作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
人教版二年级数学第一单元教案二次修改人教版二年级数学教案篇一
1、通过猜想验证等活动,理解整数运算定律同样适用于小数乘法。
2、能运用乘法运算定律对小数乘法进行简便计算。
3、培养学生自觉进行简算的意识,提高思维的灵活性。
理解整数乘法运算定律对于小数同样适用。
会运用乘法运算定律进行小数乘法的简便计算。
3.1第一学时
3.1.1教学活动
活动1【导入】一、复习铺垫
师:同学们,今天这节课我们将做一些计算方面的研究,你觉得要做计算研究你自身得具备些什么?(仔细,敏锐的观察力)(板书观察)
师:我们先来小试牛刀!
1、学生口答1.8×20.2×1.91.9+0.6
0.125×825×0.42.4-0.5
师:是的,我们知道小数加减混合的顺序跟整数一样。
师:确实如此,(课件出示)我们一起来读一下。(板书:整数)
师:你看,整数和小数的关系是多么的密切呀!
3、简便计算(加法运算定律)
7.5+1.8+0.2(你是怎么算的?你是运用了……?)
师小结:是呀,在以前的学习中我们还知道“整数加法的运算定律适用于小数加法”。
(磁贴:整数加法运算定律适用于小数加法)
活动2【活动】二、合作探究,探索新知:
1、整理提升,提出猜想
师:现在我们又学习了小数乘法,由此你联想到了什么?
(板书:整数乘法运算定律适用?于小数乘法)
生:整数乘法运算定律适用于小数乘法?(让学生重复一遍:你听到他刚说了什么?)
师:整数乘法运算定律到底适不适用用于小数乘法呢?对此我们还存在疑问(板书:?)需要我们来验证。那么怎样来验证呢?(板书:举例)
师:那怎样验证乘法运算定律呢?举例之前,首先回忆一下有哪些定律?再举例(板书定律)。
2、律验证猜想
师:读一读方法提示,读的时候想一想注意什么?
方法提示:写一写:根据每个乘法定律编一些小数乘法的例子。
算一算:算出两边算式的结果,看是否相等。
想一想:通过举例,你有什么发现?
师:举例是要注意什么?(举小数乘法的例子)
独立验证:一曲音乐的时间,独立完成探究记录单。
探究记录单
整数乘法运算定律是否适用于小数乘法?
乘法运算定律
举例说明
我的结论:
乘法律
乘法律
乘法律
汇报。
学生汇报
教师相应板书在黑板上。
师:如果给你们足够多的时间,像这样的例子你举得完吗?(板书:……)
师追问:那你能用一个式子简明的概括它们吗?(板书:字母式)(一个一个来)
板书同时教师完整表述:乘法交换律:交换两个因数的位置,积不变。
乘法结合律:先乘前两个数或者先乘后两个数,积不变。
乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
得出结论:
师:通过同学们的举例验证,消除了我们的疑问,一致认为……(擦掉?)
师:来,请你一起自豪的读一读我们的发现。
加深理解:
师:现在我们知道,这里的字母不仅可以表示“整数”,也可能是“小数”(板书:小数)
活动3【练习】三、实践应用
师:下面我们用所学的知识快速填一填,并说说你是怎么想的?
1、快乐填一填
4.2×1.96=×
2.5×(0.4×0.77)=(×)×
7.2×8.4+2.8×8.4=(+)×
7.2×8.4+×=(+)×
师:还能怎么填?注意听,你发现他是将两个数都成--(8.4或7.2)
填的完吗?但无论怎么填,我们都要保证有一个……(共同因数)
师小结:是呀,同学们在填写的过程中已经开始关注运算定律的“结构”了。(板书:结构)
2、简便计算
课件隐去拓展部分,提问:对于这个算式你能快速算出它的得数吗?你是在计算--(右边)
追问:如果以后碰到的是左边的算式呢?
生:根据乘法分配律转化为右边的形式。
师:看来,应用乘法的运算定律,可以使一些计算简便。
师:接下来我们来试一试。(学生独立尝试,板演并说想法)
0.65×202师追问:为什么把202拆成两数之和的形式呢?(板书:+)为什么是200和2?强调:200×0.65和2×0.65都很简便。
师:我发现,大家在简便计算时,都做到了观察“数据”并对数据进行了合理的处理。
全班学生先自己尝试解决,投影校对。
将学生作业收两份上来。(最后一题一个对,一个错进行对比)
师:他会这样做的原因是什么?看来他只关注了数据,而忽略了……(手指向乘法分配律)
如果要按他的方法解答,题目得怎么修改?13.7×3-3.7×3
师:学到这,你有什么要提醒大家的?
生:观察时不仅关注数据还要关注结构。(教师再次强调)
小结:我们发现有些算式符合运算定律的结构,并能对数据适当处理,确实能让计算变得“简便”(板书)。而有些不符合结构或数据没有特点的,就不能简便了,可以按四则混合运算的顺序进行计算。
3、连线练习
师:接下来我们就在观察结构和数据上突破自己,先观察,再连线!
4.8×9.96.7×a+a37.6×99+376×0.1
师:观察下面这个算式,将上面的算式怎么修改?
如果保持上面的算式不变,又怎么改变下面的算式呢?
师:由此可见,观察是多么重要啊!
4、解决问题
赵大伯在一块长方形菜地里种了茄子和辣椒,
4m茄子辣椒
7.5m2.5m
问:赵大伯家的菜地有多大?(请你用不同的方法解决)
学生独立完成,并分别完整汇报方法。
追问:你是怎么想的?(理解算式的`意义和数量关系)
师:你看,除了计算,生活中的问题也帮我们验证了哪个运算定律。
拓展:出示长a,b,宽c,你还能表示出它的面积吗?(课件:字母式)
师:在图形面积计算上,你发现了吗?
师小结:同学们,我们思考的角度和证明的方法有很多,但都证明了……(读题)
只要我们做学习和生活的有心人,你就会离知识更近!
活动4【作业】
三、拓展延伸
师:今天我们收获了什么?我们是怎样获得知识的?
师小结:在学习整数乘法运算定律适用于小数乘法之前,我们已经学习了整数加法运算定律适用小数加法,用以前的学习经验帮助了我们今天的学习,得出了结论,使我们的知识越来越完整,概括为一句话:整数的运算定律都适用于小数。
师:同学们,今天我们通过自己的努力,成功得将“整数乘法运算定律推广到小数”,我们还学过什么数?(板书:分数),那请你来猜猜看,以后我们可能还会学什么知识,今后我们也可以像这节课一样来研究。
人教版二年级数学第一单元教案二次修改人教版二年级数学教案篇二
第三单元《平移》
教学目标
初步感知平移现象。
重难点分析
重点分析图形的平移也是借助学生在日常生活中经常看到的平移现象引入的。在直观感知平移现象的基础上,通过观察和操作直观理解、辨认图形的平移。
难点分析
由于低年级学生的思维以具体形象思维为主
教学方法
教学过程
一、创设情境,导入新课
师:在欢乐的游乐园中有着许多有趣的项目,那我们一起去游乐园看一看吧!(课件出示主题图)课件展现滑翔索道、观光缆车、电动火车。
师:这么多的游乐项目,你觉得它们都是按什么方式运动的?
生:我认为观光梯、观光缆车和电动火车的运动都是移动的。
师:生活中,你在哪儿还见到过平移的现象?
(生相互介绍)
二、互动探究
1、生活中的平移。
谈话:平移就是物体沿直线移动。像缆车是向前平移,滑滑梯是向斜方向平移,你瞧,这里有一个观光电梯,它是什么运动?(平移)
师:说得真棒,如观光电梯,它的上升、下降,都是沿着一条直线移动,就是平移。只要是物体或图形沿着直线移动,就是平移。
对了,这是平移,那么在生活中你还见过哪些平移现象吗?举例说说。
让学生先说给同组的`同学听,再指名回答。
2、移移看。
(1)课件出示例2的房子图。谈话:这里有几座小房子,哪几座小房子能通过平移相互重合?让我们一起来移移看!(课件中小房子整体移动。)再问,小房子是朝哪个方向移动的?(向上平移)移动了多远?(让学生用语言描述,向上或向左等)
谈话:说得真棒,瞧!(课件出示移动)小房子平移重合在一起。
(2)画一画。谈话:如果要把平移的现象表现在纸上,我们又该怎么做呢?同学们,快来移移看!剪下教材第121页的学具,小组合作,沿着直线排一排,画一排小汽车。
1、完成教材第31页“做一做”。
2、完成教材“练习七”第4题。
3、完成教材“练习七”第5题。
师:一些图形通过向不同方向的平移可以使图形互相重合。
4、我是小法官。(对的画“√”,错的画“×”)
(1车轮的运动是平移现象。 ( )
(2)物体平移时,形状、大小、位置不变。 ( )
(3)汽车在笔直的公路上行驶,车身的运动是平移。 ( )
(4)电梯的升降是平移。 ( )
(5)拨计数器时珠子的运动是平移。( )
板书:
第2课时平移
平移→
观光缆车、小火车、观光梯
平移--沿直线运动,移动中没有改变大小和方向。
小结:
提问:这节课你有什么收获?
平移在我们的日常生活中应用非常广泛,你们想创作出美丽的图画吗?课后大家可以运用平移画一画,剪一剪,贴一贴,老师相信你们的作品会更出色,更漂亮。
人教版二年级数学第一单元教案二次修改人教版二年级数学教案篇三
利用轴对称知识剪小人,体会对折次数与得到小人的个数间的关系,解决手拉手的问题不仅要求会动手,而且要通过观察和思考发现关键点。思维过程从形象到抽象,学生容易出错。
二年级学生的动手能力有限,剪的过程会出现各种各样的问题;学生抽象思维较弱,理解困难。
1、通过辨析错例,理解剪失败的原因。
2、直观演示对折和画的过程。
3、通过讨论、探究得出对折次数和得到小人个数间的关系。
导入
一、谈话交流,创设情境
同学们,我们前几节课学过哪些知识?(轴对称,平移,旋转)
这节课我们就利用轴对称的知识来解决新的问题。让我们动手来剪一剪。
知识讲解(难点突破)
二、探索交流,解决问题?
出示例4:你能剪出像这样手拉手的四个小人吗?
先剪两个手拉手的小人试试(出示两个手拉手的小人)?
(一)、剪2个手拉手的小人
1、独立操作:?你知道一个小人怎样剪吗?(课前布置过剪一个小人的实践活动,课件展示操作方法)
请同学们试试剪2个手拉手的小人怎么做。
2、交流正例?(成功的作品)
说一说你的方法。一张纸对折一次可以剪出一个小人,对折两次后再剪就能得出两个手拉手的小人。
3、交流错例1(两个分开的小人)?你找到自己失败的原因了吗?
要保证小人是手拉手的必须要把手画到边(师用笔画),剪的时候也要一直剪到边。
4、交流错例2(有两个半个小人)
(展示两个半个人小人)同学们知道这是怎么回事吗?引导学生总结:小人的身体必须画在纸的连接处,也就是靠近折痕的一侧。
讨论、探究:
首先需要对折几次?(师生对话交流:对折1次,纸就变成了几层,打开就是2份,每份有半个小人,就得到1个小人;对折2次,2层纸就变成了几层,打开就是几份,就得到几个小人;对折3次,纸就变成几层?想不出来,那就拿出一张纸对折3次,再打开看看,纸被分成了几份?)
看来,要得到4个小人,对折3次就可以了;至于对折4次能得到几个小人,有兴趣的同学可以课下折折看。对折完了,接下来的步骤老师不再说了,大家有信心剪出4个手拉手的小人吗?那就按照步骤开始吧!看谁剪得又快又好。(生操作,师巡视指导)
其实,折纸的方法可不止连续对折这一种哦,大家请看(课件播放折纸方法的视频),有兴趣的同学课下可以折折看。
小组交流汇报,课件展示结论
课堂练习(难点巩固)
三、巩固应用,内化提高?
1.能剪四个这样的小人了,大胆地说说你还能剪什么?
2.出示教材36页练习七第12题,观察思考:怎样折、画、剪?
教师提示:剪这样的图形需要的是什么样的纸张?(正方形)怎样折、怎样画才能剪出来??(学生说一说,再课件出示提示)
动手剪一剪,播放视频参照。(也可课后完成)
回顾我们剪小人的过程,它用到了这一单元的哪些知识?(轴对称)
一个小人是轴对称图形,两个小人是轴对称图形,三个小人也是轴对称图形,四个小人还是轴对称图形),正是这一次次的对称我们才得到了四一样的小人。既然这四个小人都是一样的,我就可以由一个小人得到第二个,第三个,第四个,大家看这是我们学过的哪种现象?(平移)
生活中处处都有数学,只要做个有心人,你一定可以用学到的数学知识解决很多问题呢!

一键复制