当前位置:网站首页 >> 文档 >> 最新一元二次方程的解法例题8篇(精选)
范文文档
最新一元二次方程的解法例题8篇(精选)
  • 时间:2025-05-03 02:32:16
  • 小编:盖文哥聊职场
  • 文件格式 DOC
下载文章
一键复制
猜你喜欢 网友关注 本周热点 精品推荐
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编为大家带来的优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。中国古
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。重新创
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。古代寓言二则古代
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编整理的优秀教案范文
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么问题来了,教案应该怎么写?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面我帮大家找寻并整理了一些优秀的教案范文,我
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。《
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面是
制定计划前,要分析研究工作现状,充分了解下一步工作是在什么基础上进行的,是依据什么来制定这个计划的。优秀的计划都具备一些什么特点呢?又该怎么写呢?以下是小编为大
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面是小编带来的优秀教案范文,
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么教案应该怎么制定才合适呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。遨游汉
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧纪昌学射教学反思优缺
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。升国旗教学反思与不足篇一播放
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编帮大家整理的优
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。那么心得体会怎么写才恰当呢?以下我给大家整理了一些优质的心得体会范文,希望
总结是一种思维的训练,可以提高我们的分析和归纳能力。总结不仅要注意结果,还要关注过程,分析原因和产生的影响。小编为大家精选了一些写总结的好例子,希望能够帮助到大
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
教案是教师教学的基本工具,能够提供具体的教学内容和教学步骤。教案应该注重教学过程中的引导和启发,要鼓励学生思考、探究和合作,培养其自主学习的能力。教案的设计不是
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。望庐山瀑布是七言绝句
懂得总结经验,才能让自己不断进步;总结应该包括哪些方面的内容,怎样才能更加全面?以下是一些通用的总结写作技巧和方法,供大家参考。春联教学反思篇一施教之功,先在激
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对
总结是沉淀思考的过程,让我们能够更好地理解和解决问题。如何进行有效的时间管理,提高工作和学习的效率,是许多人需要解决的问题。接下来是一些成功人士的总结经历,希望
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
总结是对自己成长和进步的一种激励和肯定,也是对自己的一种促进和冲击。在写一篇较为完美的总结时,我们需要注意语言的准确性和表达的合理性。总结范文中的经验和教训,或
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。大家想知道怎么样才能写一篇比较优质的教案吗?那么下面我就给大家讲一讲教案怎么写才比
教案的编写需要考虑学生的学情和兴趣,以及教学资源的合理利用。教案的编写要考虑学生的兴趣和参与度,增强教学的吸引力。这些教案是经过教师实际教学验证的,具有一定的可
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧负荆
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。写教案的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编收集整理的教案范文
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。月亮和云彩写一段话
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以
在总结中,我们可以找到前进的动力和改进的方向。可以通过对比、对照等方式,突出总结的重点和亮点。掌握一些写总结的技巧和方法,可以帮助我们更好地撰写一篇高质量的总结
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到
总结是我们进步的一个重要途径,可以帮助我们发现自己的不足并提升自己。总结是提升自身能力和经验的重要途径。范文中展示了如何利用语言和逻辑进行总结和归纳。材料类职业
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来
签订合同可以保护各方的权益,避免纠纷和争议的发生。合同中的条款应该明确具体,避免出现模糊和歧义的情况。合同的撰写需要谨慎、准确和明确,下面是一些合同写作的技巧和
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是小编为大
总结是对我们所经历的一切进行记录和总结的过程。注意总结的语气要积极向上,不能只看到问题和失误,要注重对成就和进步的肯定。创造性地运用以下总结范文中的思路和表达方
科技的迅猛发展给我们的生活带来了诸多便利。写总结时要注意结尾部分,可以用激励和展望未来的方式来提升文采。为了让大家更好地理解总结的写作方法,以下是一些范文供大家
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以
总结有助于发现不足,促进个人和组织的进步与发展。简明扼要地陈述事实是写总结的基本要求。下面是一些时间管理的建议,帮助你更好地安排工作和生活。感人肺腑的道歉信篇一
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的
作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。大家想知道怎么样才能写一篇比较优质的教案吗?下面是我给大家整理的教案范文,欢迎大
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些
总结能够帮助我们更好地理解事物的规律性,提高我们的认知水平。在写总结时,要客观、冷静地观察和思考,避免个人主观色彩过重。总结是一个复盘和总结经验的过程,以下是一
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接下来小编就给大家介绍一
总结是一种思考的过程,可以帮助我们理清思路,深化对事物的理解。如何培养孩子们的创造力是每个家长思考的问题,我们可以给予他们更多的探索和实践的机会。以下是一些写总
经过总结,我们能更深刻地理解问题的本质,为解决问题提供思路和方法。总结时应以事实为依据,以理性的态度进行分析和总结。想要写一份优秀的总结吗?下面是小编为大家收集
合同是商业交易中必不可少的一环,它确保了交易的安全和稳定性。在合同编写过程中需要慎重考虑各种可能的风险和情况。如果您想了解更多关于合同的写作技巧,可以参考以下范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是小编为大
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。有子女的离婚协议书
总结是一种有助于反思并找到改进方法的工具。在写总结时,要注意逻辑性和条理性,让读者能够清晰地理解你的观点和结论。以下是一些成功人士总结经验的范文。个人离职申请书
合同是一种法律文件,用于规定双方的权利和义务。在起草合同时,要注意语言简练、表达准确。合同的签订应注意保护自身权益,可以参考以下范文进行签订。幼儿园劳动合同书篇
当看完一部影视作品后,相信大家的视野一定开拓了不少吧,是时候静下心来好好写写读后感了。什么样的读后感才能对得起这个作品所表达的含义呢?下面我给大家整理了一些优秀
总结是对过去的记录和总结,也是为未来的规划和目标铺垫。写总结时,要注重形成层次清晰的结构,先总后分,先主要再次要,使得总结更具逻辑性和条理性。以下是常用的总结写
方案的成功与否关键在于执行的质量和效果,所以在制定方案时需考虑实施的可行性和可控性。制定方案需要考虑相关的资源和限制条件,确保可行性。希望以下方案的范文能够帮助
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
在工作和学习中,总结是提高效率和质量的关键之一。在写总结时,需要注重思考总结的目的和内容,使其有针对性和实质性。时刻保持学习和进步的心态,不断总结经验,才能不断
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?以下是小编收集整理的教案
通过总结,我们可以更好地认识自己,了解自己的成长轨迹。创造力是推动社会进步的火花,我们应该培养并善于发挥自己的创造力。通过阅读以下总结范文,你可以发现不同作者的
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里
棒球运动在美国享有广泛的人气和影响力。写一份较为完美的总结需要反复推敲和精益求精,细致入微。以下是社会学家对于社会问题的分析和解决方案,值得我们深思。有才华的辞

最新一元二次方程的解法例题8篇(精选)

格式:DOC 上传日期:2025-05-03 02:32:16
最新一元二次方程的解法例题8篇(精选)
    小编:盖文哥聊职场

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

一元二次方程的解法例题篇一

1.  初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2.  初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.  掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.  会用因式分解法解某些一元二次方程。

5.  通过对一元二次方程解法的,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

重点和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

建议:

一、教材分析:

1.知识结构:

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 方法建议采用启发引导,讲练结合的授课方式,发挥主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.中应不失时机地使学生认识到数学源于实践并反作用于实践.

第 1 2 页  

一元二次方程的解法例题篇二

1.  初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2.  初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.  掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.  会用因式分解法解某些一元二次方程。

5.  通过对一元二次方程解法的教学,使学生进一步理解“降次”的方法,进一步获得对事物可以转化的认识。

和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.教学中应不失时机地使学生认识到源于实践并反作用于实践.

教学设计示例

1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;

2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;

3. 在思想方法方面,使学生体会“转化”的思想和掌握配方法。

和难点

重点:掌握用配方法解一元二次方程。

难点:凑配成完全平方的方法与技巧。

设计

一 复习

1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例  解方程:(x-3) 2=4  (让学生说出过程)。

解:方程两边开方,得  x-3=±2,移项,得  x=3±2。

所以  x1=5,x2=1.      (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4,     ①

x2-6x+9=4,   ②

x2-6x+5=0.    ③

二 新课

1.逆向思维

我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。   (添一项+1)

即   (x2+2x+1)=(x+1) 2.

练习,填空:

x2+4x+( )=(x+  ) 2;     y2+6y+(  )=(y+  ) 2.

算理  x2+4x=2x·2,所以添2的平方,y2+6y=y2+2y3,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

项固练习(填空配方)

总之,左边的常数项是一次项系数一半的平方。

问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?

巩固练习(填空配方)

x2-bx+(  )=(x-  ) 2;            x2-(m+n)x+(  )=(x-  ) 2.

一元二次方程的解法例题篇三

目标

1.  初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2.  初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.  掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.  会用因式分解法解某些一元二次方程。

5.  通过对一元二次方程解法的,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

重点和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

建议:

一、教材分析:

1.知识结构:

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 方法建议采用启发引导,讲练结合的授课方式,发挥主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.中应不失时机地使学生认识到数学源于实践并反作用于实践.

设计示例

目标

1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;

2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;

3. 在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

重点和难点

重点:掌握用配方法解一元二次方程。

难点:凑配成完全平方的方法与技巧。

过程设计

一 复习

1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例  解方程:(x-3) 2=4  (让学生说出过程)。

解:方程两边开方,得  x-3=±2,移项,得  x=3±2。

所以  x1=5,x2=1.      (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4,     ①

x2-6x+9=4,   ②

x2-6x+5=0.    ③

二 新课

1.逆向思维

我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。   (添一项+1)

即   (x2+2x+1)=(x+1) 2.

练习,填空:

x2+4x+( )=(x+  ) 2;     y2+6y+(  )=(y+  ) 2.

算理  x2+4x=2x·2,所以添2的平方,y2+6y=y2+2y3,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

项固练习(填空配方)

总之,左边的常数项是一次项系数一半的平方。

问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?

巩固练习(填空配方)

x2-bx+(  )=(x-  ) 2;            x2-(m+n)x+(  )=(x-  ) 2.

一元二次方程的解法例题篇四

1.  初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2.  初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.  掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.  会用因式分解法解某些一元二次方程。

5.  通过对一元二次方程解法的教学,使学生进一步理解“降次”的方法,进一步获得对事物可以转化的认识。

和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.教学中应不失时机地使学生认识到源于实践并反作用于实践.

教学设计示例

1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;

2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;

3. 在思想方法方面,使学生体会“转化”的思想和掌握配方法。

和难点

重点:掌握用配方法解一元二次方程。

难点:凑配成完全平方的方法与技巧。

设计

一 复习

1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例  解方程:(x-3) 2=4  (让学生说出过程)。

解:方程两边开方,得  x-3=±2,移项,得  x=3±2。

所以  x1=5,x2=1.      (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4,     ①

x2-6x+9=4,   ②

x2-6x+5=0.    ③

二 新课

1.逆向思维

我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。   (添一项+1)

即   (x2+2x+1)=(x+1) 2.

练习,填空:

x2+4x+( )=(x+  ) 2;     y2+6y+(  )=(y+  ) 2.

算理  x2+4x=2x·2,所以添2的平方,y2+6y=y2+2y3,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

项固练习(填空配方)

总之,左边的常数项是一次项系数一半的平方。

问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?

巩固练习(填空配方)

x2-bx+(  )=(x-  ) 2;            x2-(m+n)x+(  )=(x-  ) 2.

一元二次方程的解法例题篇五

课题名称

§13、3公式法

课型

新授课

课时安排

1/1

教学目标 

1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。

重点、难点

根据公式会解一元二次方程

策略和方法

讲练结合

课前准备

课前预习

配方法

教学媒体

投影仪

教学程序

教学内容

教师活动

学生活动

备注

一、

我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ²+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。

你能用配方法解方程aχ²+bχ+c=0(a≠0)吗?

小亮是这样做的:

aχ²+bχ+c=0(a≠0)

两边都除以a

χ²+b/aχ+c/a=0

配方

如果b²-4ac≥0

一般的,对于一元二次方程aχ²+bχ+c=0(a≠0),当b²-4ac≥0时,它的根是:

上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。

公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。

公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。

学生可自主探索求根公式。

牢记公式

二、

例  解方程:χ²-7χ-18=0

解:这里a=1,b=-7,c=-18

∵b²-4ac=(-7)²-4×1×(-18)=121>0

即  

随堂练习:

1、用公式法解下列方程:

(1)2χ²-9χ+8=0

(2)9χ²+6χ+1=0

(3)16χ²+8χ=3

2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。

作业 :习题2.6   1、2

要求学生先找出a,b,c,对b²-4ac进行验证,然后代入公式,熟练后可简化步骤

解方程

课后记

根据公式会解一元二次方程

一元二次方程的解法例题篇六

课题名称

§13、3公式法

课型

新授课

课时安排

1/1

教学目标 

1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。

重点、难点

根据公式会解一元二次方程

策略和方法

讲练结合

课前准备

课前预习

配方法

教学媒体

投影仪

教学程序

教学内容

教师活动

学生活动

备注

一、

我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ²+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。

你能用配方法解方程aχ²+bχ+c=0(a≠0)吗?

小亮是这样做的:

aχ²+bχ+c=0(a≠0)

两边都除以a

χ²+b/aχ+c/a=0

配方

如果b²-4ac≥0

一般的,对于一元二次方程aχ²+bχ+c=0(a≠0),当b²-4ac≥0时,它的根是:

上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。

公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。

公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。

学生可自主探索求根公式。

牢记公式

二、

例  解方程:χ²-7χ-18=0

解:这里a=1,b=-7,c=-18

∵b²-4ac=(-7)²-4×1×(-18)=121>0

即  

随堂练习:

1、用公式法解下列方程:

(1)2χ²-9χ+8=0

(2)9χ²+6χ+1=0

(3)16χ²+8χ=3

2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。

作业 :习题2.6   1、2

要求学生先找出a,b,c,对b²-4ac进行验证,然后代入公式,熟练后可简化步骤

解方程

课后记

根据公式会解一元二次方程

课题名称

§13、3公式法

课型

新授课

课时安排

1/1

教学目标 

1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。

重点、难点

根据公式会解一元二次方程

策略和方法

讲练结合

课前准备

课前预习

配方法

教学媒体

投影仪

教学程序

教学内容

教师活动

学生活动

备注

一、

我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ²+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。

你能用配方法解方程aχ²+bχ+c=0(a≠0)吗?

小亮是这样做的:

aχ²+bχ+c=0(a≠0)

两边都除以a

χ²+b/aχ+c/a=0

配方

如果b²-4ac≥0

一般的,对于一元二次方程aχ²+bχ+c=0(a≠0),当b²-4ac≥0时,它的根是:

上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。

公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。

公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。

学生可自主探索求根公式。

牢记公式

二、

例  解方程:χ²-7χ-18=0

解:这里a=1,b=-7,c=-18

∵b²-4ac=(-7)²-4×1×(-18)=121>0

即  

随堂练习:

1、用公式法解下列方程:

(1)2χ²-9χ+8=0

(2)9χ²+6χ+1=0

(3)16χ²+8χ=3

2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。

作业 :习题2.6   1、2

要求学生先找出a,b,c,对b²-4ac进行验证,然后代入公式,熟练后可简化步骤

解方程

课后记

根据公式会解一元二次方程

一元二次方程的解法例题篇七

课题名称

§13、3公式法

课型

新授课

课时安排

1/1

教学目标 

1、经历探索一元二次方程的求根公式的过程,掌握公式特点并根据公式会解一元二次方程。

重点、难点

根据公式会解一元二次方程

策略和方法

讲练结合

课前准备

课前预习

配方法

教学媒体

投影仪

教学程序

教学内容

教师活动

学生活动

备注

一、

我们发现,利用配方法解一元二次方程的基本步骤是相同的。因此,如果能用配方法解一般的一元二次方程aχ²+bχ+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简洁得多。

你能用配方法解方程aχ²+bχ+c=0(a≠0)吗?

小亮是这样做的:

aχ²+bχ+c=0(a≠0)

两边都除以a

χ²+b/aχ+c/a=0

配方

如果b²-4ac≥0

一般的,对于一元二次方程aχ²+bχ+c=0(a≠0),当b²-4ac≥0时,它的根是:

上面这个式子称为一元二次方程的求根公式。用求根公式解一元二次方程的方法叫做公式法。

公式法实际上是配方法的一般化和程式化,利用他可以更为便捷的解一元二次方程。

公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。他的依据就是配方法。

学生可自主探索求根公式。

牢记公式

二、

例  解方程:χ²-7χ-18=0

解:这里a=1,b=-7,c=-18

∵b²-4ac=(-7)²-4×1×(-18)=121>0

即  

随堂练习:

1、用公式法解下列方程:

(1)2χ²-9χ+8=0

(2)9χ²+6χ+1=0

(3)16χ²+8χ=3

2、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。

作业 :习题2.6   1、2

要求学生先找出a,b,c,对b²-4ac进行验证,然后代入公式,熟练后可简化步骤

解方程

课后记

根据公式会解一元二次方程

一元二次方程的解法例题篇八

1.  初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2.  初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.  掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.  会用因式分解法解某些一元二次方程。

5.  通过对一元二次方程解法的教学,使学生进一步理解“降次”的方法,进一步获得对事物可以转化的认识。

和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2. 注意培养应用意识.教学中应不失时机地使学生认识到源于实践并反作用于实践.

教学设计示例

1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;

2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;

3. 在思想方法方面,使学生体会“转化”的思想和掌握配方法。

和难点

重点:掌握用配方法解一元二次方程。

难点:凑配成完全平方的方法与技巧。

设计

一 复习

1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例  解方程:(x-3) 2=4  (让学生说出过程)。

解:方程两边开方,得  x-3=±2,移项,得  x=3±2。

所以  x1=5,x2=1.      (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4,     ①

x2-6x+9=4,   ②

x2-6x+5=0.    ③

二 新课

1.逆向思维

我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。   (添一项+1)

即   (x2+2x+1)=(x+1) 2.

练习,填空:

x2+4x+( )=(x+  ) 2;     y2+6y+(  )=(y+  ) 2.

算理  x2+4x=2x·2,所以添2的平方,y2+6y=y2+2y3,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

项固练习(填空配方)

总之,左边的常数项是一次项系数一半的平方。

问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?

巩固练习(填空配方)

x2-bx+(  )=(x-  ) 2;            x2-(m+n)x+(  )=(x-  ) 2.

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 软件
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编为大家带来的优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。中国古
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。重新创
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。古代寓言二则古代
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编整理的优秀教案范文
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么问题来了,教案应该怎么写?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面我帮大家找寻并整理了一些优秀的教案范文,我
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。《
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面是
制定计划前,要分析研究工作现状,充分了解下一步工作是在什么基础上进行的,是依据什么来制定这个计划的。优秀的计划都具备一些什么特点呢?又该怎么写呢?以下是小编为大
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面是小编带来的优秀教案范文,
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么教案应该怎么制定才合适呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。遨游汉
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧纪昌学射教学反思优缺
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。升国旗教学反思与不足篇一播放
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编帮大家整理的优
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。那么心得体会怎么写才恰当呢?以下我给大家整理了一些优质的心得体会范文,希望
总结是一种思维的训练,可以提高我们的分析和归纳能力。总结不仅要注意结果,还要关注过程,分析原因和产生的影响。小编为大家精选了一些写总结的好例子,希望能够帮助到大
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
教案是教师教学的基本工具,能够提供具体的教学内容和教学步骤。教案应该注重教学过程中的引导和启发,要鼓励学生思考、探究和合作,培养其自主学习的能力。教案的设计不是
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。望庐山瀑布是七言绝句
懂得总结经验,才能让自己不断进步;总结应该包括哪些方面的内容,怎样才能更加全面?以下是一些通用的总结写作技巧和方法,供大家参考。春联教学反思篇一施教之功,先在激
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对
总结是沉淀思考的过程,让我们能够更好地理解和解决问题。如何进行有效的时间管理,提高工作和学习的效率,是许多人需要解决的问题。接下来是一些成功人士的总结经历,希望
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
总结是对自己成长和进步的一种激励和肯定,也是对自己的一种促进和冲击。在写一篇较为完美的总结时,我们需要注意语言的准确性和表达的合理性。总结范文中的经验和教训,或
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。大家想知道怎么样才能写一篇比较优质的教案吗?那么下面我就给大家讲一讲教案怎么写才比
教案的编写需要考虑学生的学情和兴趣,以及教学资源的合理利用。教案的编写要考虑学生的兴趣和参与度,增强教学的吸引力。这些教案是经过教师实际教学验证的,具有一定的可
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧负荆
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。写教案的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编收集整理的教案范文
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。月亮和云彩写一段话
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以
在总结中,我们可以找到前进的动力和改进的方向。可以通过对比、对照等方式,突出总结的重点和亮点。掌握一些写总结的技巧和方法,可以帮助我们更好地撰写一篇高质量的总结
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到
总结是我们进步的一个重要途径,可以帮助我们发现自己的不足并提升自己。总结是提升自身能力和经验的重要途径。范文中展示了如何利用语言和逻辑进行总结和归纳。材料类职业
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来
签订合同可以保护各方的权益,避免纠纷和争议的发生。合同中的条款应该明确具体,避免出现模糊和歧义的情况。合同的撰写需要谨慎、准确和明确,下面是一些合同写作的技巧和
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是小编为大
总结是对我们所经历的一切进行记录和总结的过程。注意总结的语气要积极向上,不能只看到问题和失误,要注重对成就和进步的肯定。创造性地运用以下总结范文中的思路和表达方
科技的迅猛发展给我们的生活带来了诸多便利。写总结时要注意结尾部分,可以用激励和展望未来的方式来提升文采。为了让大家更好地理解总结的写作方法,以下是一些范文供大家
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以
总结有助于发现不足,促进个人和组织的进步与发展。简明扼要地陈述事实是写总结的基本要求。下面是一些时间管理的建议,帮助你更好地安排工作和生活。感人肺腑的道歉信篇一
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优
musicolet
2025-08-21
Musicolet作为一款高质量音乐播放器,确实不负众望。它不仅汇集了海量的音乐资源,包括网络热歌与歌手新作,即便是小众歌曲也能轻松找到,满足不同用户的音乐需求。更重要的是,该软件干扰,提供清晰音质和完整歌词,为用户营造了一个纯净、沉浸式的听歌环境。对于追求高品质音乐体验的朋友来说,Musicolet绝对值得一试。
Anyview阅读器的历史版本是一款出色的在线小说阅读软件,它提供了详尽而全面的小说分类,涵盖了都市、武侠、玄幻、悬疑等多种类型的小说。用户可以随时在线阅读自己喜欢的小说,并且该软件还支持多种阅读模式和功能设置,让用户能够自由地免费阅读感兴趣的内容。这不仅为用户带来了全方位的追书体验,还配备了便捷的书架管理功能,方便用户轻松收藏热门小说资源,并随时查看小说更新情况,以便于下次继续阅读。欢迎对此感兴趣的用户下载使用。
BBC英语
2025-08-21
BBC英语是一款专为英语学习设计的软件,它提供了丰富多样的专业英语学习资源。无论你是想提高口语水平还是锻炼听力能力,这里都有专门针对这些需求的训练内容。此外,该软件还能智能地评估和纠正你的口语发音,帮助你使发音更加标准、记忆更加准确。
百度汉语词典
2025-08-21
百度汉语词典是一款专为汉语学习设计的软件。通过这款软件,用户能够访问到丰富的汉语学习资源,包括详细的学习计划和学习进度统计等功能,提供了非常全面的数据支持。该软件还支持汉字查询,并且可以进行多种词典内容的关联搜索,从而在很大程度上满足了用户对于汉语学习的各种需求。
屏幕方向管理器是一款专为用户提供手机方向控制服务的应用程序。作为一款专业的管理工具,它能够强制调整手机屏幕的旋转方向。这款应用程序提供了多种功能,使用户能够轻松选择个性化的屏幕旋转方式。此外,屏幕方向管理器还具备丰富的设置选项,让用户可以通过简单的操作实现更多个性化配置,使用起来既方便又快捷。

关于我们 | 网站导航 | 网站地图 | 购买指南 | 联系我们

联系电话:(0512)55170217  邮箱: 邮箱:3455265070@qq.com
考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved. 工信部备案号: 闽ICP备2025091152号-1