编写好教案可以帮助教师合理布置教学内容,保证教学的系统性和有序性。教案的编写要注重培养学生的创新思维和实践能力。以下是小编为大家收集的教案范例,希望对大家的教学有所启发!
五年级数学教案人教版教案篇一
在1----20的自然数中,有()个奇数,有()个偶数,有()个质数,有()个合数,奇数中的()是合数,偶数中的()是质数,既不是质数也不是合数的数是()。
2、能同时被2、5、3整除的最小两位数是(),最大三位数是()。
3、选择题。
(1)一个合数的约数有()。
a)1个b)2个c)3个d)4个。
(2)如果a和b是互质数,那么它们的最小公倍数是()。
a)ab)bc)abd)1。
4、判断题。
(1)整除一定是除尽,除尽不一定整除。()。
(2)相邻的两个自然数一定互质。()。
(3)所有偶数都是合数。()。
(4)24分解质因数24=22231。()。
(5)一个自然数的最大约数一定等于它的最小公倍数。()。
5、把下面的数按照不同的标准分成两类,你能想到几种?
21581720。
五年级数学教案人教版教案篇二
教材第134页的例1及136页的1-3题。
二教学目标。
1.通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
三重点难点。
尝试用数学方法解决实际生活中的简单实际问题。
四教具准备。
五教学过程。
(一)导入。
学生介绍自己对天平的了解,阐述天平的工作原理和特点。
天平大家都见过吗?有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,重的一端就会……轻的一端就会……,老师在学生发言的基础上,进一步阐述天平的工作原理。
2.创设情景,自主探索。
(2)独立思考。老师鼓励学生大胆设想,积极发言。
全班汇报。老师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么秤来称)、用天平称(老师不急于让学生说出最佳方案,给全班留出思考空间。)。
3.自主探索用天平找次品的基本方法。
老师小结:利用天平找到这瓶钙片有多种方法,可以在天平上用祛码称出每瓶的质量再进行比较。还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的;如果天平平衡,说明剩下的一瓶是少的;如果天平不平衡,说明上扬的一端是少的。
4.揭示课题。
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称……),哪一种更加快速、准确?(天平)在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们再请天平来帮帮忙。
(二)教学实施。
1.出示例1:这里有5瓶钙片,其中1瓶少了3片,设法把它找出来。
2.让学生思考后,说出自己的想法。
(2)独立思考,有一定思维结果的时候组织小组交流。老师指导学生在交流中比较方法。
(5)老师小结:在天平的帮助下找到这瓶钙片有多种方法,可以……还可以……。除了利用学具,还可以画出示意图来帮助我们思考。
5.完成教材第136、137页练习二十六的第1-3题。学生独立完成,集体交流。
(l)第1题,因总数为9筐,故可平均分成3份,只称2次就能保证把吃过的那筐松果找出来。如果天平两端各放4筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次就能称出来的,也不能保证2次就能称出来,只能保证称3次就一定能称出来,故该方法不是最优的。
(2)第2题,把15盒平均分成3份,至多3次就可能保证找出较轻的那盒饼干。
五年级数学教案人教版教案篇三
教学内容:
抽取游戏。
教学目标:
1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:
抽取问题。
教学难点:
理解抽取问题的基本原理。
教学过程:
一、教学例。
1.猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2.实验活动。
(1)一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
(2)一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3.发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做。
第1题。
(1)独立思考,判断正误。
(2)同学交流,说明理由。
第2题。
(1)说一说至少取几个,你怎么知道呢?
(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习。
完成课文练习十二第1、3题。
将本文的word文档下载到电脑,方便收藏和打印。
五年级数学教案人教版教案篇四
教学内容:
教学目标。
一、基础性目标:
1.通过生活中的事例,使学生初步体会数字编码思想在解决实际问题中的应用。
2.让学生通过观察、比较、猜测来探索数字编码的简单方法,学会用数进行编码,初步培养抽象、概括能力。
二、发展性目标:.
1、让学生进一步体会数在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养应用意识和实践能力。
2、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。
教学重点:
1、了解邮政编码的结构,初步体会数字编码的方法。
2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。
3、掌握利用符号和数字组合编码的方法。
教学难点:
1、了解邮政编码的结构,初步体会数字编码的方法。
2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。
3、掌握利用符号和数字组合编码的方法。
教材分析:
1、“数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生[此文转于斐斐课件园]的抽象、概括能力。
2、在日常生活中,数有着非常广泛的应用。让学生明确,数不仅可以用来表示数量和顺序,还可以用来编码,并通过实践活动进行简单的数字编码,培养学生[此文转于斐斐课件园]的数学思维能力。
3、数字编码和我们的生活紧密相关,让学生通过生活中的具体事例,比如邮政编码、身份证号码、电话号码等,体会到运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。
4、通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。让学生体会到数学应用的广泛性,从而提高他们学习数学的兴趣和积极性。
教学建议:
1、恰当把握目标。
数字编码是一种抽象的数学思想方法,在这里学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,不要求学生掌握编码中每个数字的信息和含义。
2、注意数学与生活的联系,适度关注学生的生活经验。
教学中,教师要尽量从学生身边的具体事例来引入教学。同时,启发学生了解生活中的数学,比如通过调查了解邮政编码和身份证号码的含义,了解生活中的一些数字编码的意义等。
3、让学生动手实践,提供自主探索的空间。
学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生[此文转于斐斐课件园]的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。
五年级数学教案人教版教案篇五
教学目标:
1.了解规律,认识规律,掌握找规律(“核心”是重复的)的基本方法;
4.激发学生探索数学问题的兴趣,养成自主发现和欣赏数学规律美的意识,体验“规律无处不在,数学就在身边”。
教学重点:理解规律的含义,掌握找规律的基本方法。
教学难点:能够表述发现的规律,并能运用规律解决一些简单的问题。教学准备:教学课件、磁力学具。教学过程:
一、猜图导入,认识规律:
师:哦,这么快就被你们我画的这组图形的规律了。看来同学们还真是些善于思考的好孩子。师:像老师画的图形这样相同的部分重复出现多次(至少三次)以上,我们就很容易接着往下做动作或者画图形了,也就是我们找到了其中的规律了。生活当中这样有规律的排列还有很多,接下来,我们一起《找规律》(板书课题)。
二、观察操作,探究规律:
1.观察场景,寻找规律:
师出示情境图,教学例题1。
(1)发现规律:小彩旗的排列、花朵的排列、小灯笼的排列、小朋友的排列。
(2)分析推理,表述规律:
a.利用小彩旗的排列探究寻找“重复组”的方法。b..利用小花的规律,引导学生圈出一组重复出现的部分。
c.独立完成小灯笼和小朋友的规律寻找,并圈出重复的一组。d.师生共同探讨不同重复组的规律寻找方法。
2.操作学具,探寻规律:
a.同桌合作,摆一摆。(不同小组的学具,颜色、大小、多少都有所不同)师巡视指导,发现有价值的排列展示到黑板上。b.汇报交流,展示规律。
选出有代表性的4组战士并交流想法。
3.解答疑惑,抽象规律:
老师在安排学具的时候,特别安排一组大小、形状、颜色都相同的磁力贴,通过帮助本小组解决困难,抽象出数字规律,教学例题2,抽象出数字规律。
三、运用规律,内化提高。
1.找规律,填数字。
仔细观察,用心思考,集体解答。
2.接下去怎么摆?
给孩子留出思考时间,指明孩子说出接着怎样摆?
3.那两组的规律相同?
引导孩子通过对比规律,体会不同形式的排列中存在相同的数字规律。
4.做游戏,找规律。
先引导孩子观察图片中的规律,再模仿做一做。并布置孩子课下设计不同的动作玩一玩类似的游戏。
四、欣赏规律,总结感悟。
指名学生说发现。
2.欣赏老师收集的图片,并找出其中的规律。
为了遵循孩子们的成长规律,现在该下课休息一会了,希望你们在以后的学习和生活中,按照一定的规律养成良好的生活习惯和学习习惯,老师相信,你们一定会越来越棒的!
请同学们排成两队,踏着音乐的节奏,有序的走出教室吧。
。
五年级数学教案人教版教案篇六
教学目的:
本游戏活动以摸球作为载体。通过此数学游戏,目的是让学生在活动中经历实验、猜想与验证的过程。
教学过程:
1、师向学生交代清楚活动的操作顺序:两人一组,然后记录颜色,再放回。记录摸出的红球、白球次数可用画“正”字的方法。
2、组织活动:
(师给每组口袋内准备的白球与红球数的比例应相同。)。
学生两人一组,一人摸球,一人记录。
活动过程中,教师要及时进行巡视,以纠正学生可能出现的不当操作。
3、汇报交流并猜想:
每组学生操作完毕后,组织全班进行汇报交流。并将汇报结果记录在黑板上,以便学生进行猜想。也要请他们说说猜想的根据。
4、验证猜想:
请学生打开各小组的口袋,验证猜想的结果与实际结果是否相符。
5、小组讨论:
投影出示讨论的题目包括表格。然后出示问题。
注意:学生在具体讨论时,也会出现各种各样的猜想与推选的方法,对此,要让学生说说自己的理由,特别要指导学生应考虑比赛外的各种因素。
6、课堂练习:
89页第3题。
提示学生:由于任选的随机性,故可能出现特例。对此,在解答时,不要求学生作统一的回答。
五年级数学教案人教版教案篇七
教学内容:
课本第12~17页上的内容。
教学目标:
1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数=奇数。
2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。
3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。
4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。
教学重点:
从生活中的摆渡问题,发现数的奇偶性规律。
教学难点:
运用数的奇偶性规律解决生活中的实际问题。
教具准备:
投影、杯子。
教学过程:
一、揭示课题。
自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。
二、组织活动,探索新知。
活动一:示图(右图)。
小船最在南岸,从南岸驶向北岸,
再从北岸驶回南岸,不断往返。
1、(1)小船摆渡11次后,船在南岸还是北岸?为什么?
(2)有人说摆渡100次后,小船在北岸。
他的说法对吗?为什么?
2、请任说一个摆渡的次数,学生回答在南岸还是北岸?
3、请学生画示意图和列表并观察。
4、想:摆渡的次数与船所在的位置有什么关系?
摆渡奇数次后,船在岸。
摆渡偶数次后,船在岸。
试一试。
一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝,反动19次后杯口朝。
1、想一想:翻动的次数与杯口的朝向有什么关系?
翻动奇数次后,杯口朝。
翻动偶数次后,杯口朝。
2、把“杯子”换成“硬币”你能提出类似的问题吗?
活动二。
圆中的数有什么特点?正方形中的数有什么特点?
圆中的数都是偶数,正方形中的数都是奇数。
试一试:(投影)。
三、巩固练习(投影出示习题)。
四、总结。
这节课同学们有什么收获和体会?
五、作业。
1、课本第17页“试一试”的题目。
2、优化作业。
五年级数学教案人教版教案篇八
2、能沟通知识之间的相互联系,提高解决问题的能力。
1、第52页第10题
先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?
(1)先让学生联系分数的意义口头分析:把全班人数看作单位”1“,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。
(2)再让学生根据分数与除法的关系列出算式,并写出得数。
(3)独立做下面两题
(4)交流
2、做第11题
(1)学生先独立练习
(2)引导比较a三道题目计算方法有什么相同?
b算式中选择的.除数有什么不同?
c从中还能想到些什么?
(3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
3、做第12题练习后加强对比
(1)计算方法有什么相同的地方?
(2)算式中选择的被除数为什么不同?除数为什么相同?
(3)商的表示方法有什么不同?
4、做第13题练习后加强对比
要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位”1“,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称”米“。
5、思考题
方法一:可以根据每个分数中分子与分母的大小关系来判断。
方法二:通过画图帮助思考
五年级数学教案人教版教案篇九
书第54――55页,有趣的测量及试一试第1、2题。
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
用多种方法解决实际问题。
探索不规则物体体积的测量方法。
不规则石头、长方体或正方体透明容器、水。
一、导入新课
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
五年级数学教案人教版教案篇十
学习内容:用除法解决简单的实际问题。
学习目的:
1.使学生能根据一幅图(分完的结果)写出两个除法算式,从而进一步理解除法的含义。
2.通过看一个除法算式,说出它表示的不同意思,使学生对除法的含义有比较全面的认识。
学习重、难点:能根据一幅图写出两个不同的除法算式。
教具、学具准备:教师准备8个球拍图,3捆萝卜图,以及16根小棒;学生准备18根小棒。
学习过程:
1.说一说平均分是怎样分物品的。
2.操作练习。先让学生拿出8根小棒,把它们平均分成4份。摆在桌子的左面。学生摆完以后,指名说一说是怎样摆的。教师根据学生的回答,在黑板上贴出小棒。并问:用什么方法计算?怎样列式?然后在小棒下面板书:
8÷4=2。
再让学生拿出8根小棒,把它们按每2根一份,看能分成几份。摆在桌子的`右面。学生摆完后,仿照上面的提问和教学过程,教师在黑板上贴出小棒,并写出除法算式:
8÷2=4。
教师引导学生观察分得的结果和除法算式:看一看两次分小棒的结果相同吗?(不同。)它们的除法算式相同吗?(不相同。)为什么?(因为分的方法不一样,除法算式就不同。)如果只看分的结果,能确定是用哪一种方法分的吗?(不能。)今天我们就要学习:
看一幅图怎样写两个除法算式。
教学例3。教师出示8个球拍图。说明意图:看图写出除法算式。先让学生分组讨论一下:看着这幅图怎样写出两个除法算式?为什么?然后多让几个学生发言。你能想出什么样的除法算式?(8÷4=2)你是怎样想的?(把8个球拍平均分成4份,每份是2个。)有多少同学同意这种写法?还有其他的写法吗?(8÷2=4)你是怎样想用?(8个球拍,每2个分成一份,分成了4份。)有多少同学同意这种写法?哪种写法对呢?有多少同学认为这两种写法都对?请两名认为可以写两个除法算式的同学说一说是怎样想的。此时,只要学生说的意思正确即可。语言暂时不要求过高。在学生说明理由时,还可以让他到黑板前具体分一下,使全班同学看到,分法不同。教师小结:由于两种分法不同,只看分的结果,我们不能确定是用哪一种方法分成的。通过今天的学习,我们知道看一幅图,能够根据不同的分法,写出两个不同的除法算式。
1.第29页做一做中的题目。先让学生观察图,说明题意。然后让学生独立写出两个除法算式。写完以后,教师要引导学生说一说每个除法算式表示的意思是什么。并引导学生说一说为什么能看一幅图写出两个除法算式。(只要意思正确即可。)。
2、出示课本第29页的例题。先让学生说一说,然后让学生独立做。在做的过程中,可以要求学生边做边小声说一说每个算式所表示的意思。教师巡视,注意对差生的个别辅导。对于有困难的学生,可以让四人小组帮助。
3、如果又来了3人,每组平均应有几人?让四人小组合作完成。
今天我们学习了看一幅图写出两个除法算式,还练习了根据一个除法算式说出它表示的两种不同的含义。用“平均分”解决实际问题。
五年级数学教案人教版教案篇十一
1、能够认识长方体和正方体,具有初步的立体空间想象能力。
2、结合具体的多个长方体和正方体的堆放情景,经历探究多个长方体和正方体堆放时露在外面表面积的过程,能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。
3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。
能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。
师生共同归纳和推理。
多个正方体盒子。
一、复习导入。
教师让学生顾回上一节课学习的长方体和正方体的表面积,并对学生进行提问。
学生回答:长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)。
二、讲授新课。
学生观察图片并计算露在外面的面积是多少平方厘米?
教师提问学生回答这个问题。(露在外面的面有3个;露在外面的面积是50×50×3=750(平方厘米)。
教师提问学生回答这个问题,(有9个面露在外面,露在外面的面积是50×50×9)。
教师让学生用自己的4个正方体学具换一种堆放方式来试一试,露在外面的面积是否有变化,同桌之间相互讨论交流。
三、课堂小结。
同学们,这一节课你学到了哪些知识?(提问学生回答)。
板书设计:
露在外面的面。
从正面、侧面、上面看一看,一共有几个面露在外面?
五年级数学教案人教版教案篇十二
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。
教学重点:
体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。
教学难点:
观察者角度的理解,方格线上和方格中位置描述的异同理解。
4.1教学过程。
4.1.1教学活动。
活动1【讲授】用数对确定位置。
一、探讨描述位置两要素。
师:今天,谢老师的好朋友带来一份神奇的礼物。有请x先生。
第一关:找地鼠。
师:请描述小地鼠的位置。
师:还能怎么说?
生:从右往左数第2个。
师:这只地鼠的位置呢?
生:从上往下数第3个,从下往上数第2个。
师:看来,描述一条线上的位置,我们只需要一个数。
师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?
师:你来说,谁有不同的说法,还有吗?
师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。
师:(面向猜的同学)听了这么多说法,能猜到位置吗?
师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)。
师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(x先生录音)。
二、从列和行引出数对确定位置。
师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。
师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。
师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。
师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。
师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。
师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。
师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(23)什么意思?(2表示第2列,3表示第3行)还可以怎么说(32)。这个想法很好,更加简洁了。
师:这些都是张亮位置的描述方法,你喜欢哪一种?
(1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。
师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)。
师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。
师:剩下的三个位置也用数对表示吧。写在草稿纸上。
师:四个数对中有两个比较特别,谁来说?
师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。
师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。
师:你是怎样判断的?
师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(x先生评价)。
三、点子图中的位置表示。
师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。
师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。
师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。
师:再次请出x先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)。
师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?x表示几,y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。
师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。
四,数对的日常运用。
师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。
国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)。
这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)。
五、拓展总结。
师:同学们我们还差一块拼图了,听听x先生带来了什么问题:第五关:确定位置,需要几个数?)。
生:需要两个数。
师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。
师:什么情况下我们用一个数就能确定位置?(直线上的)。
师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。
师:听听x先生对大家的最终评价吧。
师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。
五年级数学教案人教版教案篇十三
已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。
本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。
1、在具体情境中进一步理解分数,体会分数的相对性。
教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。
在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。
2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。
除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。
3、经历知识的形成过程,探索分数的基本性质。
分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。
4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。
本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。
“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。
(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。
(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:
得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。
接着,引导学生从右向左观察,并练习:
得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。
在让学生观察其他几组分数,能得出同样的规律。
(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。
五年级数学教案人教版教案篇十四
1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。
2、结合具体情境,进一步体会“整数”与“部分”的关系。
二、重点难点
重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
难点:充分体会“整数”与“部分”的关系。
三、教学过程
(一)复习旧知,导入新课
2、今天我们一起来学习《分数的再认识》。
(二)创设情境,学习新知
活动一:分笔游戏,体会单位一
1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)
2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。
3、另找4名同学检查。
4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)
5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)
活动二:教材p34说一说。
1、带着新的认识,我们来判断两个小朋友看的书一样多吗?
2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。
3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)
4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)
(三)巩固练习
1、教材p34画一画。
2、教材p35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)
四、板书设计
分数的再认识
整体不同,相同分数表示的数量也不同。
整体相同,相同分数表示的数量也相同。
五、教学反思
本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。
五年级数学教案人教版教案篇十五
1.在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考的能力。
2.在1-100的自然数中,能找出某个自然数的所有因数。
3. 在探索中,感受数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心。
学生在乘法算式中对乘数已经有比较熟练的理解,学习因数可以在乘法算式的基础上让学生理解和掌握。
(一)创境导入。
师:同学们喜欢做拼图的游戏吗?(学生回答)
师:这节课我们就通过拼图来学习一个新知识。
(设计意图:拼图游戏学生很喜欢,创设拼图的情境来激发学生的学习积极性和探究的欲望。)
(二)探索新知。(课件)
1. 师:请拿出准备好的正方形,在你们的小组里用你们准备的12个小正方形拼成一个长方形,有哪几种拼法?也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录。然后,把你拼摆的过程和你的伙伴说说。
2. 班内展示交流。(请学生演示自己摆的成果)
(设计意图:通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与因数的关系。学生通过动手操作得到了大量的学习资源,为后面的学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。)
3. 师:你能把这些摆法用算式表示出来吗?(根据学生的回答,教师板书:1×12=12 2×6=12 12×1=12 6×2=12 3×4=12 4×3=12 )
4. 师:请同学们观察一下,哪两道算式的因数一样? 12的因数有哪些呢? 请学生按顺序说出来。(1、2、3、4、6、12。)
(设计意图:学生观察算式,发现找因数的方法和写乘法算式有一定的关系,体会了“想乘法算式”找因数的方法,为下面的思考找因数的方法奠定了基础。)
5. 思考问题:
(1)怎么样找出一个数的全部因数?
(2)有什么方法可以将全部因数找齐,一个都不漏?
小组交流,全班交流。
学生想到的方法可能是:从小到大找;一对一对找
6. 找出9的全部因数
(1)试一试,看谁能挑战成功。(学生独立找9的因数)
(2)交流找的方法。
板书:9的因数有:1、3、9
观察9的全部因数,你有什么发现吗?(9最小的因数是1,最大的是9,??)
(设计意图:教给学生找因数的方法,引导学生关注“有序思考”的方法,进行了学习方法的指导。)
8. 小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。
(三)练习深化。
1. 师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们把课本第9页的1、2题做出来。
学生独立完成。
投影展示一名学生1、2题的结果,让学生说一说,集体评价。
2. 师:同学们已经学会了用拼长方形找因数的方法,现在能不能在小方格中画出长方形找因数呢?请把第3题做出来。
学生独立完成。
教师让1名学生到黑板上的小方格中画,并把因数找出来。
学生做完后,看看到黑板上做题的同学做得对不对,引导学生进行评价。 (设计意图:通过练一练活动,利用数形结合进一步体会找因数的方法。)
3. 投影:48名学生排队,要求每行的人数相同,可以排成几行?
请同学们先独立思考,然后小组内交流一下。
班内交流:(每行8人可以排成6行,也可以每行6人排成8行。每行12人可以排成4行,也可以每行4人排成12行。每行24人可以排成2行,也可以每行2人排成24行。每行48人可以排成1行,每行1人排成48行。还有一种,每行16人可以排成3行,也可以每行3人排成16行。)
思考:同学们想一想,这种排队法与找因数有什么关系呢?(教师对学生及时提出表扬:同学们说得很好,我们利用找因数的方法可以解决很多实际问题 。)
(设计意图:运用知识解决实际问题,进一步体会找因数的方法。)
4. 游戏:好朋友互报学号,分别找出对方学号数的全部因数,比比谁能有对有快!
(四)当堂检测。
1、找一找,填一填。
1 2 4 7 8 12 16 24 32
24的全部因数 32的全部因数 既是24的因数也是32的因数
2、说一说下面的数各有几个因数。
()个( )个()个 ()个 ( )个 ( )个
(设计意图:当堂检测,了解目标达成情况。)
(五)总结与评价。
这节课你什么收获?
教学反思:本节课注重了孩子的动手动脑能力,让学生体会到找一个数的因数的方法,培养了有条理思考的习惯。找因数的方法一般是按乘法算式来找的,可是在找的过程中容易漏掉几个,所以必须强调要有序思考。
五年级数学教案人教版教案篇十六
1、学生借助生活中的实例,学会用字母表示数,体会用字母表示数的必要性和重要性。在具体的情境中能利用字母表示数进行数学表达和交流。
2、在探索现实世界数量关系的过程中,体验用字母表示数的简明性,增强数学意识,初步体会归纳猜想、数形结合等数学思想方法在数学中的应用。
3、学生在自主探索、合作交流中获得成功的体验。
理解字母表示数的意义。
探索规律,并用字母表示简单的数学规律。
今天我们要上一节与字母有关的数学课,生活中你见到过与字母有关的事物吗?(出示下列图案。)。
(音乐课本中“1=f”表示f大调f音唱“1”;扑克牌中的字母表示固定的数……)。
字母的用处非常大,数学上我们经常用字母运算或表示数学规律,今天我们就来研究字母在数学中的运用。
设计思路:出示图案,联系乐理知识,在于激活学生的思维,实现学生生活经验与学习内容的和谐统一。
活动(一):儿歌接龙,初次尝试用字母表示数。
1、由儿歌“1只青蛙1张嘴,2只青蛙2张嘴,3只青蛙3张嘴……”让学生说说发现了什么。
2、(师生)由慢到快儿歌接龙,引出“n只青蛙n张嘴”。
师:n是什么?它表示什么?
3、板书课题:用字母表示数。
设计思路:用字母表示数意味着将把学生从数的领域领入代数的世界,这将促使学生的数学知识结构和数学观念、方法产生质的飞跃,同时用字母表示数又是用代数方法解决问题的基础。因此,设计这样的活动,自然而然引出用字母表示数;通过活动,让学生初步感知字母在不同的情况下可以表示一个确定的数,还可以表示任意数(甚至式)。下一个活动还将渗透字母也可以表示一个在一定范围内的数。
活动(二):推想(师生)年龄,体验字母的妙用。
1、猜年龄。
(1)让我猜猜你们今年有多大了?(大多数同学今年10岁。)。
(2)那你们知道刘老师今年有多大吗?猜猜看。
2、推想师生年龄。
(1)想一想当你们1岁时,刘老师有几岁?怎样列式?
(2)下面我们来做个游戏。让我们进入时空隧道:大家可以回到从前,也可以展望未来,推算当你几岁时,刘老师是多少岁。
(3)交流汇报,教师板书。
(4)用字母表示师生的年龄。
(5)讨论a和取值范围。
(6)如果用字母b表示老师的`年龄,那么同学们的年龄可以怎样表示呢?你是怎么想的?与同桌说一说。
设计思路:这一教学环节设计从具体的算式抽象出用字母表示数量关系,使学生感受到数学的符号语言比文字语言更为简洁明了,体现用字母表示数的概括性、简洁性。通过积累、体验和认识,不断提高学生的学习兴趣和理解所学知识的能力。
活动(三):数数猜猜,发现规律。
出示三角形图。
(1)搭一个三角形,要用几根小棒?搭两个互不连接(下同)的三角形呢?
(2)如果也让你搭三角形,你准备搭几个?要用几根小棒?
(3)观察:搭了这么多三角形,你有什么发现吗?
(4)我们知道m在这里表示三角形的个数,那么m可以表示几个这样的三角形?(m在这里表示除0外的任意自然数。)。
(5)自学教材“小博士的话。”(字母表示数时的简写方法。)。
设计思路:安排学生自学课本,培养学生的自学能力,逐渐养成阅读教材的习惯。
活动(四):小小“审判官”(判断下列各式的写法是否正确。)。
a×4可写成a4()(数与字母相乘时,数一般写在字母前面。)。
5×6可写成56()(数与数相乘时,乘号不能省略不写。)。
b+2可写成2b()(数与数相加时,加号不能省略不写。)。
a×b=ab()(字母与字母相乘时,乘号可以省略不写。)。
1×d=d()(1与任何数相乘得原数。)。
活动(一):续儿歌。
1只青蛙1张嘴,2只眼睛4条腿;
2只青蛙2张嘴,4只眼睛8条腿;
3只青蛙3张嘴,6只眼睛12条腿;
……。
()只青蛙()张嘴,
()只眼睛()条腿。
小组交流:你能用一句话说一说这首儿歌吗?
师:26个英文字母都可以用来表示数,但由于英文字母“o”在书写形式上非常接近阿拉伯数字“0”,所以在用字母表示数时,通常不选择英文字母“o”。
活动(二):一段有趣的话。
小明和妈妈乘公交车去商场购物,车上原有30人,汽车靠站时,下去x人,又上来y人;汽车继续行驶,小明和妈妈来到商场,一双袜子8元钱,妈妈买了a双,小明买了m米彩带,回家做手工时把它平均剪成6段。
小组讨论:根据这段话可以提出哪些数学问题?怎样解答?
设计思路:设计有价值的讨论题,让学生有话想说,使学生在自主探究的空间中达到对本节课所学知识的应用与巩固。
1、在古代埃及《兰特纸草书》中用x代表数,这是目前已知的人类最古老的使用字母的记载。
2、介绍数学家。
五年级数学教案人教版教案篇十七
1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。
2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。
小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。
重点:
知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。
难点:
运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
活动1【导入】。
一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。
师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。
师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。
师:这段不足1的长度怎样表示呢?(用分数表示)。
在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
师:猜一猜,这段不足1的长度是这个标准的几分之几呢?
老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。
预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的。
预设2:红色纸条对折,不足1的部分是红色纸条的。
预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。
我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。
活动2【讲授】。
二、分物中体会单位“1”可以是多个物体。
师:刚才我们找到了,生活中其他的地方有没有呢。
大米。
1000克。
拿出小片子,请你分别表示出它们的。
我们表示的都是,可是为什么对应的数量却都不相同呢?
回顾一下找的过程,你对分数又有了哪些新的体会?
师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”
活动3【讲授】。
三、分物中认识分数单位,深入体会分数的意义。
师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。
合作建议:
独立思考:想一想、画一画,用这些糖还能表示出哪些分数。
小组讨论:在小组内说一说你找到的分数所表示的意义。
预设:
观察这两个分数你有什么发现吗?
相同点:都是把6块糖平均分成6份。
不同点:取的份数不同。
联系:2个是。
师:你会表示吗?
师:我们发现有几个就是六分之几。
师:你会表示吗?
师:那么有几个就是三分之几。
像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。
师:有些同学还找到了一样的分数,对吗?
师:表示了这么多分数,谁能来说说分数的意义。
活动4【导入】。
四、巩固练习。
1、填一填。
2、猜一猜。
师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。
师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?
师:同学们想不想知道我给大家今天的学习情况评几颗星呢?
出示。
师:你知道这是几分之几吗?
有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。

一键复制