在我们不断前进的道路上,总结是不可或缺的一环,我们应该充分利用这个机会。"完美的总结应该包含自己的成长经历、学习收获以及遇到的困难和解决方法等方面。"通过阅读这些总结范文,我们能够感受到时间的流逝和努力的价值。
一元一次的方程的应用篇一
我们这堂课主要有五个特色:
1、学而时习之。
2、新课当旧课上。
3、重视引导学生再创造,再发现。
4、突出学习和强度,角度和反思。
5、创设情景,让学生主动积极参与。
一、学而时习之。
二、新课当旧课上。
三、重视引导学生再创造、再发现。
b组训练题较a组灵活,适用于学有余力的学生。
第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。
四、突出学习的速度、角度、强度和反思。
例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。
另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。
五、创设情境,让学生主动积极参与。
一元一次的方程的应用篇二
在过去的几年中,开展素质教育已取得了一定的成绩,众多教育工作者对教学方法、教学结构、教学评价等问题作出了深刻的反思和改革。尤其是99年6月份召开的第三次全国教育工作会议,中共中央、国务院颁发了《关于深化教育改革,全面推进素质教育的决定》,进一步明确了教育改革的实质,并赋予了素质教育时代的特征和新的内涵。素质教育的核心是创新教育和学生实践能力的培养。
新的九年义务教育全日制初级中学《数学教学大纲》明确指出,“能够解决实际问题”是指:能够解决有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题;能够使用数学语言表达问题、展示交流,形成用数学的意识。
又增设“初中数学中要培养的创新意识”主要在是指:对自然界和社会中的现象具有好奇心,不断追求新知、独立思考,会从数学的角度发现问题和提出问题,并用数学方法加以探索、研究和解决。
要在学校教育过程中,贯彻这一精神。课堂教育就必须有创新的情景和学生主动参与学习的积极诱因。也就是说,课堂教育必须创设一个符合学生身心发展特点的、适合教育规律的和生动活泼,让学生积极主动发展的情境。
因此,近期我们不断探索新形势下的课堂教学,下面就让我通过“一元一次方程的应用——追及问题”的教学设计,展示我们对问题的思考和实践,向在座的领导、专家请教,并衷心的希望你们给我提出宝贵的意见,改进我们的教学,进一步提高教学效益。
我们这堂课主要有五个特色:
1、学而时习之。
2、新课当旧课上。
3、重视引导学生再创造,再发现。
4、突出学习和强度,角度和反思。
5、创设情景,让学生主动积极参与。
一、学而时习之。
“学而时习之”就是说,通过反复地、多次地进行对知识的复习、巩固,提高学习能力,使知识学习呈螺旋式结构。这是符合人的认知规律的。这里我们具体设置了三种类型的题目。
(1)、对知识进行系统的复习。例如课前训练一中的1-6题与13-15题,作业部分的1-5题,通过对以往学习的知识进行系统复习,使基本技能再形成。
(2)、过去学生经常出错,疑难的重要知识点进行析疑、再次理解。例如:课前训练一,第7-10题和作业第6-10题,我们有意设计一些隐藏错误或缺漏的题目让学生养成质疑的习惯和能力,对自己学习严格要求,并时常进行反思,这也是创造性思维的发展的基础。
(3)、练题例如课前训练11-12题,作业11-15题,都是以大题小做的形式出现,让学生了解哪一些是关键之处,通过局部训练提高学生学习的强度。
有些老师认为训练题的题量不少,学生在课堂上完成吗?但我们在求学生定时不定量目的是为不同层次学生提供了更多的空间。在教学实践,不少教师都埋怨学习学生的知识遗忘率大,学习的内容有章节性和阶段性,针对这些问题,我们采用学而时习之的思想。但不是说要在3分钟过后,我们不论学生完成实践了多少都让学生必须进入课堂训练二的部分。
二、新课当旧课上。
这里具体体现在课前训练二上,这里遵循了从人的学习规律而设计的。古人云:“温故而知新。”因此,把新课当旧课上,让学生在教师创设的情境下,完成一组递[进的变式的训练课。让学生在不知不觉中学习了新课。另外,把现代数学手段引进课室,通过电脑的声、色、象等功能,把动态与静态的结合起来,使不能完整看到的现实问题,再次呈现眼前。
第1题是相遇问题,通过电脑模拟情境,让学生进一步对相遇问题的本质有深刻的理解,并复习解应用题的一般思维习惯与解题步骤,强化学生的实践路和找相等关系的能力,为本节学习打下坚实的基础。
问题1在第1题中改变条件,产生了不同于相遇问题的新情况,重点是让学生知道追是及有一定条件下的。
问题2在问题1的基础上改变了条件。从不同角度、不同方向去同向追及问题作全面的正确的分析,通过电脑模拟,直观地反映两种情况的数量关系和本质。第一种,随着时间增加,距离越越大,也不能追及。第二种,随着时间的增加,距离越来越短,有可能追及。然后再与问题1结合在一起,通过对比向学生交待一个追及问题必须具备的三个条件:1、速度不同;2、快者追慢者;3、同方向。让学生观察模拟后,加以想象、分析,先画出线略图再完成局部训练题,弄清追及问题的数量关系。
而问题3,实质是问题2中的追及问题,不同的只是甲、乙两人的距离,不是本身固有的,是通过先后出发而产生的。也就是说;“把两人相距40千米“用“让乙早出发12分钟“代替,其实,还是将问题3回复到问题2上。
在这里我们对本节例题作适当的处理,把原例题放入a组练习中,使学生在不知不觉中解决了本几节的问题。打破了传统教学中例题一定在讲解的习惯。整个训练二,以一题多变化作为新课当旧课上的切入点,创设一个让人学得轻松,学得容易,学有所得的氛围。
三、重视引导学生再创造、再发现。
为了发挥分层教学的优势,我们设计了两种层\次的题目,定时不定量要求各层次的学生完成。从而使学生在一节课内,不同趣点,不同在求地在原有基础上得到巩固和发展,让学生有收获感、满足感,提高对学习的兴趣。
a组训练题是本节知识的直接运用,面向全身学生,要求每个学生都掌握本节基本技能的方法。
第1、2题用填直线型示意图和填表的形式让学生弄清已知与未知之间的关系,把实际问题建立抽象的,科学的数学模型。
b组训练题较a组灵活,适用于学有余力的学生。
(1)-(3)题是通过对a组题目进行变成训练形成的。因为是通过题型多样化,让学生从多角度去思考问题而后用局部与全过程相结合,多渠道拓展学生的视野。
第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。
第(5)题,把常规的追及问题变为一个人,自身追及问题,这题比较注重思维训练,目的是培养学生“发现问题、提出问题”的能力,并注重联系实际,注重应用数学,保证了数学成为再创造、再发现的教学。从而使学生从定势思维过渡到发散性思维。从不同角度地让学生分析问题,充分体现了学习的强度,让学生始终处于一个主动参与的状态。
同样这里也是限时20分钟,但并不是说,在20分钟学生必须全部完成,学生因应自己的情况,有选择的进行练习。
以上不同起点的练习设置,不但照顾了差生,解放了优生,同时也调动了中层学生的积极性,达到抓两头,促中间的效果。
四、突出学习的速度、角度、强度和反思。
在当今的社会,人必须有时间观念、竞争意识和社会责任感,而学习就必须有速度和强度。所以我们设置了限时训练和反馈卡。目的是为了让学生对自己的事负责,促使他们有一个时间观念。从而提高解题速度,并与其他的同学产生一种竞争意识,形成一个良好的学习环境和学习风气。
俗语说:“授人以鱼,不如授之以渔。”所以教师在教学过程中,要让学生从“学会”到“会学”就必须在教学中体现学习的角度。也就是说,必须培养学生思考和解决问题要从多角度进行,强化联系,强化转换。所以我们在引入训练时运用变式,分类讨论的形式。目的是培养学生分析、思考的角度性。在练习的设计上,通过局部训练,填图或填表弄清题目的已知与未知的关系,培养学生审题的角度。而b组题主要是培养学生思维的角度,使优生有更多的空间去提高解题能力,学会多角度去思考问题。通过更高层次的要求,锻炼了优生思考问题的零活性。
在教学过程中要体现学习的强度,就必须在课内利用一切的时间,对本课内容进行多次的、反复的训练,以达到熟练和应用自如的强度,具体表现在本节重点和难点的反复,大容量的局部训练和具有层次安排的题组训练上。
例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。
又如:练习中的局部训练。在一堂课,只有45分钟,时间是有限的,老师不能面面区到的为学生讲解全部知识,只能有针对性的集中解决本节的重点和难点,这就要求通过局部训练来强化学生的基本技能的形成。进一步体现在教学过程中“生为主体,师为主导”的指导思想。
另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中。这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。
“学问”的意义就是在学习过程中必然有问题存在,并且要主动的通过多种渠道解决问题,扫除成长中的障碍。
作业中反思的设计,是培养学生对自己严格要求,通过对所学知识的回顾、反省,并不断好问、好思的解决问题,从而培养学生的质疑能力。
五、创设情境,让学生主动积极参与。
学生学习最好的动力是对素材的兴趣。所以,我们在整个教学过程中为学生创设了情境,把数学问题溶入到一个与他们密切相关的生活问题中,使学生形成浓厚的学习兴趣和求知欲望。
以上就是我们根据当前教育的新要求,进行的具体的改革和实践。谨请各位领导、专家指导。
一元一次的方程的应用篇三
3.使学生初步养成正确思考问题的良好习惯.
和难点。
课堂设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题.
例1 某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
x-15%x=42500,
所以 x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)。
解:设第一小组有x个学生,依题意,得。
3x+9=5x-(5-4),
解这个方程:2x=10,
所以 x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.
(设第一小组共摘了x个苹果,则依题意,得)。
三、课堂练习。
2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.
四、师生共同小结。
首先,让学生回答如下问题:
1.本节课了哪些内容?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(2)以上步骤同学应在理解的基础上记忆.
五、作业 。
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
一元一次的方程的应用篇四
等式左边:等式右边:x―15%x=42500。
原来重量为x千克,剩余重量为42500千克。解这个方程:。
运出重量为15%x千克。85/100*x=42500。
小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。
来源:互联网。
上一页[1][2]。
一元一次的方程的应用篇五
教学设计思想:
本节知识是探究如何用一元一次方程解决实际问题。在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程以及如何解方程,在此基础上我们才可以进一步探究用一元一次方程解决实际问题。在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。
教学目标:
1.知识与技能。
利用相等关系建立数学模型列方程;。
2.过程与方法。
会用方程解决简单的实际问题,认识到建立方程模型的重要性;。
在建立方程解决实际问题时,我们体会到设未知数的意义。
3.情感、态度与价值观。
体会数学建模与实际的相互密切联系,加强数学建模思想。
教学重点:解决相关问题时,利用相等关系列方程。
教学难点:解决相关问题时,利用相等关系列方程。
重难点突破:关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系。
教学方法:采用直观分析法、引导发现法及尝试指导法充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
课时安排:1课时。
教具准备:投影仪。
教学过程:
一、创设情境。
师:通过前几节课的学习,同学们回忆一下,列方程解应用题的第一步是什么?
生:分析题意,设未知数。
师:很好。我们以前学的应用题大多是求一个未知量,因而设一个未知数我们今天要学的内容需要求两个未知量,这又如何解决呢?通过今天的学习,这些问题将得到很好的答案。
[教法说法]:此节内容与前边内容联系不大,所以开门见山直接提出问题,同时也引起学生的注意和好奇,使学生带着问题进入今天的学习,激发了学生的求知欲。
一元一次的方程的应用篇六
本节课设计简析:本节课内容是列方程解应用题,主要是小学解应用题和中学解应用题的衔接,让学生感受数学与现实生活息息相关,并且体验数学的趣味性,提高学习数学的积极性。
1、通过身边的故事,引导学生对生活中的问题进行探讨和研究,学会用方程的思维解决问题。
2、借助找关键句或关键词、画线段图或示意图等方法,引导学生正确找出题中的等量关系,列出方程。
1、通过小组合作学习活动,培养学生的合作意识和语言表达能力。
2、培养学生的观察、分析能力以及用方程思维解决问题的能力。
1、使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到有效发展。
能分析题意,正确找出题中的等量关系,列出方程解决问题。
分别算出下列绳子的总长度。
【设计意图:为下面的例题做好铺垫】。
我今天给大家讲一个故事,故事的主人翁是丢番图,希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:
或者根据丢番图的年龄能被6,12,2,7整除,可知这个年龄是6,12,2,7的倍数,所以他的年龄为84,168??但是根据迄今被《吉尼斯世界记录》认可的世界上寿命最长的人是法国的让—卡尔门特,他在1997年8月4日去世时享年122岁。所以丢番图的年龄为84岁。
总结:列方程解应用题的一般步骤:
(1)“审”:审清题意;
(2)“设”:设未知数并把有关的量用含有未知数的代数式表示;
(3)“列”:根据等量关系列出方程;
(4)“解”:解方程;
(5)“答”:检验作答。
1、现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,请问多少年后父亲的年龄是儿子年龄的3倍。
解:设x年后父亲的'年龄是儿子年龄的3倍。
儿子爸爸。
现在的年龄88×4。
x年后的年龄8+x8×4+x然后根据题意列出方程解答。
3、我的地盘,我做主!
编题目:根据方程x+(x+8)=40,编一道应用题。
今天你有什么收获?体验到方程有时候给我们解应用题带来很大的方便。
【设计理念:经典问题如何用方程解决】。
一元一次的方程的应用篇七
以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
学情分析。
1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
2:学生在列方程解应用题时,可能存在三个方面的困难:
(1)抓不准相等关系;
(2)找出相等关系后不会列方程;
(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。
3:
学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4:
学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。
5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。
教学目标。
(1)知识目标:
(a)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(b)。
通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:
教学重点和难点。
1.教学重点:根据题意寻找和;差;倍;分问题的相等关系。
一元一次的方程的应用篇八
基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想。
方法:通过将实际问题转化成数学问题,培养学生的建模思想;。
基本活动经验体会解决实际问题的一般步骤及盈亏中的关系。
教学重点。
教学难点。
找出已知量与未知量之间的关系及相等关系。
教具资料准备。
教师准备:课件。
学生准备:书、本。
教学过程。
一、创设情景引入新课。
观察图片引课(见大屏幕)。
二、探究。
探究销售中的盈亏问题:。
1、商品原价200元,九折出售,卖价是元.
2、商品进价是30元,售价是50元,则利润。
是元.
2、某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元.
3、某种品牌的`彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.
4、某商品按定价的八折出售,售价是14.8元,则原定售价是.
(学生总结公式)。
熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系。
三、探究一。
分析:售价=进价+利润。
售价=(1+利润率)进价。
亏?
(2)某文具店有两个进价不同的计算器都卖64元,
其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍。
获利10%,则该商品的标价为元.
注:标价n/10=进(1+率)。
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的。
价格,某种药品在涨价30%后,降价70%至a元,
则这种药品在20涨价前价格为元.
四、小结。
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断。
小组研究解决提出质疑。
优生展示讲解质疑。
五、作业布置:
板书设计。
相关的关系式:例题。
课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
一元一次的方程的应用篇九
听了x老师的《利用一元一次方程解决应用问题》一课,本堂课的主要教学目的是利用一元一次方程解决行程问题,包括:相遇问题、追击问题等。由于学生在小学时对这类问题已经掌握得非常熟练了,所以教师要在解决这些应用题的过程中既要让学生有求知欲,又要使得学生通过我们的教学感受到运用一元一次方程解决应用问题的优点,从而体会到方程的思想方法,其实对于教师的教学来说是很大的挑战。下面,我就从几个方面谈谈我听课后的一些感受和想法。
一、x老师上课的规范性和严密性给我留下了深刻的印象。
数学教学中教学语言的严密性和规范性对于培养学生良好的数学素养很有帮助。本堂课教师在应用题的讲解过程中涉及到了从文字语言到数学符号语言的转换,在这个转化过程中,x老师语言规范、简练,充分体现了作为一名优秀的数学教师的数学功底。更可贵的是,对于同一道应用题,x老师能够从不同的切入点来对题目进行分析讲解。
二、教学上的思维设置有梯度、有难度。
其实,像x老师今天所教授的三道应用题的前两题,学生在小学时就已经掌握得非常熟练了,因此,在课堂教学的设计方面,老师采取了一题多解的方法,既有小学时候我们解决这类应用问题的解法,也有运用一元一次方程来解决的方法,同时,在运用一元一次方程的过程中,教师还从不同的角度进行设元,从而在让学生体会到方程对于我们解决问题时的优点的同时,也感受到要合理设元才能更好得简化我们的解题。
像这样的,从学生已有学习经验出发设计教学,效果当然就会更好。当然,对于本堂课,我也有几点由此而产生的思考。1、数学是一门思维科学,数学学习的本身就是方法的学习。在方程这个方法的教学过程中,应该更多地让学生体会到这是一种新的解决问题的方法,而这个方程的方法将是我们同学今后继续学习的重要铺垫。有了方程以后,数学问题的思考过程就成为了一种正向的思维,降低了题目的难度。2、数学课堂教学,特别是像应用题的教学,还是应该多留点时间给我们的学生。让学生有充分的时间读题和思考、讨论甚至展示。教师应该恰到好处地设计引导学生,让学生的自主思考和研究少一些挫折,多一些成功的体验。数学本身就是最简方法的选择!
文档为doc格式。
一元一次的方程的应用篇十
3.使学生初步养成正确思考问题的良好习惯.
重点和难点。
课堂过程设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题.
例1 某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
x-15%x=42500,
所以 x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
(仿照例2的分析方法分析本题,如学生在某处感到困难,应做适当点拨.解答过程请一名学生板演,巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)。
解:设第一小组有x个学生,依题意,得。
3x+9=5x-(5-4),
解这个方程:2x=10,
所以 x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.
(设第一小组共摘了x个苹果,则依题意,得)。
三、课堂练习。
2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.
四、师生共同小结。
首先,让学生回答如下问题:
1.本节课学习了哪些内容?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,总结如下:
(2)以上步骤同学应在理解的基础上记忆.
五、作业 。
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数.
一元一次的方程的应用篇十一
教材分析本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
学情分析1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。2:学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。
教学过程。
教学环节。
教师活动。
预设学生行为。
设计意图。
一、从学生原有的认知结构提出问题。
师生问好.
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。
教师借助于旧知识的回顾,引出本节课的主题,既注意到新旧知识之间的联系,又激发了学生对问题探究的热情.
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)。
解:设第一小组有x个学生,依题意,得。
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.
(设第一小组共摘了x个苹果,则依题意,得)。
抓不准相等关系。
三、课堂练习。
2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.
学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
随着教师一个个准确、恰当的问题,引发了学生在不知不觉中步步推进、层层深入思考与探索.
教学中注意鼓励的评价作用,让全体学生主动参与、积极思考,培养学生合作交流的学习习惯.
四、师生共同小结。
1.本节课学习了哪些内容?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(2)以上步骤同学应在理解的基础上记忆.
五、作业。
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。
板书设计。
一元一次的方程的应用篇十二
听了潘xx老师的《一元一次方程的应用》一课,给我启发很多,他的课风趣幽默,自然流畅,结构严密,给听课的人一种享受,在享受的同时,也学到了很多知识以及教法,一堂好课应该是自然的、生成的和常态下的课,我认为这是一节成功的课。
首先,他从学生感兴趣的画面入手,很快使学生进入了一种兴奋的状态之中,因为是应用题的讲解,一般情况下,学生学起来比较吃力,也觉得很没意思,但潘老师把题目改成学生所熟悉,所感兴趣的话题,譬如说去水立方去看跳水比赛,去看姚明比赛,问2008年北京奥运会拿了几枚金牌?2019的伦敦奥运会拿了几枚金牌?大部分同学回答都不知道,于是潘老师说我给你们一个信息,“2008年奥运会上,我国获得金牌是2019年伦敦奥运会获得的金牌数的4倍少13枚。同学们都在积极的思考,有的同学马上举手,有的同学相互讨论,同学们的学习积极性一下就被潘老师推到了高潮。
潘老师在讲解行程问题时,让学生自己按题目要求表演,相遇问题,追及问题虽然在小学里已学过,但仍然是个难点,通过学生的表演,生动形象,让人一目了然,等量关系很容易找到,并且好多同学都能用几种方法解答。学生的思维活跃,气氛热烈。这样操作学生受益面大,不同程度的学生在原有基础上都有进步。知识、能力、思想情操目标达成的很到位。
潘老师的课安排的内容非常多,但整个一堂课上下来,听的人却不觉得累,主要是她这几方面做得很好:
(1)教学环节的时间分配的很合理,没有前松后紧或前紧后松的现象,并且讲与练时间搭配也很合理。
(2)教师活动与学生活动时间分配合理,潘教师占用时间与学生活动时间刚好相等。并且学生的个人活动时间与学生集体活动时间的分配也很合理。
制作的课件非常精美,画面生动形象,特别是行程问题中的相遇问题和追及问题中的动画制作非常吸引学生,几乎所有的学生看了都哈哈大笑,这也给课堂注入了新鲜血液,让他们重新振作起来,攻克一个又一个难题。
以上是我的一点粗浅认识,有不当之处,请各位同仁指正。
一元一次的方程的应用篇十三
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点。
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。
(4)求出所列方程的解;。
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
一元一次的方程的应用篇十四
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点。
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。
(4)求出所列方程的解;。
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
一元一次的方程的应用篇十五
听了x老师的《利用一元一次方程解决应用问题》一课,本堂课的主要教学目的是利用一元一次方程解决行程问题,包括:相遇问题、追击问题等。由于学生在小学时对这类问题已经掌握得非常熟练了,所以教师要在解决这些应用题的过程中既要让学生有求知欲,又要使得学生通过我们的教学感受到运用一元一次方程解决应用问题的优点,从而体会到方程的思想方法,其实对于教师的教学来说是很大的挑战。下面,我就从几个方面谈谈我听课后的一些感受和想法。
数学教学中教学语言的严密性和规范性对于培养学生良好的数学素养很有帮助。本堂课教师在应用题的讲解过程中涉及到了从文字语言到数学符号语言的转换,在这个转化过程中,x老师语言规范、简练,充分体现了作为一名优秀的数学教师的数学功底。更可贵的是,对于同一道应用题,x老师能够从不同的切入点来对题目进行分析讲解。
其实,像x老师今天所教授的三道应用题的前两题,学生在小学时就已经掌握得非常熟练了,因此,在课堂教学的设计方面,老师采取了一题多解的方法,既有小学时候我们解决这类应用问题的解法,也有运用一元一次方程来解决的方法,同时,在运用一元一次方程的过程中,教师还从不同的角度进行设元,从而在让学生体会到方程对于我们解决问题时的优点的同时,也感受到要合理设元才能更好得简化我们的解题。
像这样的,从学生已有学习经验出发设计教学,效果当然就会更好。当然,对于本堂课,我也有几点由此而产生的思考。1、数学是一门思维科学,数学学习的本身就是方法的学习。在方程这个方法的教学过程中,应该更多地让学生体会到这是一种新的解决问题的方法,而这个方程的方法将是我们同学今后继续学习的重要铺垫。有了方程以后,数学问题的思考过程就成为了一种正向的思维,降低了题目的难度。2、数学课堂教学,特别是像应用题的教学,还是应该多留点时间给我们的学生。让学生有充分的时间读题和思考、讨论甚至展示。教师应该恰到好处地设计引导学生,让学生的自主思考和研究少一些挫折,多一些成功的体验。数学本身就是最简方法的选择!
一元一次的方程的应用篇十六
听了潘xx老师的《一元一次方程的应用》一课,给我启发很多,他的课风趣幽默,自然流畅,结构严密,给听课的人一种享受,在享受的同时,也学到了很多知识以及教法,一堂好课应该是自然的、生成的和常态下的课,我认为这是一节成功的课。
1、为学生创设宽松和谐的学习环境。
首先,他从学生感兴趣的画面入手,很快使学生进入了一种兴奋的状态之中,因为是应用题的讲解,一般情况下,学生学起来比较吃力,也觉得很没意思,但潘老师把题目改成学生所熟悉,所感兴趣的话题,譬如说去水立方去看跳水比赛,去看姚明比赛,问2008年北京奥运会拿了几枚金牌?2019的伦敦奥运会拿了几枚金牌?大部分同学回答都不知道,于是潘老师说我给你们一个信息,“2008年奥运会上,我国获得金牌是2019年伦敦奥运会获得的金牌数的4倍少13枚。同学们都在积极的思考,有的同学马上举手,有的同学相互讨论,同学们的学习积极性一下就被潘老师推到了高潮。
2、关注学生的学习过程,让学生有体验数学的机会。
潘老师在讲解行程问题时,让学生自己按题目要求表演,相遇问题,追及问题虽然在小学里已学过,但仍然是个难点,通过学生的表演,生动形象,让人一目了然,等量关系很容易找到,并且好多同学都能用几种方法解答。学生的思维活跃,气氛热烈。这样操作学生受益面大,不同程度的学生在原有基础上都有进步。知识、能力、思想情操目标达成的很到位。
3、课堂结构安排的非常合理。
潘老师的课安排的内容非常多,但整个一堂课上下来,听的人却不觉得累,主要是她这几方面做得很好:
(1)教学环节的时间分配的很合理,没有前松后紧或前紧后松的现象,并且讲与练时间搭配也很合理。
(2)教师活动与学生活动时间分配合理,潘教师占用时间与学生活动时间刚好相等。并且学生的个人活动时间与学生集体活动时间的分配也很合理。
4、代化教学手段的运用很熟练,
制作的课件非常精美,画面生动形象,特别是行程问题中的相遇问题和追及问题中的动画制作非常吸引学生,几乎所有的学生看了都哈哈大笑,这也给课堂注入了新鲜血液,让他们重新振作起来,攻克一个又一个难题。
以上是我的一点粗浅认识,有不当之处,请各位同仁指正。

一键复制