范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
比的应用教学设计一等奖篇一
1. 帮助学生理解、掌握稍复杂的分数乘法应用题的数量关系,学会用两种方法解答求一个树比少几分之几的分数应用题。
2. 学生能够理解稍复杂的分数乘法应用题的解题思路,提高分析、推理等思维能力。
3. 经过小组合作,让学生发现和探讨问题,在合作和交流的过程中,获得良好的情感体验,激发学生学习的兴趣,体验到数学与生活的密切联系。
理解分数应用题的数量关系,会用两种方法灵活解答。
一. 巧设铺垫,激趣导入
1. 创设情景:同学们,今天我们班来了一位特殊的嘉兵,谁呢?(请出小记者)现在我们来做个现场采访:在前面所的知识中,你感觉哪部分知识比较难理解?(学生自由发言,与小记者产生共鸣,从而引出“应用题”)
2. 设疑:小记者请求大家来帮助他如何理解、掌握应用题?
3. 小记者设问探讨:解答前面所学的分数应用题关键在哪?(学生自由探讨,发表意见,引出找关键句、找单位“1”及数量关系,也可画线段图理解关系)
4. 小记者示题:说出下面各题的单位“1”及数量关系。
(1)一些奖状,发了3/5
(2)已经看了全书的1/8
(3)男生占全班人数的3/7
(学生自由口述,选择喜欢的题目解答)
引出“刚刚的3句话,在应用题中是作为什么部分?(关键句)
5. 示问:除了刚刚的几句关键句,你能找出在生活中哪些地方也用过类似的话?又如何找出单位“1”及数量关系(学生自由探讨,根据学生回答选择适当的关键句写在黑板上,为后面服务)
二. 探索交流,建构新知。
(一)自由构建新知。
1. 设疑:一道完整的应用题除了关键句,还需要什么部分?(学生交流,引出“条件、问题“)
2. 编题:那你能否选择自己喜欢的关键句,补充一道完整的应用题?并思考如何解决?我们分小组比赛,看哪小组合作的既快又有新意,可邀请我们的小记者和老师一并参与(分小组合作探讨、交流)
[设计意图:富有挑战性的问题犹如一枚枚石子投入蓄势已入的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作、足以让学生获得积极的、深层次的体验。行云流水般的分数应用题教学全无例行公事、思路闭所,空间狭小之嫌。正所谓“灵感总青睐有准备的头脑”。学生结合自己的生活经验,自由提问,可以培养学生的发散性思维,并培养学生的问题意识。往往提出一个问题可能比解决问题更为有意义。这一环节,把学习的主动权真正交给了学生,让学生通过小组合作的方式操作,通过动脑编题——动手写题——自主探索、合作交流解题,放手让学生去探索,并通过小组合作比赛,这样不仅充分激发了学生的学习积极性,而且使学生体会了发现、掌握新知的方法。
(二)探讨交流新知。
1. 交流展示成果:选一些小组向全班交流
根据小组的汇报,选出一些典型的题目(多媒体)适时展示,全班共同交流。
例如:一些奖状共15张,发了3/5,还剩几张?(发了几张?)(发了的的比剩下的少几张?发了的比剩下的少几分之几?)
示问:对刚刚那小组的成果(题目),你们会帮忙解答吗?(全班尝试解答,请部分学生板演)
2. 交流:“还剩几张”你是怎么想的?
学生介绍方法:
(1)根据数量关系,总共的—发了的=剩下的,总共的×3/5=运走的
15—15×3/5
=15—9
=6(张)
(2)画线段图帮助理解。
分析:结合线段图理解“把什么看作单位“!”,运走了几分之几,还剩几分之几,各是哪部分?怎么表示的?)
15×(1—3/5)
=15×2/5
=6(张)
整个方法介绍过程中,全班同学共同参与,群策群力,教师根据学生回答情况适时点拨。
3. 小结:刚刚由于全班的共同努力,我们自己的问题自己想办法解决了,真是聪明!看来我们集体的智慧是无穷的。我们用了哪些方法来解答刚刚那一小组的题目的,说说你比较喜欢那种。(自由发言)
那对于刚刚的方法还有什么困惑的吗?提出来大家共同解答。
(三)灵活运用新知。
2. 学生解答剩余的题目,拓展、巩固对新知的理解。(自由发言、交流)
4. 小记者兴致昂然,想展示一下自己学到的本领,请其余同学出题来考他。(学生出题,视平台展示)
4. 创设情景:小记者解答有困难(数量关系出错,对应分率出错)请同学们帮助解答。
突出强调解答应用题的方法(理清数量关系,理清对应分率)
[设计意图:结合学生表现颁发奖状,与我们的例题浑然一体,学生兴趣昂然激发了学生后面解决问题的积极性。同时设立小记者遇到困难,突出强调今天所学的知识的重点。这一活动,还是放手让学生自己去提问,再自己解决,充分相信学生,有助于扩展学生的思维空间,培养学生的创新意识和合作精神,增强了数学内容的趣味性、开放性。
小记者出题:看同学们表现那么棒,考官做的那么溜,也想当会考官,你们敢不敢应战?(多媒体演示出题)
我设计的“稍复杂的分数应用题”教学设计是为新授部分服务的,具体有以下几个特点:
1. 从生活经验导入新课,使数学问题生活化。
课一开始,联系学生学习生活实际,说说学习方面比较困惑的知识话题导入新课,从“解答应用题关键所在”来切入主题。这样做使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲切感,他们被浓浓的生活气息所感动,兴致勃勃的投入到新课的学习之中。
2. 让学生亲身体验知识的形成和发展。
小学生已经具有了一定的生活经验,因此教师设计了这样一个情节:小组自由选择喜欢的关键句编题并思考如何解答。学生通过合作探讨交流,得出解答的方法。从自己质疑——解疑问——汇报交流,整个教学过程环环相扣,双基训练扎实。教学中设置了许多开放性问题,拓宽了学生进行实践、创新学习的课程渠道,注重学生的情感体验和个性发展,增强数学内容的趣味性、开放性,强调学生数学学习的过程。
3. 注重学习的开放性,学生的自主探究、合作交流。
整个学习过程,从问题导入,引出新知,到自由探讨新知,解决问题都是学生自主探究形成,真正主人教师只是参与其中,从而引导和辅助。学生是整节课引发的一环有一环,促使学生层层深入的思考,让学生自觉地、全身性的投入到学习活动中,用心发现、用心思考、真诚交流。
比的应用教学设计一等奖篇二
使学生加深对比的认识,进一步掌握比的知识在解决实际问题中的应用,并加深认识不同问题的'特征和解题方法,并沟通知识间的联系,提高学生应用比的知识解决实际问题的能力,以及思维能力和思维品质。
运用比的知识解决实际问题。
教学准备
教学过程设计
教学内容
师生活动
一、基本训练
二、应用题练习
三、小结
四、作业
练习1310
一本书,已看页数和剩下页数的比是2∶1。
苹果筐数和橘子筐数的比是3∶4
一个长方形长和宽的比是5∶3
男生与全班人数的比是4∶9
要求说出各占几份,再说出每个数量各占总数量的几份之几和一个数量是另一个数量的几分之几或几倍。
合唱组人数是美术组的3倍。
大米袋数是面粉的1.5倍。
公牛头数是母牛的1/3
摩托车辆数是自行车的2/5。
上下练习;
问:已知什么,要求什么?这是什么应用题?关键是什么?
问:4∶1是哪两个数量的比?长和宽对应的总长度是40米吗?为什么?
要下求什么,再求长和宽?
上下练习。
明确题意后指出:能根据数量与比之间的对应关系把它改编成分数应用题吗?
学生口述后解答。说想法。
能把(2)改编成分数应用题吗?
练习131213
同学们能运用比的知识解决实际问题。
比的应用教学设计一等奖篇三
比的应用是在学生学习了比与分数的.关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
1、理解按一定比来分配一个数的意义。
2掌握按比例分配应用题的结构特点及解题方法,。
1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。
2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。
功的喜悦,对数学产生良好的情感。
2、了解比在实际生产生活中的广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。
掌握解答按比例分配应用题的步骤。
掌握解题的关键。
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
3、教学准备
学生准备小棒140根。
一课时
1、创设情景提出问题。
2、学生交流分配方案。
(1)平均分配,把橘子平均分给两个班
(2)按人数分配,人多的班分多点,人少的班分少点。
1、抓住契机,适时提问。
(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。
(2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?
2、合作交流,动手操作。
(1)用小棒进行实际的操作。
(2)分组进行操作,组长记录分配的过程。
(3)让学生说一说自己的分法。
3、提升认识,板书课题。
师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题—比的应用(板书课题)。
4、实际应用,解决问题。
(1)师:如果这些橘子的个数刚好是140个,按刚才的比3:2进行分配,该怎么分?
(2)学生独立完成,小组交流方法。
(3)提问方法,学生板书。
方法一:3+2=5140÷5=28(个)28×3=84(个)28×2=56(个)
方法二:3+2=5140×3/5=84(个)140×2/5=56(个)
小结:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。
1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。
(1)引导学生选用喜欢的方法做题。
(2)讨论解决问题的方法。
1、举例
2、数学书第56页练一练第2题。
3、数学故事:
孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。
1、引导学生总结比的应用的一些方法。
2、这节课你有什么收获?
我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。
比的应用
方法一:3+2=5方法二:3+2=5
140÷5=28(个)140×3/5=84(个)
28×3=84(个)140×2/5=56(个)
28×2=56(个)
答:大班分到84个,小班分到56个。
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。
学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。
学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
比的应用教学设计一等奖篇四
2、通过分析解决问题的学习活动,培养学生分析问题和解决问题的能力。
:找准单位“1”,找出数量关系。
能正确地分析数量关系并列方程解答应用题。教学过程:
一、谈话激趣,复习辅垫
1.找出单位“1”,写出数量关系式
(1)杨树的棵数是柳树的1/3.
(2)红花朵数的1/2相当于黄花的朵数。
(3)白兔只数的5/6是黑兔的只数。
(4)一批化肥运走3/8。
2.师生交流
35×4/5=28(千克)
师:谁还能根据另一个信息写出等量关系式?成人的体重×2/3=成人体内的水分的重量
3.揭示课题
师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。
二、引导探究,解决问题
1.课件出示例题。
2.合作探究
师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。
3.学生汇报
生1:根据数量关系式:儿童的体重×4/5=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)生2:直接用算术方法解决的,知道体重的4/5是28千克,就可以直接用除法来做。
28÷4/5=35(千克)
4.比较算术做法与方程做法的优缺点。
5.对比小结
和前面复习题进行比较一下,看看这道题和复习题有什么异同?
(1)看作单位“1”的数量相同,数量关系式相同。
(2)复习题单位“1”的量已知,用乘法计算;例1单位“1”的量未知,可以用方程解答。(或用除法计算)
(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。
6.试一试:一条裤子的价格是75元,是一件上衣的2/3。一件上衣多少元?
根据学生回答画线段图。根据题中的数量关系找学生列出等量关系式。学生根据等量关系式列方程解答(找学生板演,其他学生在练习本上做)。
师:这道题你还能用其它方法解答吗?
(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)
三、联系实际,巩固提高1.练一练:
(1).小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?
2.对比练习
(1)一条路50千米,修了2/5,修了多少千米?
(2)一条路修了50千米,修了2/5,这条路全长是多少千米?
(3)一条路50千米,修了2/5千米,还剩多少千米?
四、全课小结畅谈收获
(教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。)
比的应用教学设计一等奖篇五
比的.应用是在学生学习了比与分数的关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
[教学目标]
知识与技能
1、理解按一定比来分配一个数的意义。
2掌握按比例分配应用题的结构特点及解题方法。
过程与方法
1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。
2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。
情感态度与价值观
1、在问题解决过程体验成功的喜悦,对数学产生良好的情感。
2、了解比在实际生产生活中的广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。
[教学重点]
掌握解答按比例分配应用题的步骤。
[教学难点]
掌握解题的关键。
[学习方法]
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
3、教学准备
学生准备小棒140根。
[教学时间]
一课时
[教学过程]
一、创设生活情景,谈话引入。
1、创设情景提出问题。
2、学生交流分配方案。
(1)平均分配,把橘子平均分给两个班
(2)按人数分配,人多的班分多点,人少的班分少点。
二、探讨解决问题的方法。
1、抓住契机,适时提问。
(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。
( 2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?
2、合作交流,动手操作。
(1)用小棒进行实际的操作。
(2)分组进行操作,组长记录分配的过程。
(3)让学生说一说自己的分法。
3、提升认识,板书课题。
师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题―比的应用(板书课题)。
4、实际应用,解决问题。
(1)师:如果这些橘子的个数刚好是140个,按刚才的比3:2进行分配,该怎么分?
(2)学生独立完成,小组交流方法。
(3)提问方法,学生板书。
方法一:3+2=5140÷5=28(个) 28×3=84(个) 28×2=56(个)
方法二:3+2=5140×3/5=84(个) 140×2/5=56(个)
小结:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
三、实践运用,巩固练习。
师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。
1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。
(1)引导学生选用喜欢的方法做题。
(2)讨论解决问题的方法。
四、联系生活,介绍比的应用的广泛性。
1、举例
2、数学书第56页练一练第2题。
3、数学故事:
孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。
五、回顾教学,总结方法。
1、引导学生总结比的应用的一些方法。
2、这节课你有什么收获?
六、作业。
我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。
板书设计
比的应用
方法一:3+2=5 方法二:3+2=5
140÷5=28(个)140×3/5=84(个)
28×3=84(个) 140×2/5=56(个)
28×2=56(个)
答:大班分到84个,小班分到56个。
《比的应用》教学反思
一、充分挖掘教材,旧知迁移新知。
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。
二、借助多媒体或教具,助学生理解新知识。
学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。
三、教师在小结升华时讲解。
学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
比的应用教学设计一等奖篇六
北师大版小学数学六年级上册55—56页
对于按比例分配的应用题,学生在以往的生活中曾经遇到过,甚至解决过。有过一定的体验与感悟,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过本节课的学习,将学生无序的思维有序化、数学化、系统化。
能运用比的意义解决按照一定的比进行实际分配的实际问题,进一步体会比的意义,提高解决问题的能力。
理解按一定比例来分配一个数量的意义。
根据题中所给的比,掌握各部分量占总量的几分之几,能熟练地用乘法求各部分量。
多媒体课件
1、小调查:奶茶中,奶与茶的比是3:7,从中你可以获得什么信息?
2、3月12日是植树节,学校把种植42棵小树苗的任务分配给六年级人数相等的三个班,怎样分配才合理?(平均分配)
3、出示教材主题图,获取信息:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?说一说你的分法。(先独立想一想,然后在小组内交流,再全班交流)
学生提出两种分配方案:一种每班分橘子的一半;
另一种按大班和小班人数的比来分配
通过全班交流达成共识,按大班和小班人数的比来分配比较合理。
4、出示课题:这就是今天我们要学习的“比的应用”
设计意图:提供现实生活情境,使学生体会到数学与实际生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
1、出示题目:老师这有一筐橘子,把这筐橘子按3:2分给幼儿园大班和小班应该怎样分?(课件显示)
(学生独立思考一会儿,有的同学想到要实际分一分)
师:这样吧,我们用小棒代替橘子,小组分一分
(老师给每组相同数量的小棒,但没有告诉学生小棒的数量,学生按3:2分小棒,教师巡视)
师:分好了吗?说说你们是怎样分的?
生1:先给大班3根,小班2根;然后再给大班3根,小班2根,就这样一共分了8次分完。由此可知这堆小棒有40根,最后大班分到24根,小班分到16根。
生2:我们前两次分得跟他们一样,第三次我们发现剩的太多,我们就给大班分6根,小班分4根,就这样又分了两次分完,结果也是大班分到24根,小班分到16根。
生3:我们的分法和他们的不一样,我们按3:2来分,因为小棒有一大堆,我们就想给大班分30根,小班分20根,后来发现不够,就给大班15根,小班10根,剩下的再给大班9根,小班6根,正好分完。
师:虽然分得结果一样,但是你们的方法却不尽相同,可见同学们是用心、用脑去想了。事实上,很多科研成果也是通过科学家们的无数次试验得来的,希望你们把这种好的学习方法保持下去。
设计意图:给学生充分操作的空间,每个小组都利用小棒来摆一摆,在摆的过程中学生产生了不同的分法,有的小组按部就班一直按3根、2根分;有的小组按3根、2根分了后,及时做了调整按6根、4根分;有的小组“大胆”地按30根、20根分,不够了又再做调整。不同的分法都代表了学生对比的理解和数感,也为进一步寻求这类问题的方法积累了经验。
2、师:在这次分小棒的活动中,你们有什么发现?说说你们的感受。
生1:我觉得不管怎么分我们都要按3:2的比来分,也就是我们每次分的小棒的个数比是3:2。
生2:我发现6:4,30:20,15:10,9:6结果都是3:2。
设计意图:这一过程要给学生提供充分的体验时间,在实际操作中学生会不断调整一次分配的数量,不断产生新的解题策略,理解按一定的比例来分配的意义。
生:我觉得按3:2的比分和我们以前学过的平均分给两个人不一样,因为平均分后两个人每人分得的个数相同,而按3:2的比分两人分得的个数不同。
师:实际上以前我们学过的平均分就是按照1:1进行分配的。
设计意图:分完后引导学生进行反思,鼓励学生说出在分的过程中的发现和自己的体会。有的学生发现无论怎么分都是按3:2分,这正是理解这类问题的关键;有的学生发现了6:4,30:20,15:10,9:6结果都是3:2,这不仅巩固了化简比的内容,同时为以后学习正比例积累了经验;有的学生联想到了以前学过的平均分,在教师的引导下将前后知识联系起来。
3、师:如果现在有140个橘子又该怎么分?把你的想法在四人小组内说一说。
生1:我觉得现在橘子数目大了,再像刚才那样一次一次的分太麻烦,实际上按3:2来分的意思就是大班3份,小班2份,还是先算出来再分比较好。
生2:……
设计意图:注意鼓励学生探索解决问题的策略,在解决140个橘子按3:2又该怎么分的问题时,教师鼓励学生积极探索,想出不同的解决问题的策略。
4、比较不同的方法,说出你的解题思路,并找找他们的共同点(课件展示)
3+2=5140÷5=28(根)28×3=84(根)28×2=56(根)
3+2=5140×0。4=56(根)140×0。6=84(根)
小结:在解决实际问题时,同学们要认真分析数量关系,可以选用自己喜欢的方法来解答。
设计意图:有上面小组合作的经验与发现,这次可以用操作、画图、列式等不同的方法分,从实践中发现规律,理解部分量与总量之间的关系。会解答这类应用题。
1、独立完成教材56页“试一试”,集中反馈。
2、独立完成教材56页“练一练”2题。,找学生板眼,集中反馈,讲解不同的解题思路。
设计意图:培养学生独立思考问题、解决问题的能力。互帮互助的作用,鼓励学生用数学语言表述自己的解题思路。在这一过程中,便于发现问题并及时解决。
教材56页故学故事
1、学生看书回顾本节学习内容
2、对于这节课的学习,你还有什么疑问?
3、说说这节课你的收获。
设计意图:通过品尝不同比例的糖水加深印象,明白按比例分配应用题在实际生活中的用途是很广泛的,从而感受到生活中处处有数学,并树立学好数学知识的自信心。
比的应用教学设计一等奖篇七
1、能将自己的设想画出图样。
2、能按照自己的设想去制作。
3、能在制作完成后进行尝试并加以改进。
4、能说得出自己应用的主要原理。
1、知道张衡发明地动仪是利用了地震波在大地中传导的原理。
2、知道瓦特发明蒸汽机是利用了蒸气气流的力量。
3、了解发电的多种方法和电转化为其他能量的形式。
1、善始善终地从事一项活动。
2、有精益求精的行为倾向。
教学准备:搜集有关科学原理及其应用的'资料,气球、轮胎、卡纸、剪刀、胶带、吸管、泡沫板、木块、橡皮泥、叶轮、皮筋等。
1、上一节课,我们已经能够利用所学的知识和本领解释生活中的各种现象,懂得和解释是一种本领,能将所学的科学原理应用在物品的制作上是更大的本领。
2、你知道在科学的发展史上有哪些将科学原理应用在制作上的例子吗?
3、学生交流搜集的有关科学原理应用在制作上的例子。
4、阅读书上73页的资料。
5、出示做小车的材料和要求(以空气为动力,比一比谁的小车跑的又快又远)
7、回忆一下,做空气动力的小车运用到了我们以经学过的哪些知识?
8、学生动手制作。
9、小车进行比赛。
10、交流有关小船的资料。
11、设计自己想做的小船的草图和所需的简单材料。(应当配有文字说明)
12、你认为制作的小船应当涉及哪些科学原理呢?
13、讨论交流。
14、学生根据自己的设计图利用自己准备的材料制作一个小船。
15、你造的小船涉及哪些科学原理呢?
16、今天,我们将自己所学的科学原理应用到了物品的制作上,这也是一种拓展。
17、其实,科学发展的目的本意就是用来改善人类的生活,促进人类社会的进步。
18、你在平时做过哪些小制作,你知道它们是根据哪些科学原理吗?
比的应用教学设计一等奖篇八
教学内容:
人教版六年级数学上册第54页例2和练习十二第1~4题。
教学目标:
1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。
2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。
3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。
教学重点:
运用按比分配的知识解决生活中的实际问题。
教学难点:
提高分析问题与解决问题的能力。
教学过程:
一、情景导入。
如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。
板书:比的应用。
二、探索新知。
请同学们打开教科书的54页。
出示教材54页例2
阅读与理解:
(1)、了解情境中的生活信息。
(2)、已知条件:500ml是配好后的稀释液的体积,1:4表示的是浓缩液与水的体积的比。
分析与解答:
(1)、稀释液:500ml总分数:1+4=5
1:4表示什么意思呢?
浓缩液:水
(2)、浓缩液和水的体积比是1:4。
浓缩液的体积是稀释液的1/5。
水的体积是稀释液的4/5。
方法一:
总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。
把每份是:500(1+4)=100(ml)
浓缩液:1001=100(ml)
水:1004=400(ml)
方法二:
先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。
浓缩液有:5001/5=100(ml)
水有:5004/5=400(ml)
回顾与反思:
浓缩液体积:水的体积
=():()
=():()
答:浓缩液有100ml,水的体积有400ml。
三、巩固练习
练习十二第1、2题。
四、小结:
1、今天我们应用比解决了一些实际问题。你有什么收获?
2、按比的配制应用题的解题方法是:a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。
五、作业:
练习十二第3、4题。
六、板书设计:
比的应用
方法一方法二
总分数1+4=5
每份数:500(1+4)=100(ml)浓缩液占总体积的1/5
水占总体积的4/5
浓缩液:1100=100(ml)浓缩液有:5001/5=100(ml)水:4100=400(ml)水有:1004/5=400(ml)
答:浓缩液有100ml,水的体积有400ml。
课后反思:
按比的`配制稀释液解决生产生活中的实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。
比的应用教学设计一等奖篇九
使学生加深对比的认识,进一步掌握比的知识在解决实际问题中的应用,并加深认识不同问题的特征和解题方法,并沟通知识间的联系,提高学生应用比的知识解决实际问题的能力,以及思维能力和思维品质。
运用比的知识解决实际问题。
教学准备
教学过程设计
教学内容
师生活动
一、基本训练
二、应用题练习
三、小结
四、作业
练习1310
一本书,已看页数和剩下页数的比是2∶1。
苹果筐数和橘子筐数的比是3∶4
一个长方形长和宽的比是5∶3
男生与全班人数的比是4∶9
要求说出各占几份,再说出每个数量各占总数量的几份之几和一个数量是另一个数量的几分之几或几倍。
合唱组人数是美术组的3倍。
大米袋数是面粉的1.5倍。
公牛头数是母牛的1/3
摩托车辆数是自行车的2/5。
上下练习;
问:已知什么,要求什么?这是什么应用题?关键是什么?
问:4∶1是哪两个数量的比?长和宽对应的总长度是40米吗?为什么?
要下求什么,再求长和宽?
上下练习。
明确题意后指出:能根据数量与比之间的对应关系把它改编成分数应用题吗?
学生口述后解答。说想法。
能把(2)改编成分数应用题吗?
练习131213
同学们能运用比的知识解决实际问题。
比的应用教学设计一等奖篇十
知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。
过程与方法:培养学生运用知识进行分析、推理等思维能力。
情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
掌握按比例分配应用题的结构特点和解题思路。
正确分析解答按比例分配应用题。
启发引导法,演示法学法:观察比较,合作交流。
多媒体课件。
27千克:750克千米:800米求下面各比的比值:66学生独立完成,抽生板演,集体订正。
2。我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。
(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)
(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)
(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)
水的体积:500×4=400(ml)
答:稀释液100ml,水400ml。
这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。
师:把我们学过的比转化成分率,怎样来做?
生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5。可以写成:浓缩液的体积:500×1/5=100(ml)
水的体积:500×4/5=400(ml)
答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)
做一做第1、2题,学生独立完成,抽生板演,集体讲评。
今天我们学到了什么?
教材第50页,练习十二1—3题。
本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。
比的应用教学设计一等奖篇十一
1、通过观察进一步理解等分活动与除法之间的关系,进一步体验除法运算与生活实际的密切联系。
2、结合具体情境,体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。
3、培养学生分析、解决问题的能力,养成良好的学习习惯。
体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。
多媒体课件。
一、复习准备,为新课铺垫。
1、小朋友们,喜欢去麦当劳、肯德基吗?吃过薯条、汉堡包吗?
2、今天,老师就和大家一起去哪里看看有哪些好吃的东西,好不好?
3、多媒体出示即时练习,指名回答,并说明理由。
二、创设情境,激趣导入。
3、出示课题:文具店。
二、自主探索,研究新知。
1、出示教学目标,了解今天的学习任务。
2、了解图意,获取信息。
(1)我们一起看看小动物们都买了什么文具呢?
小兔买了一支笔,花了2元钱。
大灰狼买了一个文具盒。
小牛买了3支铅笔。
(2)们说得真不错,除了这些以外,你还知道什么?
大灰狼花的钱是小兔的'4倍。
3、小组交流,解决问题。
(1)你真是一个认真观察的好孩子!现在大灰狼想考考大家,你们知道他们买文具花了多少钱吗?请小朋友在组里互相说一说,然后完成书上的“填一填”。
(2)学生分组交流,解决问题。
(3)师生共同探讨:你是怎么想的,说说你的理由。
(4)小朋友说得真好!大灰狼和小牛为你们喝彩。谁和他们一样棒,也来说一说。
(6)小结:求一个数的几倍是多少用乘法计算。
4、画一画。
同学们通过了大灰狼和小牛的考验,现在老师想考考你们,愿意接受挑战吗?
请小朋友完成课本48页“画一画”。
(1)学生独立思考。
(2)让学生用学画一画。
(3)指名回答。
(4)你会用什么是什么的几倍说一句话吗?
5、经过刚才的学习,你能解决下面的问题吗?
(1)5的2倍是多少?
(2)3的9倍是多少?
(3)6的5倍是多少?
(4)4的8倍是多少?
三、巩固应用,拓展创新。
1、练一练1、2。
(2)学生独立完成,师生交流。
2、练一练3。
(1)小朋友们,喜欢去旅游吗?
(2)你们去旅游都离不开什么交通工具?
(3)今天老师给同学们带来了3辆车,你能说出是什么车吗?
(4)从图中你得到了哪些数学信息?
(5)你知道大客车上有多少位乘客吗?小轿车上呢?请小朋友们讨论一下,也可以用小棒或圆摆一摆。
四、评价体验。
五、板书设计:
文具店
老黄牛花的6元钱2×3=6(元)
大灰狼花的8元钱2×4=8(元)

一键复制