列尼娜》。
c、《复活》。
d、《母亲》。
9.被列宁称为“俄国革命的镜子”的作家是()。
a.托尔斯泰。
b.屠格涅夫。
c.果戈里。
d.妥思托耶夫斯基。
思维导图数学篇七
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)。
思维导图数学篇八
巧用思维导图进行复习整理在小结和复习时使用思维导图精心备课可以让课堂更主动地掌握在教师手中,知识脉络的清晰有助于教师腾出更多的时间去引导学生理解和掌握知识。对于学生来说,每节课的内容多是零散的,理解难免有些片面,容易导致记忆的混乱和理解的不深刻。如何避免?对学完的完整一节进行总结,是避免这种情形的有效办法。
巧用思维导图提高笔记效率。
思维导图在发明之初被用于记笔记,是一种使左右脑同时工作的全脑思维工具。它借助简单的词汇、线条、颜色、符号、图像来表达信息之间的联系;记的过程简单、快速,但却能及时记录重要信息及其之间的关系,信息量丰富,记录的结果直观、形象,信息之间的关系一目了然,容易理解与记忆。
代替了传统的数学笔记形式。
思维导图模式是一种新型的教学模式,它简单易懂,将数学的知识复杂变成简单的过程,但是老师在课堂的讲解中对学生进行一定程度上的引导,使学生能够熟练掌握思维导图的学习方式进行学习。老师可以使学生在课堂中利用彩笔在纸上绘制,并且利用不同的形状代表不同的数学元素,以此往下延伸,最后用不同颜色的文字进行说明,但是老师要引导学生在说明的过程中不要用太多的文字,尽量精简。这样的方式可使学生尽量掌握思维导图的学习模式,也可以充分调动学生的学习兴趣,从而提高学生的学习成绩,有效提升了数学的教学质量。
例如:学生在课后的预习中,时常会感觉到数学知识过于琐碎,没有整体性,一看自己在课堂上做的笔记,更是脑子一片空白,不知道从哪方面复习好。但是老师在课堂教学的整个过程中,进行思维教学的正确引导,使学生能利用思维导图的学习模式进行学习,不仅仅可以帮助学生很快建立数学知识点的构架,在短时间内帮助学生弄清数学知识的脉络,也可以减少学生的学习时间,避免了学生在学习中出现的无用功。
思维导图数学篇九
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
2.定理:经过证明被确认正确的命题叫做定理。
3.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)。
思维导图数学篇十
“模型应该来自情境,而学生则应该学习从情境中辨认模型,提出模型。”学会抽象概括数学模型是创造、识别、应用模型的前提。它能使学生理顺模型的来龙去脉,深刻理解数学模型的本质、特征,把握模型的衍生层次。教师应努力创设问题情境,做学生抽象数学模型的“助产师”,把学生置于研究现实的未知的问题情境之中,引导学生把数学问题提炼成简约的日常生活语言,再让学生把日常生活语言转化成数学语言,以促使学生把具体数量关系概括成一般的数量关系,使学生在探求解决问题的方法的过程中建立新的数学模型。
“模型准备”可以由教师直接提出或设计情境引入,让学生从生活现象中体会到一个比较清晰的数学问题。出示问题情境后,教师可以利用下面这个思维导图,让学生从情境中收集信息,并通过动脑想、动口说、动手做等方式,引导学生对信息进行分析、理解,培养学生的数学阅读、观察和分析能力。
模型假设阶段——培养学生的猜想、整合能力。
模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,教师应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。教学时可以通过教师的引导,让学生针对问题特点和建模目的作出合理、简化的假设。
在这个环节,教师不应过早地对学生的假设进行评判,而应重点关注假设背后的思想,关注学生是否调动原有的知识经验,并引导学生在操作、证明、交流、质疑中用事实验证自己的假设,或纠正自己的错误假设,因势利导启发学生,鼓励学生积极开展思维活动。
2如何巧用思维导图的探讨。
实践出真知。
首先,在授课时注意课本知识点与生活的有机结合。如在学习几何图形时,可以让学生寻找生活中他们见到的图形,并让他们制作出来,让他们在具体的动手过程中去思考这些图形有什么特点。再如学习几何图形的拼接时,可以让学生自行去拼接,让他们拼接成自己喜欢的动物、房子、树木、数字、电视等等。这样在具体的知识点的教学过程中不仅可以直观地展示课本的知识点,还可以有效地激发学生的想象,从而在实践中提升自我抽象思维能力。
其次,注重知识点与生活场景之间的联系和层次。在数学教学实践过程中,我们通常会赋予这个知识点具体的生活情境,从而在具体的情境中引导学生得出相应的结论。但这种生活场景应该是生活中会出现的或者说它是有概率会发生的,即生活场景与知识点的联系要具有充分的合理性,唯有这样,才会有效激发学生去进行生活化的思考。而所谓的层次问题指的是这种生活场景一定要是学生尽可能会见到的,而不是小学生目前接触不到的生活场景。唯有这样,才可以让学生进行合理化的思考,而这样的思考才是有价值的。这样有价值的思考也才会提高学生的抽象思维能力。
从思维定向走出去。
首先,培养学生独立思考的能力。教学是一个双向的过程,不仅需要教师对于知识的讲解与渗透,更需要学生自身的独立思考。因此在日常的教学活动中,要注重让学生独立思考,去思考一个题目为什么有这样的解法,去思考为什么会有乘法口诀。在平时的教学中也要多留一些有趣的、和日常生活相关的数学课后思考题,从而让学生在对于这些问题的探讨与思考中逐渐养成自我思考与探究的习惯。而这样独立思考的能力正是培养学生抽象思维能力的必备条件。
其次,形成分组讨论机制。抽象思维的培养过程需要靠具体的教学活动来完成。分组讨论机制有助于学生在自主讨论学习中汲取别人的思维模式从而能够完善自我思维。与此同时,分组讨论机制有助于拓宽学生对于同一种问题的不同理解,从而为问题的解决提供多种可能性,而对于问题的不同可能性的思考有助于学生走出自我的思维定向,进而提升自我的抽象思维能力。
思维导图数学篇十一
因为在最初指导学生认识思维导图的时候,我给学生展示的就是树形图。所以学生运用树形图对数学知识进行梳理比较熟练。学生在生活中早已认识了树的形状,对树干、树枝、树叶及分枝的感知非常清晰,也就很容易的联想到树干、树枝与主题、分主题的逻辑关系。所以学生运用树形图的时候比较多,也绘制的比较好。如图1是苏科版数学八年级下册第10章分式的树形思维导图.
树形图的优点是主干分支非常明确,但画起来比较麻烦。为了更简单的运用思维导图,后来我们发动学生研究更简单的思维导图形式,大家确认就把树干简化为一个圆、椭圆或正方形等简单易画的图形,如图2:学生把树干简化成一个圆环,涂上不同颜色,画上一个指针,这是苏科版数学八年级下册第8章第二节数学实验室中的转盘模型变形图,学生的这一构想即贴近课本又有一定的创造性。
箭头或框架样式的思维导图,老师在日常备课或给学生做知识梳理的时候会经常使用,非常简洁明了,而且容易绘制。只是以前我们没有把它作为一种学习方法并上升到理论高度去重视。这种结构图实际上就是一种很简单好用的思维导图,特别适合在课堂中应用。在具体的运用中我们要先总结出本节课的主题,用一个关键词表示。然后直接用箭头往下分支出二级、三级等主题,也是常见的框架结构图,学生运用起来非常简单容易上手。有好多学生把框架结构变形为椭圆形箭头图、鱼骨头型箭头图。如图3是学生梳理二次根式的箭头式思维导图。
学生的思维被打开以后,他们的想象力非常丰富,画出了许多实物型思维导图,如风筝、蝴蝶、花篮、风车等等。如图4:花篮即是主干,也就是主体部分。学生冠上各个关键词后,就能对学过的知识进行清晰的梳理和记忆。学生也非常喜欢进行这样的勾画。
我们在数学教学中经常会运用表格来进行知识的梳理和比较,能让学生一目了然的了解知识的区别与联系。这实际上也可以看作是一种思维导图,利用表格来绘制思维导图,学生比较容易接受和理解,所以,表格式思维导图也是学生比较喜欢的的一种形式。如图5是学生在学习完苏科版数学八年级下册第11章反比例函数后绘制的表格式思维导图,总结比较了一次函数与反比例函数的知识。
以上是我在指导学生运用思维导图梳理数学知识时最常用的几种方法,在具体指导的过程中,笔者首先给学生逐渐展示一些不同类型的思维导图,让学生先获得一些感性认识,在头脑中有思维导图的概念和形象,然后引导学生勾画。慢慢学生就学会了,而且非常有兴趣。学生在绘制思维导图时学到了思维的方法,找到了学习的方法。思维导图让学生真正的学会了学习,提高了学习的效率。教师真正的做到了授之以渔。学生在绘制思维导图时,把零碎的知识整理成相互联系的知识框架图。这样的过程不仅培养了学生的思维能力,又提升了学生的记忆力,同时更好的复习了所学的知识,这是一种很好的教与学的方法。
文档为doc格式。
思维导图数学篇十二
通过应用思维导图,一个想法既能迅速、深刻、完整地生成,又能始终聚焦于中心主题。因此,将思维导图应用于高中语文教学具有很多突出的优势:
1、有利于增强学生兴趣。
采用这种方式,避免了教师枯燥无味的讲解,学生的学习变被动为主动。在制作思维导图的过程中,学生会处在不断有新发现,提高了学生探究新事物的动手能力和学习能力,这会鼓励和刺激学习的主观能动性,由被动学习转为主动学习,把学习真正变成一种乐趣。尤其是在复习阶段,死板的重复会导致学生麻木、厌烦,而当他们运用自己喜欢的学习方式重访记忆通道,亲身参加到教学活动中时,则会无形中增添学习的乐趣和成功感。
2、有利于提高对知识的理解。
在制作思维导图时,通过查找关键词和核心内容,可以更好地帮助师生加强对所学知识的理解,因为思维导图通过确定因果联系、区分概念层级、组织相互关系,能够直观而有层次地显示出知识的组织结构和连接方式,以及一些重要的观点和事实证据,可以加深对各个层次及整个主题的充分理解。
3、有利于形成对知识的整体认知。
思维导图能使某一特定领域的知识以整体的、一目了然的方式呈现出来,全面展示各个关键的知识要点,直观地表现出各要点间的层次和因果等相互联系,帮助学生在头脑中建立清晰、完整、形象的知识结构体系,全面把握某方面知识的整体情况。
4、有利于提高信息综合处理能力。
在阅读、写作或研究性学习过程中,运用思维导图可以记录从各种渠道获取的信息,依其内在逻辑关系或者使用者的特定需要,对有关资料进行重组。随着思维导图的逐步完善,使用者对中心主题的理解日益深刻,以文字篇章的形式完善描述思维成果也就逐渐水到渠成。
5、有利于提高教学效率。
由于思维导图采取高度凝炼的方式概括知识要点,笔记中重要的关键词既简洁又显眼,使得师生在认知时中只需要记录关键词,复习时只需读取关键词,查阅笔记时不必在庞大的篇章中寻找要点,因此整个学习过程中都能集中精力于真正的学习主题,从而更快更有效地开展教学活动。
6、有利于提高创造性思维能力。
人的大脑是通过想像和联想来进行创造性思维的。采用单一线性的文字语言性思维方式时,由于思维单调乏味,且不易于回溯前面的思路,经常导致思维中止。运营图文并用、左右脑相互配合的思维导图进行思维时,则会不断产生新的想法和灵感,并能及时记录下来,或者随时回到前面任意一个思维中点,再次生发更多的创意,创造性思维成果就这样变得生生不息。
最有效的听课是将眼、脑、手一起运用起来,而思维导图的绘制恰巧满足了这个要求。希望未来的课堂能充满生机。
文档为doc格式。
思维导图数学篇十三
第9课古代科技与思想文化(二)。
一、杰出的科学家及成就:
1、阿基米德:古希腊杰出的科学家。(给我一个支点,我将撬动整个地球。)。
(1)、成就:发现了杠杆定律和浮力定律,发明了螺旋式水车。
(2)、我们要学习阿基米德善于思考、献身科学、忠于祖国的优秀品质。
2、亚里士多德:著名的哲学家,杰出的科学家,被誉为古希腊“百科全书式”学者。
成就:创立了物理学、植物学、动物学、逻辑学等学科体系。
二、文学与戏剧:
1、《荷马史诗》是古希腊盲人荷马所作,是欧洲的最著名的长篇文学作品之一,它再现了古希腊社会的图景,是研究早期希腊社会的重要史料,包括《伊利亚特》、《奥德赛》。
2、希腊戏剧:古希腊是欧洲戏剧的故乡,埃斯库罗斯是“悲剧之父”,作品《被缚的普罗米修斯》。阿里斯托芬是“喜剧之父”,悲剧作家索福克勒斯的作品《俄底浦斯王》。
3、阿拉伯民族的传统作品《天方夜谭》,又名一千零一夜,代表篇章是《阿里巴巴和四十大盗》《阿拉丁和神灯》等。
三、古代著名的建筑:
1、罗马的建筑庄严、厚重,高大宏伟,设计巧妙,多使用柱子和拱型结构,还善于建筑高架引水桥,罗马建筑对欧洲和世界建筑有很大影响。(课本39页)。
2、麦加大清真寺:是伊斯兰教的第一大圣寺,寺内有克尔白神庙,是穆斯林必须拜谒的地方。
3、巴黎圣母院建于12世纪,是巴黎最古老、高大的教堂。巴黎圣母院是一座典型的哥特式建筑,被雨果称为“石头的交响乐”。

一键复制