在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
苏教版积的变化规律教学设计 积的变化规律教学内容分析篇一
教学目标:
1、知识与技能:让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律。
2、过程与方法:使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、情感态度价值观:通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
教学重点:发现并运用积的变化规律。
教学难点:积的变化规律的探究策略。
教具准备:多媒体课件
一、激发兴趣,导入新课
师:同学们,你们想不想玩游戏?
生:想
师:好,请听游戏规则:老师说第一句,你们说第二句。看谁的脑子转得快!
师:1只青蛙 生:4条腿。
师:2只青蛙 生:8条腿。
师:( )只青蛙 生:( )条腿。
…………
师:你们脑子转得快,太棒了!那么在游戏中藏着什么数学知识呢?让我们一起来找一找吧。刚才同学们是怎么算出2只青蛙8条腿的?谁能列式?
生: 4×2=8
师:8只青蛙呢?
生:4×8=32
师:20只青蛙呢?
生:4×20=80
师:大家都同意吗?(同意)好,真能干。提问:谁能说说在这几道乘法算式中,等号左边的两个数叫什么?等号右边的数又叫什么?(板书:因数因数 积)
(评析:根据儿童的心理特点,教学首先从创设“对对子”游戏这一情境出发,激发学生的探究欲望,使学生行为产生强大的内张力,并以高昂的情绪投入学习。接着得出的这组算式,是给学困生表现的机会,给他们成功的体验。)
二、探究活动,发现规律。
师:启发学生:观察这组算式什么变了,什么没变?那当一个因数不变时,另一个因数和积是怎么变化的呢?积的变化有没有规律呢?
生:以小组为单位,互相讨论、交流。
师:小组讨论好了。谁来说一说你们小组的发现?
生:都有一个因数是4,另一个因数和积都不同。
生:都有一个因数是4,另一个因数变了,积变了。
生:一个因数是4,另一个因数变了,越变越大,积越变越大。
师:好样的,观察得真仔细!
为了方便研究,我们先给这三个算式标上序号。如果把①式作为标准,②式与①式比,因数和积各是怎样变化的?
① 4 × 2 = 8
生:一个因数不变,另一个因数乘4, (2×4)(8×4)
积也乘4。 ② 4 × 8 = 32
师:③式与①式比,因数和积各是( 2×10)(8×10)
怎样变化的?
生:一个因数不变,另一个因数乘 ③ 4× 20 = 80
10,积也乘10
师:通过观察比较,你能说说你发现的规律了吗?
生:两个因数相乘,一个因数不变,另一个因数乘几,积也乘几。
师:(板书)请同学们把这个规律读一读。
生:读规律。
师:积的变化是随着因数的变化而变化的,这就是我们今天要研究的内容:积的变化规律。(板书课题)
师:(课件出示)比一比谁能用规律来算,而且算得又对又快。
① 6×5=
② 6×25=
③ 6×50=
师:谁来说说怎么想的?
生:①式等于30;②式因数6不变,因数5乘5得25,积30也乘5得150;③式因数6不变,因数5乘10得50,积30也乘10得300。
师:(板书第二组算式): 同学们再看一组题,它又藏着什么秘密呢?
⑴ 20×5=
⑵ 10×5=
⑶ 5×5=
师:你发现这组算式的特点了吗?
你能不能大胆的猜想,猜想一下这里会得出一个什么样的规律?
生:一个因数是5,另一个因数变了,越变越小,积越变越小。
生:一个因数不变,另一个因数除以几,积也除以几。
师:(板书)请同学们把这个规律读一读。
生:读规律。
师:(课件出示)用规律来完成,你一定行!
⑴ 15×12 =180 ⑵ 15× 6 = ⑶ 5 ×12 =
师:谁来说说怎么想的?
生:⑵式一个因数15不变,另一个因数是12除以2得的6,积180也除以2得90;⑶式一个因数12不变,另一个因数是15除以3得的5,积180也除以3得60。
师:同学们,刚才我们通过观察、比较发现了积的变化规律,并且运用它来完成了一些练习,谁想再来说一说这个规律?
生:一个因数不变,另一个因数乘几,积也乘几;一个因数不变,另一个因数除以几,积也除以几。
师:数学讲究简洁美,能说得再简单些吗?
生:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几;
师:你的概括能力真强!
(评析:通过引导学生观察、讨论、交流、概括,激发学生积极探索的兴趣和热情,使学生了解知识的形成过程;鼓励学生合作学习,对积的变化规律进行整理,培养学生的合作交流能力和归纳总结能力;让不同层次的学生完成相应的问题,使学生获得成功的乐趣,增强学习的兴趣和自信心。)
三、运用规律,解决问题
根据16×17=272,直接写出下面各题的积。
16×34= 16×68=
16×51= 16×85=
……
师:16×34的积是多少?
生:544
师:怎么算的?
生:以16×17=272为标准,把16×34与它作比较,一个因数16不变,另一个因数乘2,积也乘2等于544。
生:我发现每个算式的一个因数16不变,另一个因数乘2、3、4、5,积也乘2、3、4、5。
师:观察能力很强,运用规律算得可真快!
师:你能根据这组算式的特点接下去再写两道算式吗?
(评析:让每个学生在尝试写算式的过程中再次运用规律、验证规律。这个过程,手脑并用,使规律的探索落到实处。) 四、全课总结,拓展延伸。
师:通过今天这节课的学习你有哪些收获?
生:我们发现并运用积的变化规律。
生:一个因数不变,另一个因数乘几,积也乘几;
生:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几;
生:我知道积的变化规律是同学们观察、比较发现的。
师:同学们用明亮的双眼,聪明的大脑发现、运用了积的变化规律。你能继续发挥你的聪明才智把这道题填一填吗?
①18×30= ② 5×54=
(18÷2)×(30×2)= (5×9)×(54÷9)=
……
师:你们有什么新的问题?
生:为什么每组算式的积是相同的?
生:两个因数变了,积却不变。是不是有什么规律?
师:下课后你们用今天研究的方法去探究新的规律,老师相信你们一定会成功的!
教学反思:
本节课学生学习数学积极、热情,他们感受到数学的趣味和学习的快乐。教学的成功主要体现在:给学生创设了概括总结的机会,使学生在探究问题、发现问题的过程中,培养了探究能力、合作交流能力和归纳总结能力。
(一)为学生创设一连串能激起学生进行探究与发现问题的情境,并给予充分的独立思考的时间和空间,使他们积极主动地去想。教学时,我玩游戏的形式,让学生说算式及答案,从学生的生活经验和已有知识出发,导入了新课。问题的设计偏向于学困生,给他们成功的体验。激发了不同层次的学生学习本节课的兴趣。
(二)有意识地创设了一种民主的、宽松的、和谐的课堂气氛,创设好一个有利于学生探索、发现、创新的教育氛围,让他们时刻充满着兴趣。把传统的教师“讲数学”变成了学生“做数学”的活动,注重对学生的评价,让他们笑着去学习,使他们喜欢学习,在体验成功的过程中,树立了学习的自信心。
苏教版积的变化规律教学设计 积的变化规律教学内容分析篇二
各位评委,各位老师:
你们好!今天我说课的内容是积的变化规律,它选自人教版小学数学四年级上册第58页。
一、说教材
积的变化规律是在学生已经学习了三位数乘两位数、用计算器进行计算等知识的基础上进行教学的,它为学生今后学习小数乘法等知识铺平了道路,在本节课中,学生要学习积的变化规律。通过本节课的学习,对于发展学生的运算能力、合情推理能力具有十分重要的作用。
我们都知道,四年级的学生具有一定的经验,能够将新知识转化为已有的知识,但是他们的抽象思维还很弱,在理解积的变化规律的探究过程时会有一定的难度。基于以上对教材的分析和对学情的分析,我将理解积的变化规律确定为本节课的重点,将理解其探究过程确定为本节课的难点。并且拟定了以下三维目标:
1.能理解并掌握积的变化规律,能正确表述积的变化规律,并能正确运用。
2.经历积的变化规律的探究过程,学会观察、猜想、验证、概括的方法,感受变与不变的思想,发展学生的合情推理能力。
3.体验自主探索、合作交流的乐趣,培养学生献爱心的好品质。
二、说教学设想
为了有效地实现教学目标,在实施教学时,我将努力做到以下两个注重:
1.注重探究过程的经历:积的变化规律的探究过程需要经历从直观到抽象,从朦胧到清晰的过程,这过程需要学生通过观察、猜想、验证、概括等数学活动,从而理解积的变化规律,积累数学活动经验。
2.注重变与不变思想的渗透:通过将一个因数不变,另一个因数变化,来探索积的变化规律,发展学生的合情推理能力。
三、说教学流程
(一)创设情境,引入新课
同学们,为了响应学校“节省零花钱,牵手好朋友”的号召,我们班与希望小学四(1)班开展“手拉手,献爱心”活动,请你计算一下,一盒水彩笔6元,如果买2盒要花多少元?买20盒,买200盒呢?请同学们拿出草稿纸列式计算一下,学生会列出算式:6×2=12(元);6×20=120(元);6×200=1200(元)。(设计意图:通过创设“买文具”的具体情境,激活了学生原有的知识,激发了学生的积极性,为探究积的变化规律提供素材,做好铺垫。)
(二)自主探索,理解规律
第一层次:感知规律。观察这组算式,你发现了什么?什么变了,什么没变?先独立思考一下,有了想法之后四人一小组相互讨论,之后教师巡视,全班反馈。我会引导学生从上往下进行观察,学生会发现从①式到②式,从②式到③式,一个因数不变,另一个因数乘10,积也乘10;学生也会发现从①式到③式,一个因数不变,另一个因数乘100,积也乘100。那如果从下往上观察,你又发现了什么?学生会发现从式③到②式,从②式到①式,一个因数不变,另一个因数除以10,积也除以10;学生也会发现从③式到①式,一个因数不变,另一个因数除以100,积也除以100。那谁能用一句简洁的话来说一说你发现的规律,先独立说一说,再同桌之间相互说,从而由学生说出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
第二层次:提出猜想。同学们发现的规律是不是具有普遍性呢?我们需要再举一些例子来验证一下,看看会不会出现相同的情况,如果有一个例子出现不同的情况,我们就不能把发现当成规律。
第三层次:验证规律。请每个同学写出3个算式,同桌相互检查,并交流因数和积是怎样变化的?对于学有余力的学生,还可以让他们在别人的算式后面接着写一些。学生会写出7×12=84、7×6=42、7×3=21;或者6×150=900、6×30=180、6×6=36等等。
第四层次:归纳结论。同学们,黑板上这么多算式,现在你能完整地说一说这个变化规律?先独立地说一说,再同桌两人相互说,最后我会指名学生说,从而得出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。这里除以的数可以为0吗?不能为0,因为0不能作除数。
第五层次:拓展延伸。刚刚大家已经知道了一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。那么如果一个因数不变,另一个因数加(或减)几,积是不是也加(或减)几呢?学生会发现这是不成立的,例如7×(12+1)≠(84+1)。
第六层次:解释应用。我会出示一个神奇缺八数。
12345679×9=111111111
12345679×18=222222222
12345679×27=( )
12345679×36=( )
12345679×45=( )
12345679×( )=( )
通过这个神奇缺八数的应用来让学生感受数学的神奇奥秘。
有效地数学学习是学生学与教师教的统一,在本环节中,通过让学生观察、猜想、验证、概括等数学活动,从而丰富了学生的体会,加深学生对积的变化规律的理解,从而突出重点,突破难点。
(三)学以致用,分层练习
我会将做一做作为基础练,以巩固新知识,检查学生是否理解和掌握积的变化规律。
我会将“一所小学扩建校园,准备将长方形操场的宽度从8变成24米,长不变,扩建前的面积是560平方米,问扩建后的操场面积是多少?”作为综合练,通过这道题来培养学生综合运用知识的能力。
24×75=1800 36×104=3744
(24○6)×(75×6)=1800 (36×4)×(104○4)=3744
(24○3)×(75○□)=1800 (36○□)×(104○□)=3744
我会将这道题作为拓展练,通过计算这几道题目,让学生发现一个因数乘几,另一个因数除以相同的数,他们的积是不变的,从而进行拓展,发展学生的抽象思维。
(四)课堂回眸,内化提升
第四环节:课堂回眸,内化提升。此时,我会请学生来说说这节课你学习到了什么,你有什么需要提醒其他同学注意的吗?从而结束本节课的课题。
苏教版积的变化规律教学设计 积的变化规律教学内容分析篇三
教学目标:
1通过观察、讨论等数学活动,经历探索、归纳积变化规律的过程。
2知道扩大几倍、缩小几倍的意义。理解积变化的规律,会运用积变化的规律进行简便计算。
3在探索,归纳和变化规律的过程中,感受数学思考过程的条理性。
教学重点:
掌握在乘法里一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数的变化规律。
教学难点:
理解在乘法里一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数的变化规律。
教学过程:
一、认识扩大、缩小
出示书中练习
37×10= 400÷10=
37×100= 400÷100=
师:观察37×10=370。我们还可以说“把37扩大10倍后是370。”那37×100我们还可以怎么说?(把37扩大100倍后是3700。)
师:说得不错,你还能举出类似的例子吗?(35×10=350,把35扩大10倍是350。38×100=3800,把38扩大100倍后是3800。)
师:你能不能举出不同的例子?(25×2=50,把25扩大2倍是50。25×4=100,把25扩大4倍是100。)
师:再看400÷10=40,试着说一下。(400÷10=40,把400缩小10倍是40。)
师:那400÷100呢?(400÷100=4,把400缩小100倍后是4。)
师:你还能举出类似的例子吗?(500÷10=50,把500缩小10倍是50,500÷100=5,把500缩小100倍后是5。)
师:能举出不同的例子吗?(120÷2=60,把120缩小2倍是60。120÷3=40,把120缩小3倍是40。)
二、积变化的规律。
出示两组算式。
(1)4×2=8 25×40=1000
40×2=80 25×20=500
400×2=800 25×10=250
师:这两组题首先我们先看第一组。竖着观察你发现什么?
(其中一个因数2不变,另一个因数4扩大10倍、100倍,积8也跟着扩大10倍、100倍。)学生在这里如果不能准确的说出师可引导说出规范的话。
师:再看第二组你有发现什么?
(其中一个因数25因数2不变,另一个因数40缩小10倍、100倍,积1000也跟着缩小10倍、100倍。)
师可引导说出规范的话。
师:说得不错。好同学们当我们发现这些之后我们能不能把我们刚才的话总结一下?
小组讨论。
师巡视
集体交流,鼓励学生用自己的话表述。师可适时指导规范学生的话。
(在乘法里,一个因数不变,另一个因数扩大(或缩小)若干倍,积也随着扩大(或缩小)相同的倍数。
师指多名同学说。
师:下面我们运用这一规律做几道题。(师板书15×6=90)
师:根据15×6=90老师再写一个算式让你算一算得数,看看谁算得又快又好准。(师板书:15×24=
指明说答案,并说思考过程。
师:说得不错,通过用积变化的规律我们可以很快的说出得数。好,下面我们再看一题——师板书
15×30= 15×48= 15×36= 15×54=
(让学生逐个按“积变化的规律”表述。)
师:根据上面的算式说出23×4=
师指明说答案,并用积变化的规律来表述。
然后师接着出题:230×40= 23×40=
三、练一练
做第一题 :生独立做,师巡视。集体订正时着重然学生通过比较用积变化的规律来表述。
做第二题 :说出判断理由。
四、总结
苏教版积的变化规律教学设计 积的变化规律教学内容分析篇四
教学内容:
教材第58页例4。
教学目标:
1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3、初步获得探索规律的一般方法和经验,发展学生的推理能力。
教学重难点:
引导学生自己发现规律,概括规律,进而运用规律。
教学过程:
一、创设情景,导入新课
1、 谈话导入。
2、 出示动车的速度可达4千米/分钟。算一算它开2分钟会行多少千米呢?8分钟呢?40分钟呢?400分钟呢?
(设计意图:通过身边的事物导入,亲近而自然,学生参与的积极性相对也比较高,而且数字简单,起点较低,学生学习兴趣比较浓。)
二、观察比较,猜想规律
①4×2=8(千米)
②4×8=32(千米)
③4×40=160(千米)
④4×400=1600(千米)
1、 仔细观察我们刚才列出的这4个算式,你发现了什么?四人小组交流一下。
(设计意图:将发现先四人小组交流,让学生学会将自己的资源和别人共享,同时学会倾听别人的发现,学会探讨,学会在交流中对知识的再认识。)
2、汇报交流。
①将自己的发现说给大家听。
②补充:为了表达的更清楚一些,往往把前面的因数称为第一个因数,后面的称为第二因数,最后的结果称为积。
(设计意图:学生在说发现时注重学生的表达,关注学生表述时的用词,在说算式之间的关系时适时引导学生注重细节,规范用词。)
③这两个算式之间有这样的关系,其它的还有吗?
(设计意图:继续追问,充分抓住学生说得欲望,在不断的说得过程中能对积的变化规律有一个初步的感性认识。)
3、发现变化:一个因数(不变),另一个因数(变了),积也(变了)。积的变化和什么有关系?有怎样的关系?
(设计意图:不冒然出现规律而是让学生在观察、比较后明确积的变化与因数有关,积是随着因数的变化而变化,随后再认识因数和积有怎样的关系,让学生对知识点有一个细化的认识过程,慢慢理解,层层递进。)
4、猜想规律。
板书:两个数相乘,一个因数不变, 另一个因数乘几或除以几 ,积也乘上或除去相同的数。
三、举例验证,得出规律
1、提出质疑:我们从这四个算式中得出这样的猜想,那是不是所有这样的乘法算式中因数和积都有这样的变化规律呢?
2、验证猜想:同桌合作,举例验证规律,鼓励学生举出反例。
(设计意图:让学生经历“猜想----验证”的过程,让学生感受到数学的严谨性,帮助学生树立科学的学习态度。)
3、汇报交流:
①呈现符合这个规律的例子,并说理由。
②呈现不符合这个规律的例子,并加以引导纠正。
4、得出规律:同学们举了这么多例子,大量事实证明这个规律确实是存在的。
5、补充规律:这里乘几,除以几可以是哪些数?
(设计意图:用事实说话,经历验证得过程,感受知识的严密性,学会验证规律的一般方法。)
6、总结规律:同学们非常厉害,通过观察、比较、猜想、验证得到了这个规律。
板书:两个数相乘,一个因数不变, 另一个因数乘几或除以几(0除外) ,积也乘上或除去相同的数。
7、揭题并读一读规律。
四、应用规律,拓展延伸
根据8×15=120,不笔算,马上写出下面算式的得数。
24×15= 4×15= 8×75= 48×15= 16×45=
1、 交流前四题的结果,以及计算过程。
2、出示16 × 45 ,提问能根据8× 15 =120计算出结果吗?观察算式,交流发现,提出猜想,验证规律。
3、仔细观察48 × 15 = 720和 16 × 45 = 720 ,交流发现,提出猜想,验证规律。
(设计意图:通过练习,让学生在巩固新知的基础上,继续探索积的变化规律,从而进一步激发学生的学习欲望,使学生在学有余力的情况下能自然的接受一些延伸的知识,让各类孩子都能有不同程度的发展与提升。 )
苏教版积的变化规律教学设计 积的变化规律教学内容分析篇五
教学内容:积的变化规律(人教课标版《数学》四年级 上册第58页例四,59页练习九)
教学目标:
1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
4、培养学生从正反两个方面观察事物的辨证思想。
教学重点:发现并运用积的变化规律。
教学难点:积的变化规律的探究策略。
教学过程:
一、创设情景,提出问题
屏幕显示:为响应"中央关心西藏,全国支持西藏"号召,武汉市长征小学与西藏希望小学开展"手拉手,献爱心"活动,全校学生们捐出自己的零花钱,为西藏小朋友购买一些图书和学习用品。请你们帮忙算一算,一盒美术颜料6元,买2盒花多少钱?40盒呢?200盒呢?
师:谁来帮忙解答第一个问题?
生:6╳2= 12(元)
师:你能说说在这道乘法算式中,6和2是什么?12又是什么?
生:6和2是乘法中的两个因数,12是积。
师:说得好!第二个问题呢?
生:6╳40=240(元)
师:接着说第三个问题?
生:6╳200=1200(元)
师:和他们想法一样的请举举手。(同学们纷纷举起手来)
师:仔细观察、比较这组算式,你能发现什么?
6╳2= 12(元)
6╳40=240(元)
6╳200=1200(元)
生1:有一个因数都是6。
生2:对,一个因数相同,另一个因数不同,积也不同。
师 :观察得真仔细! 一个因数相同可以说一个因数不变,那另一个因数呢?
生3:另一个因数变了,积也变了。
生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。
师 :你是从上往下观察的,还可以怎样看?
生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。
师 :当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。
二.自主探究,发现规律
师:为方便研究,可以称这三个算式分别为(1)式,(2)式和(3)式。如果把(1)式作标准,(2)式和(3)式分别与(1)比,因数和积各是怎样变化的?
生:(2)式与(1)比,一个因数不变,另一个因数2括大20倍是40,积12扩大20倍是240。
师:2括大20倍是40,也就是另一个因数乘2,积呢?
生:一个因数不变,另一个因数乘2,积也乘2。
师:说得很清楚。再把(3)式和(1)式比看?
生:一个因数不变,另一个因数乘100,积也乘100。
师:大家比的结果和他一样吗?
生(全体):是
师:谁来说说通过刚才的两次比较,你们又发现了什么?
生:一个因数不变,另一个因数变化,积也变化。
师:怎样变化的?能说得具体些吗?
生1:一个因数不变,另一个因数乘一个数 ,积也乘相同的数。
生2:一个因数不变,另一个因数乘几 ,积也乘几。
师:你们真能干!刚才,我们从上往下观察,发现了这样的积的变化特点,那从下往上观察,用刚才比较研究的方法,比一比,看看有没有新的发现?具体应该怎么比呢?
生1:以(3)式为标准,拿(2)式和(1)分别与(3)式比,看因数和积怎样变的?
生2:(2)式与(3)比,一个因数不变,另一个因数除以5 ,积也除以5。
生3:(1)式与(3)比,一个因数不变,另一个因数除以100 ,积也除以100。
生4:老师,我发现一个因数不变,另一个因数除以几 ,积也除以几
师:你们真会发现。我们通过从上往下和从下往上两方面的观察找到了这组算式积的变化特点,那是不是其它的乘法算式也有相同的积的变化特点呢?下面,我们应该怎样研究?
生:我们可以自己找一些乘法算式的例子用刚才的比较方法研究,看看积的变化是不是具有相同的特点。(其他同学向他投去敬佩的目光)
师:这可是一个金点子,咱们说做就做。李老师自荐,先出一道乘法算式,60╳8=480,下面就看你们的了?
生1:把60乘9等于540,另一个因数8不变。
师 :你猜猜看,积会怎样?
生1:积也会乘9,等于4320
师:那你们横着算,540乘8是等于4320吗?
生2:也是4320。
师 :祝贺你们猜对了。再来试一次。
生3:我把60不变,另一个因数乘30,猜积也乘30。
师 :你们横着算一算。
生4:对,也是14400。
生5:你们都举的是乘几的变化,我来出个别的,60除以12等于5,8不变,积也除以12,是40,横着算,5乘8的确等于40。
师 :你的研究意识真强。除次以外,还可以有多少种变化.。
生 :无数种。
师:下面,你们同座位之间也这样相互出一道乘法算式作标准,自己将其中一个因数不变,,另一个因数变化观察积的变化情况。,好吗?计算比较大的数时,可以用计算器帮忙,开始!
汇报情况略
师 :既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。
生 :一个因数不变,另一个因数乘几 ,积也乘几;一个因数不变,另一个因数除以几 ,积也除以几。
师 :数学讲究简洁美,能把它说得再简单点吗?
生 :一个因数不变,另一个因数乘(或除以)几 ,积也乘(或除以)几。
师 :说得太棒了!
小精灵:同学们,祝贺你们发现了积的变化规律,愿意用它解决实际问题吗?那就跟我走吧!
三、运用规律,解决问题
1、根据8×50=400,直接写出下面各题的积。
16×50= 32×50= 8×25=
……
师 :32×50的积是多少?
生1:等于1600。
师 :怎样算的?
生2:以8×50=400为标准,把32×50与它作比较,一个因数50不变,另一个因数乘4,积也乘4等于1600。
生3:还能以16×50=800为标准,把32×50与它作比较,一个因数50不变,另一个因数乘2,积也乘2等于1600。
师 :很有数学头脑,运用规律算得可真快。
……
2、全社会各界朋友发起了向西藏教育捐赠和教师自愿者等活动,他们考虑着何种运输方式进
入西藏。咱们也帮忙分析一下,一辆汽车在青藏公路上以60千米/时的速度行使,4小时可以
行( )千米。一列火车在青藏铁路上行驶的速度是汽车的2倍,这列火车用同样的
时间可行( )千米。
生 :一辆汽车4小时可以行驶240千米,用60乘4等于240千米。
师 :根据什么数量关系来列式计算?
生 :速度乘时间等于路程。
师 :第二个问题呢?
生 :60×2×4=480千米,先算出火车速度,乘时间4小时等于路程。
师 :还有其它解法吗?
生:240×2=480(千米),因为速度乘2就是一个因数乘2,时间不变就是一个因数不变,那么积也就是路程也要乘2等于480千米。
师 :能运用积的变化规律解决问题,你的数学意识很强。同学们喜欢那种方法?
生 :喜欢第2种,只需一步计算。
师 :多关注已有信息,灵活运用规律能使解题思路更开阔。
……
四、全课总结,拓展延伸
师 :非常感谢你们为西藏捐助活动作出的努力。在这节数学课上,你们还有什么收获吗?
生1:我们找到了积的变化规律:一个因数不变,另一个因数乘(或除以)几 ,积也乘(或除以)几。
生2:我会用积的变化规律解决生活中的问题,很方便。
生3;我还学会了研究规律的方法。
……
师:大家用自己智慧的双眼,聪明的大脑发现并运用了乘法规律,老师真为你们高兴。学以致用,其乐无穷。先选择下面计算题中的一道算出积,然后直接写出其他各题的积。
18×30= 18×15=
18×5= 54×5=
……
苏教版积的变化规律教学设计 积的变化规律教学内容分析篇六
《积的变化规律》是在学生掌握一定的乘除法计算方法和用计算器进行计算的基础上教学的,本课用计算器来探索一些积的变化规律。
本课的教学思路:用口算导入,其中口算中安排了一些因数变化的对比题,如:25×4和25×8等。口算完成后,教师板书:3564×158=?你能口算吗?怎么办?使学生明白用计算器方便我们进行大数目的或复杂的运算。
新课教学,出示教材中的例题,帮助学生理解题意:积的变化是什么意思?跟谁比变化了?怎样计算?在计算前,先让学生猜一猜:你觉得积会怎样变?能提出你的猜想吗?然后学生借助计算器进行计算,填写教材中的表格。集体交流,提出问题:你的猜想正确吗?那在其他的乘法算式中还有没有这样的规律呢?写出一道算式,运用刚才的方法去试一试,并在你的小组里交流。小组汇报,并总结出积的变化规律——一个因数不变,另一个因数乘几,得到的积就是原来的积乘几。
巩固练习,由浅入深。先是模仿例题的练习,根据规律直接填表;然后是直接根据一道算式填出变化后的得数;最后是应用规律解决生活中的实际问题,如:购买同一种商品,数量发生变化,总价也跟着发生相同的变化。
课堂小结,一是所学知识,二是研究问题的方法(提出猜想——举例验证——得出规律——解释应用),同时进一步激励学生进一步研究:如果乘法算式中两个因数同时变化呢,积会怎么变?
教学后,有几点体会:
一、在充分经历中感悟。
在本课教学中,我就充分注意这一点,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。
二、在充分感悟中提炼。
在本课教学中,学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。此时,我充分地发挥了自己的主导作用,抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。
不足之处:
一、教师的语言不够凝练。如:引导学生用计算器探索变化规律时,提的问题太多,不利于学生独立分析和思考。
二、缺乏耐心,不善等待。如:第1题练习,当学生没有自觉地应用规律进行计算时,教师缺乏耐心,直接请发现规律的同学起来说。如果当时能引导这位同学观察一下,因数怎样变化的,能不能不计算就报出积是多少?等待会让课堂和谐和大气。
三、练习设计可以更有深度。如:设计逆向思维的练习,在表格中加入已知积的变化求因数的变化;拓展练习——因数同时变化,求积等。

一键复制