生活中的小瞬间,常常会给我们带来最深刻的感动和启示。一篇完美的总结应该具备简明扼要、准确完整的特点。如果你感到写总结困难,可以参考下面这些范文来提升自己的写作能力。
中考数学答题技巧与方法实用篇一
其实,不仅仅是数学考试,在参任何一门考试之前,你都要弄清楚或明确几个问题:考试一共有多长时间,总分多少,选择、填空和其他主观题各占多少分。这样,你才能够在考试中合理分配考试时间,一定要避免在不值得的地方浪费大量的时间,影响了其他题的解答。
拿安徽省的数学成人高考题为例,安徽省数学成人高考满分为150分,时间是2小时,其中选择题是12道,每题5分,共60分;填空题4道,每题是4分,共16分,解答题一共74分。所以在了解这些内容后,你一定要根据自己的情况,合理安排解题时间。
一般来说,选择题填空题最迟不宜超过40分钟,按照尚博学校的教学标准是让学生在30分钟之内高效的完成选择填空题。你必须留下一个多小时甚至更多的时间来处理后面的大题,因为大题意味着你不仅要想,还要写。
考试时,一定要根据自己的情况进行取舍,这样做的目的是:确保会做的题目一定能够拿分,部分会做或不太会做的题目尽量多拿分,一定不可能做出的题目,尽量少投入时间甚至压根就不去想。
对于基础较好的学生,如果感觉前面的选择填空题做的很顺利,时间很充裕,在前面几道大题稳步完成的情况下,可以冲击下最后的压轴题,向高分冲击。对于基础一般的学生,首先要保证的.是前面的填空选择题大部分分值一定能够稳拿,甚至是拿满分。对于大题的前几题,也尽量多花点时间,一定不要在会做的题目上无谓失分,对于大题的后两题,能做几问就做几问,即使后面的几问不去做,也一定要保证前面的分数,因为最后两题题目的性价比远远不如前面的题目实惠。
对于基础较差的学生,首先,填空选择能会做的就一定要做对,对于大题,能写几问就写几问,而最后两道压轴题如果读完之后觉得过难的话,建议大胆放弃,不要觉得心疼,因为你即使花了很长时间去做去想也不见得能多拿几分,如果把这些时间用在选择填空题中,可能会收益更大。
这个方面,大家也不必盲目模仿别人的做法,还是那句话,要根据自己的情况,自己斟酌。许多没有考试技巧的学生经常出现的情况是,所有的题目都想做,但所有的题目都完成的匆匆忙忙、漏洞百出,本来会做的题由于匆忙或掉以轻心而失分,而后面的一些大题即使在卷子上写了很“多”,却发现只能得到1分2分。这样的同学就是在考试的方法上很失败,我们应该吸取这样的教训。
考试中有选择题、填空题和解答题,其中选择填空题跟解答题的本质区别是它们是不需要写出解答步骤的,其实命题人已经暗示了我们,选择填空题只要你把答案做出来,无论你用什么方法都是允许的。许多不会考试的人常犯的错误和大忌,就是把每一道题都当作解答题按部就班的去解答,这样,即使你能把题目做对,但是浪费了大量不必要的时间。
其实,许多选择填空题仔细观察题目中的数字和选项,就可以排除一些选项,完全可以降低难度甚至直接选出正确答案,许多填空题往往有许多灵活的技巧,但由于这些技巧在解答题当中往往不适宜写在卷面中,所以经常被我们所忽视掉了。
比如,做选择填空题常用的巧妙方法有:排除法、数形结合、画图观察、代入验证等等方法。这些技巧和方法也是我们在平常的题目讲解中要为学生灌输和渗透的内容,我们在教学中也会逐步培养学生的这种意识。
选择填空题大家一定要重视,不仅仅是因为分值,还因为它会直接影响考生考试的心情,往往会成为一场考试成败的关键。
总之,大家一定要根据自己的实际情况去研究或琢磨考试的方法和技巧,在考试中做到心平气和,正确取舍,这样才能取得成功的考试。
中考数学答题技巧与方法实用篇二
一,合理定位,有舍有得填空题的后几题都是精心构思的新题目,必须认真对待;选择题的不少命题似是而非,难以捉摸;可是,不少学生却一带而过,直奔综合题,造成许多不应有的失误。其实,综合题的最后一个小题总是比较难,目的是提高考试的区分度,但是只有4分左右。如果暂且撇开,谨慎对待116分的题目,许多学生都能考出不俗的成绩。
二,吃透题意,谨防失误数学试题的措词十分精确,读题时,一定要看清楚。例如:“两圆相切”,就包括外切和内切,缺一不可。如果试题与熟悉的例题相像,绝不可掉以轻心。例如“抛物线顶点在坐标轴上”就不同于“顶点在x轴上”。
三,步步为营,稳中求快不少计算题的失误,都是因为打草稿时太潦草,匆忙抄到试卷上时又看错了,这样的毛病难以在考试时发现。正确的做法是:在试卷上列出详细的步骤,不要跳步。只有少量数学运算才用草稿。事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,考分就高。
四,不慌不躁,冷静应对在考试时难免有些题目一时想不出,千万不要钻牛角尖,因为所有试题包含的知识、能力要求都在考纲范围内,不妨先换一个题目做做,等一会儿往往就会豁然开朗了。综合题的题目内容长,容易使人心烦,我们不要想一口气吃掉整个题目,先做一个小题,后面的思路就好找了。
中考数学答题技巧与方法实用篇三
考填空题主要题型:
一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。选择填空题与大题有所不同,只求正确结论,不用遵循步骤,因此应试时可走捷径,运用一些答题技巧,在这一类题中大致总结出三种答题技巧。
1.直接法:根据题干所给条件,直接经过计算、推理或证明,得出正确答案。
2.图解法:根据题干提供信息,绘出图形,从而得出正确的答案。
首先,应按题干的要求填空,如有时填空题对结论有一些附加条件,如用具体数字作答,精确到……等,有些考生对此不加注意,而出现失误,这是很可惜的。
其次,若题干没有附加条件,则按具体情况与常规解答。应认真分析题目的'隐含条件。
总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。打好基础,强化训练,提高解题能力,才能既准又快解题。另一方面,加强对填空题的分析研究,掌握其特点及解题方法,减少失误。
中考数学答题技巧与方法实用篇四
数学冲刺复习一定要把大纲中规定的核心重要考点进行梳理,结合做题来进一步的巩固,熟练把握。小编整合了高数、线代和概率部分的核心考点,广大考生再来梳理看看,你是否复习有所遗漏……下面是小编为大家收集的关于2020高考数学答题技巧及。
方法。
方法大全。
希望可以帮助大家。
做题时,有一些“条件反射”你应该记住,这能帮你大大的节省时间!具体的看看下面吧!对你一定有帮助哦!
1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;。
4、选择与填空中出现不等式的题目,优选特殊值法;。
9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;。
17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;。
19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下。
总结。
高考数学五大解题思想,帮助同学们更好地提分。
1、函数与方程思想。
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、数形结合思想。
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想。
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4、极限思想解题步骤。
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5、分类讨论思想。
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
文章。
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
中考数学答题技巧与方法实用篇五
当年我选择了比较简单和基础的教辅资料。
高三下半学期我提前1小时自习做数学,还有就是第一节自习课也在做数学。只做每个知识点的基础题,因为那时候的我连公式都不能熟练应用。
做完一个模块的基础题,不懂的题目马上问老师。
题目搞懂之后,我再找同样的题目再做一次。所以我一般准备两本教辅资料反复做。
记住只做基础题,通过题目将概念和公式都背熟才能进阶下一步。
我习惯用铅笔写,因为写完可以擦掉再隔两天再练习一次,看看自己会不会再错。
大概1个月时间,月考数学就有110分了,数学老师再也不会当着全班同学面点名,让我去开会了。
注意:这个阶段训练适合基础差对知识不熟悉的同学,在周一到周五抓紧时间大量刷基础题,周末可以做高考真题检测一下学习情况。因为我是每周都要高考模拟测试的,所以刷真题的速度会慢一点,大家可以根据自己的时间做调整。
中考数学答题技巧与方法实用篇六
不停刷,刷不停,反复刷。不要以为真题刷1遍就完事了,这样不足以让你熟悉高考出题的套路。
但是高三任务很紧凑,每天老师都要布置大量的作业,几乎腾不出完整的时间进行刷题。
我以前学校周测,一周语文、数学、英语,下一周是语文、数学、文综这样交替着来。周六中午就放学回家自习,我会利用周末时间刷真题,数学是每周必刷的科目,然后是英语和文综交替着来。
刷题一定严格按照高考规定时间来,在前期对知识点不熟悉很多题目不会,挫败感很强,忍住,不会的跳过。
选定的10套题不停地刷,刷完重新开始,一直到6月份。不要觉得烦,题目做过了有时候还是会错的。
原则:每周尽量安排2科,严格按照高考时间进行。
中考数学答题技巧与方法实用篇七
中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2、一元二次方程与函数。
在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
3、多种函数交叉综合问题。
初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。
4、列方程(组)解应用题。
在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。
5、动态几何与函数问题。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。
6、几何图形的归纳、猜想问题。
中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。
提高数学成绩的学习方法。
1、第一步要增强自己的自信心。
从时间、中考试卷难度、现阶段的情况、预期目标、成功提高成绩学生案例等方面分析,增强学习动力。
2、狠抓基础,循序渐进。
完善基础知识,在数学的学习上一直比较吃力大概率是某些题没有做到炉火纯青的地步,所以你需要对知识点全部理解和掌握,找到知识死角,吃透知识。这些同学可以利用上初三前的暑假把初一、初二年级的知识漏洞通过查、学、练、测的循环模式补起来,形成完整的知识框架,在继续学习新知识时能跟上老师节奏,自然会轻松很多。
3、养成好的学习习惯。
在学习的过程中,培养预习、带着问题上课、复习、积累、总结的习惯,从“要学”变成“会学”,最后会“自学”。不仅对现在很重要,对以后高中的学习也有很大帮助。
4、循序渐进,逐步加大做题难度。
基础扎实之后,可以逐渐增加难度,做一些中等难度的题目,也不能盲目的只顾做题,要注重思维、思考问题的能力,解题的方法、技巧的训练。
5、突出重点,突破难点。
认真分析按照中考考纲及近几年中考数学试卷命题的变化规律,对重点考查内容进行分类训练,对难点进行各个击破。
6、熟悉数学思想,学以致用。
熟悉并运用常用的数学思想,如方程思想、整体思想、化归思想、函数思想、数形结合思想、分类讨论思想等。
7、中考基础题真题演练。
要求达到自己理想的正确率,也可以全面考察知识漏洞情况,可以再做复习。
8、中考压轴题突破。
纵观数学中考命题规律,压轴题主要出现在函数和三角形或四边形或圆部分的动态问题或分类讨论的内容。对压轴题进行分类剖析,形成解题思路和技巧。
最后一个月,基础不同的同学,努力目标不同,应对策略不同。以市质检成绩为例:不及格同学的目标是100分——抓基础,放难题;90-110分同学的目标是120分——保基础,主攻中档题;110分以上同学的目标120分以上——控制无谓失分,努力提升解题能力。
中考数学卷难度大致分布:基础题是选择、填空题以及解答题前六题,共98分;中档题共32分;难题,共20分。只要愿意去做,就会有进步,中考前一个月就有可能逆袭。
1、查缺补漏,主攻薄弱。
中考前一个月在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进,抓住最后的逆袭机会。
2、反思错题。
中考前一个月不要盲目找题做陷入题海中,不要试图“做过”中考题(基础题除外),不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了,中考前一个月才能逆袭。
中考数学答题技巧与方法实用篇八
利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。
2、特殊值检验法。
对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。
3、顺推解除法。
利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。
4、极端性原则。
将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。极端性多数应用在取值范围、解析几何和求极值上面,很多计算量大、计算步骤繁琐的题,采用极端性去分析,可以瞬间解决问题。
5、直接法。
直接法就是从题设条件出发,通过正确推理、判断或运算,直接得出结论,从而作出选择的一种方法。用这种方法的学生往往数学基础比较扎实。
6、估算法。
就是把复杂的问题转化为简单的问题,估算出答案的近似值,或者把有关数值缩小或扩大,从而对运算结果作出一个估计或确定出一个范围,达到作出判断的效果。
中考数学答题技巧与方法实用篇九
1、迅速摸清“题情”。
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。
摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。
2、答卷顺序“三先三后”。
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。
在做题的时候我们要遵循“三先三后”的原则。
首先是“先易后难”。这点很容易理解,就是我们要先做简单题,然后再做复杂题。当全部题目做完之后,如果还有时间,就再回来研究那些难题。当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。也就违背了我们的原意。
其次是“先高后低”。这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。这样能够拿到更多的总得分。并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。
最后是“先同后异”。这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
3、做题原则“一快一慢”。
这里所谓的“一快一慢”指的是审题要慢,做题要快。题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。
当思考出解题方法和思路之后,解答问题的时候就一定要简明扼要、快速规范。这样不仅给后面的题目赢得时间,更重要的是在保证踩到得分点上的基础上尽量简化解题步骤,可使得阅卷老师更加清晰地看出你的解题步骤。
4、把握技巧“分段得分”。
对于中考数学中的难题,并不是说只让成绩优秀的学生拿分而其他学生不得分。实际上,中考数学的大题采取的是“分段给分”的策略。简单说来就是做对一步就给一步的分。这样看来,我们确保会做的题目不丢分,部分理解的题目力争多得分。
5、检查突出重点“确保得分”。
卷子做完之后,有时间的话,要全面检查。如果时间不是很充裕,则要重点检查选择题、填空题、计算类的题目,因为这类题目稍有错误,可能一分不得,而证明题只要能证出来,一般不会出错或太大的错,得分相对有保证。当然,不是说这部分题不用检查,有时间的话,还是需要认真检查的。
中考数学答题技巧与方法实用篇十
1、请复习课本。
永远不要小看课本上的知识点,我们平时的学习都来源于课本,所以在复习的时候一定不能把课本拉下。我们应该逐步发现知识之间的联系,构建知识框架,填补知识空白,为后续的复习提供理论支持。
2、发展良好的计算和检查实践,提高计算能力。
学习数学最重要的就是计算能力和逻辑思维能力,中学教师经常在程序上一步一步地计算。由于时间有限,计算量大,高中老师经常把计算交给学生,这不仅需要学生的大脑和努力,还需要书面计算,以及口头和心理计算。对于复杂的运算,我们应该以数字和简单的方式进行计算。
3、制定解决问题和提高思考能力的良好做法。
这是一项数学思维的体操,思维逻辑性强,思维缜密。文化和标准化是解决问题的有效途径,以提高数学语言表达能力:文字、符号和图形。数学语言是发展思维能力的基础。因此,在此基础上,我们只能提高我们共同思考的能力。
4、经常做笔记。
学生们必须在课堂上认真记笔记,这些笔记对于他们所说的放大镜来说具有正确的特征,并且“抓住要点,去其糟粕”。我们必须以书面形式仔细计算,找出困难,管理解决方案,最终得到正确的计算结果。
5、增加相应的练习。
可以填补基本选项中的空白,逐步提高你的实力。同时,要用错误的问题填空经验和技能,总结经验,增强解决问题的能力。
中考数学答题技巧与方法实用篇十一
第三阶段主要是进行模拟中考的综合训练。经过前两轮的复习,学生无论从知识的掌握,还是从解题能力的培养都会有所提高。但在临考前心理上却是很不稳定,因此要进行必要的适应性训练或模拟训练,以提高学生解题速度和正确率。特别在复习的后阶段,还要注重各种信息的收集、筛选、整理。第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。
2、第三轮复习的具体要求。
(1)我们6个人轮流分别出模拟题,时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等切近中考题。
(2)模拟题的设计要有梯度,立足中考又要高于中考。
(3)批阅要及时,趁热打铁,切忌连考两份。
(4)评分要狠。可得可不得的分不得,答案错了的题尽量不得分,让苛刻的评分教育学生,既然会就不要失分。
(5)给特殊的题加批语。某几个题只有个别学生出错,这样的题不能再占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给与讲解。
(6)详细统计边缘生的失分情况。这是课堂讲评内容的主要依据。因为,缘生的学习情况既有代表性,又是提高班级成绩的关键,课堂上应该讲的是边缘生出错较集中的题,统计就是关键的环节。
(7)归纳学生知识的遗漏点。为查漏补缺积累素材。
(8)选准要讲的题,要少、要精、要有很强的针对性。选择的依据是边缘生的失分情况。一般有三分之一的边缘生出错的题课堂上才能讲。
(9)立足一个“透”字。一个题一旦决定要讲,有四个方面的工作必须做好,一是要讲透;二是要展开;三是要跟上足够量的跟踪练习题;四要以题代知识。
中考数学答题技巧与方法实用篇十二
1。函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2。如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
4。选择与填空中出现不等式的题目,优选特殊值法;
9。求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
17。绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
19。关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下总结高考数学五大解题思想,帮助同学们更好地提分。
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的'图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
中考数学答题技巧与方法实用篇十三
有的同学感到,知识背过了,但做题时却不知如何下笔,成绩提高不快。这涉及如何驾驭和运用知识的问题,对知识的掌握不能仅仅局限于背过,要将理解和记忆结合起来,才能真正提高运用知识的能力。要想熟练灵活的运用知识,做到理论与实际问题相结合,要从以下几个方面去下功夫:
第三要提高综合运用知识的能力。要注重建构知识体系,学会用多个知识从不同角度去分析同一问题,培养辩证思维、发散思维能力。
最后就是学会答题的方法和应试的技巧。掌握一些审题和答题技巧,是提高我们应试能力的重要条件。要想掌握科学的审题和答题方法,就必须要了解政治试题的题型,如选择题、简答题、辨析题、论述题,无论是选择题还是主观性试题,都有一个立意中心,审题时应先把握住这个中心,把握中心立意的简单办法是对材料进行提炼,找出谁在什么条件下做什么?立意中心的明确可减少答题的盲目性,提高答案的针对性。对选择题来说,审清题干立意后,可先排除错误、无关或重复性题肢,将剩下的题肢与题干条件认真对应,慎重比较后做出选择。
解答主观题,在审清材料的同时,还须明确(1)设问的规定性和要求,共有几问?限定在哪个范围内等;(2)带着设问仔细阅读背景材料(文字),把握材料的中心意思,抓住关键词等;(3)结合材料设问,寻找所需知识的切入点,是考什么知识点;(4)把理论知识及内容结合材料进行分析或归纳(怎样体现)、或演绎(怎样进行)。
中考数学答题技巧与方法实用篇十四
1、合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
2、通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3、解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构对于解答题中的难题,得满分很困难,可以采用分段得分的策略,因为高考阅卷是分段评分。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
中考数学答题技巧与方法实用篇十五
三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类:
1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
3.解三角形问题,判断三角形形状,正余弦定理的应用。
注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!
二、数列题。
2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。
3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。
全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。
三、立体几何题。
1、证明线面位置关系,一般不需要去建系,切实掌握好线面平行性质定理、面面垂直的性质定理,这两个定理不会用是失分的关键,解答过程不严格是扣分的主要因素。
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题。
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;。
2、搞清是什么概率模型,套用哪个公式;。
3、记准均值、方差、标准差公式;。
4、求概率时,正难则反、注意计数时利用列举、树图等基本方法;。
5、注意条件概率公式;注意平均分组、不完全平均分组问题。
五、圆锥曲线问题。
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题。
2、注意最后一问有应用前面结论的意识;。
3、注意分论讨论的思想;。
4、不等式问题有构造函数的意识;。
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);。
6、整体思路上保6分,争10分,想14分。
4、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;。
中考数学答题技巧与方法实用篇十六
1、排除:。
排除方法是根据问题和相关知识你就知道你肯定不选择这一项,因此只剩下正确的选项。如果不能立即获得正确的选项,但是你们还是要对自己的需求都是要对这些有应的标准,提高解决问题的精度。注意去除这种方式还是一种解答这种大麻烦的好方式,也是解决选择问题的常用方法。
2、特殊值法:。
也就是说,根据标题中的条件,择选出来这种独特的方式还有知道他们,耳膜的内容关键都是要进行测量。在你使用这种方式答题的时候,你还是要看看这些方式都是有很多的要求会符合,你可以好好计算。
3、通过推测和测量,可以得到直接观测或结果:。
近年来,人们经常用这种方法来探索高考题中问题的规律性。这类问题的主要解决方法是采用不完整的归类方式,通过实验、猜测、试错验证、总结、归纳等过程,使问题得以解决。
二、填空题。
1、直接法:。
根据杆所给出的条件,通过计算、推理或证明,可以直接得到正确的答案。
2、图形方法:。
根据问题的主干提供信息,画图,得到正确的答案。
首先,知道题干的需求来填写内容,有时,还有就是这些都有一些结果,比如回答特定的数字,精确到其中,遗憾的是,有些候选人没有注意到这一点,并且犯了错误。
其次,没有附加条件的,应当根据具体情况和一般规则回答。应该仔细分析这个话题的暗藏要求。
中考数学答题技巧与方法实用篇十七
高考每一年的难度和题型变化并不大,刷真题是要熟悉各科高考的架构。以前我高三每周进行周测,题型设置按照高考卷模拟的,越到最后你就会越清楚自己哪一个版块知识点没有掌握,然后就去弥补。
经过密集的周测和高考题刷,数学一模我清晰知道自己哪些题是能够拿分的,哪些题以我现在的水平是做不出来的。
刷高考题的目的:熟悉高考出题规律和检测自己对于知识版块的掌握程度。我想现在还在一轮复习的大家对于高考还是很模糊的。
所以刷题熟悉整个考试出题规律就很有必要。
中考数学答题技巧与方法实用篇十八
对于高中生而言,数学是很多人的学习核心,尤其对于文科学生,得数学者甚至可以得“天下”。以下是小编准备的高考数学答题技巧及复习方法,欢迎借鉴参考。
1、高考数学选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!
2、高考数学三角函数第二题,如求a(cosb+cosc)/(b+c)coa之类的先边化角然后把高考数学第一题算的比如角a等于60度直接假设b和c都等于60°带入求解。省时省力!
3、高考数学空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果高考数学第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
4、高考数学立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!
5、高考数学选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案。
6、遇到这样的选项a.1/2,b.1,c.3/2,d.5/2。这样的话答案一般是d因为b可以看作是2/2前面三个都是出题者凑出来的如果答案在前面3个的话d应该是2(4/2)。
按部作答,争取每一分。
这里的按部作答主要是指学生在考试的过程中解答大题的时候。对于一些比较复杂,难懂的题目,我们可以庖丁解牛,一步一步的解答。这样一来。我们可以可能将这道题解答出一半或者是四分之三,我们都知道现在的判题规则是按部给分也就是说学生列出了式子或者是解答对了一半都会得到相应的分数。这就要求各位老师和同学们一定要注意暗部作答。不要因为题目的难易程度而盲目的选择放弃,毕竟一道大题十分,做出来一半也就得到了五分到对于学生成绩来说五分还是非常重要的。小编,建议在我们做大题时一定要注重按部作答这一规则。因为我们在解答的过程中,如果分不清可以便于我们后期的检查以及教师的教师阅卷,使阅卷时清晰明了一目了然。
注重书写,依然重要。
很多教师认为数学试卷主要以数字为主,忽略了对于学生书写的要求,由于数学计算可能会出现错误部分学生在出现错误后可能会乱涂乱画,这都是非常不利于老师阅卷的。小编建议各位老师在平时对学生严格要求。对于写错题时做出明确的改正方式。用最简洁,最不影响老师阅卷的方式进行修改。毕竟每个卷子都不可能做到没有一点错误,只要我们改的得当适宜,不影响阅卷老师的阅卷,对于学生的成绩影响还是不算很大的。因此,注重书写也是老师和学生们都要注重的。
首先不要慌张,其实这个时候很多同学都会有点紧张,但是同学们要学会调节这种紧张。不要越急越乱,越乱越错。你应该安慰自己:“我已经做了那么多了,剩下的不过是少数,我做得慢,自然准确率就高。”“我没做完,大多数同学也应该没有做完。”
情绪稳定以后,你最好就不要做新题了。这时时间已经很紧迫了,
你也没有足够的时间去想一个新的问题,况且试卷到后面都是难度比较大的题,所以这个时候你干脆就放弃不要做题,以免得不偿失。留着这个时间去做检查说不定收获反而更大。俗话说“两鸟在望,不如一鸟在手”就是这个道理。
最后把剩下的时间用来检查试卷,看看有没有空白。有空白就随便猜一个答案,千万不能留下空白。而你能想起来的简单题就尽量写下答案。
中考数学答题技巧与方法实用篇十九
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
a.-5/4。
b.-4/5。
c.4/5。
d.2√5/5。
解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定a、b、c三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令a、b分别为椭圆的长轴上的两个顶点,c为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选b。
2.数学的极端性原则。
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的'。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法。
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法。
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法。
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法。
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法。
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法。
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法。
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。例:256-1可能被120和130之间的两个数所整除,这两个数是:
a.123,125。
b.125,127。
c.127,129。
d.125,127。
解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选c。
10.估值选择法。
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
中考数学答题技巧与方法实用篇二十
数列是初中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合。
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;。
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;。
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那。
么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解决可多得分。
1.合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
2.通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3.解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在初中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);。
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);。
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
知识整合。
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

一键复制