作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么我们该如何写一篇较为完美的教案呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!
倍数的特征评课倍数的特征教案篇一
北师大版五年级数学上、第三单元第一节《倍数与因数》是一节概念课。关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下两个方面谈一点教学体会。
良好的开头是成功的一半。我采用一道脑筋急转弯题作为谈话引入课题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找2的倍数、5的倍数,学生发现2的倍数、5的倍数写不完时,通过讨论,认为用省略号表示比较恰当,用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我让学生尝试说出3的倍数。学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。我组织学生展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时间,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。
在学生通过具体例子初步认识了倍数和因数以后,通过大量的练习让学生在练习中感悟,练习中加深理解概念;在探究出找倍数的方法以后,及时让学生写出2的倍数、5的倍数,从而引导学生发现一个数的倍数的特点,并适时进行针对性练习,巩固新知。
课尾,我设计了四道达标检测练习,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对本节课重要知识点进行检测,及时掌握了学生的学情。
纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高。
倍数的特征评课倍数的特征教案篇二
由于这节的概念较多,因此有不少是由老师直接告知的,但这并不意味着学生完全被动的接受。如让学生思考:你觉得4和24、6和24之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:24是4的倍数,那反过来4和24是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到24是4的倍数,反过来4就是24的因数,接下来就是6和24的关系,同学们都争者要回答。
①用什么方法找36的因数。
②如何找不重复也不遗漏。
通过在小组交流的过程中,学生与学生之间对自己刚才的方法进行反思,吸收同伴中好的方法,这比老师给予有效得多。学生就这样轻松、愉快的学习了因数、倍数的有关知识。
倍数的特征评课倍数的特征教案篇三
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
“给孩子一个跳板,让他跳一下就能摘到最鲜美的果子”,在下次的教学中,我应该给学生更多探索的空间和出错的机会,这样才能让他们的数学思维更出彩,这也是新课程的目标。
《3的倍数特征》教学反思
3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究,本课注重引导学生经历探索的过程。上课开始先让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测:“各位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。
下面进入验证环节,先学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流这些数不一定都是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。于是进入到动手操作环节,在此基础上,利用计数器转移探索的方向,让学生用3颗算珠在计数器上任意摆数,得出结果:摆出的数都是3的倍数,到这里有几个学生显得很兴奋。随后用5颗算珠实验,发现摆出的数都不是3的倍数,到这里学生中已经有一些议论,他们都有了发现。为了让更多的学生看出其中的神奇,我将自主权交给了学生们,自己选择算珠的颗数进行了第三次实验,然后板书出每组的实验结果,从结果的数据中,学生们都很兴奋地发现了所用算珠的颗数是3颗,6颗,9颗,拨出的数都是3的倍数,每个数所用算珠的颗数,也是每个数各位上数的和。把算珠颗数抽象成各位上数的和,是理解3的倍数特征的关键。
“试一试”是教学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数。利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。可惜在这一点上,我很仓促地指着黑板上算珠颗数是4颗,5颗,7颗,8颗时,所摆出的数都不是3的倍数,直接告诉了学生,而没有让学生自己举出反例。随后设计了一系列习题,使学生得到巩固提高。
整节课只能说顺利地走了下来,对于教者我来说从中发现了自己教学上的不足之处,在今后的教学中,我将不断学习,及时总结,虚心请教,以进一步提高自己的教学业务水平。
倍数的特征评课倍数的特征教案篇四
1、捕捉生活与数学之间的联系,帮助学生理解概念间的关系。
试上下来我感觉学生对倍数因数间的相互依存关系理解不到位,看着学生我突然想到可以利用学生乔雨雷、乔风光兄弟间的关系呀,于是我把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。
2、注意引导学生进行有效的合作学习。
动手实践、自主探索、合作交流是新课程倡导的学习方式,公开课不管上的什么内容,不管有没有必要往往都要叫学生讨论,看起来热热闹闹,其实有多少学生真正参与了讨论。往往是一组中的优等生把答案说出,其他学生洗耳恭听。当3、2、5的倍数写出来后,我问:“整体观察这几个数的倍数,你认为一个数的倍数有什么特点?”首先问题有讨论的价值与必要性,其次当问题提出后我先让学生独立思考,看到学生陆续举手时,再组织学生讨论交流,完善自己的想法。(其实这是我一贯的做法,必须在每个学生独立思考的基础上进行合作学习。)
3、内容环环相扣、过度自然流畅。
从生活中的相互依存关系迁移到数学中的倍数因数,从而揭示课题,引出谁是谁的倍数,谁是谁的因数,到找一个数的倍数或因数,归纳找的方法。整个教学过程环环紧扣、一气呵成,通达顺畅。
4、练习设计由易到难,由浅入深,既巩固了新知,又发展了思维。
“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。让学生判断自己的学号数是哪些数的倍数,老师手里拿了2、3、5几张数字卡片,老师出示卡片,如果学生的学号数是老师出示卡片的倍数就可以站起来。最后留下了学号是1、7、11、13、17、19、23、29、31、37、41、43、47的学生,让学生想办法如果他们也要站起来,老师出示的卡片上应是几?学生面对问题积极思考,享受了数学思维的快乐。
疑问:一开始的摆12个小正方形拼成长方形,得出三个积是12的乘法算式,我想这里的操作可否省去?一方面用去时间较多,对教学内容关系不大,如果说是培养操作能力也不是在这个时候。另一方面这堂课练习时间比较少,挤出的时间可用于练习。
我想如果我们每堂课都能精心设计的话,对学生对我们教师都会有很大的提高。
倍数的特征评课倍数的特征教案篇五
《倍数和因数》,由于之前没上过这册内容,在看完教材后就和同组的老师说,这个内容好像挺简单的。不过上完这节课后这个想法却烟消云散,根本没有想象的那么容易上,而且在课堂中存在了很多在预设中没有想到的问题。
1.在第一个环节认识倍数和因数的意义中,首先让学生用12个同样大小的小正方形摆成一个长方形,并用乘法算式来表示你是怎么摆的,有几种不同的摆法?通过让学生动手操作实践,体现了以学生为本,而且能唤醒学生已有的知识经验,抽象为具体讨论的数学问题。在抽象出三个不同的乘法算式后,我以第一个乘法算式4×3=12为例,介绍倍数和因数的关系,本来以为说:“4和3是12的因数,12是4和3的倍数”应该是很简单的两句话,学生应该会说,可是当请学生来自己选择一个乘法算式来说一说时,好几个学生却被卡住了,还有的说成了4是12的倍数。
针对学生出现的问题,我觉得可能是自己在介绍时运用的不到位,一个是比较小,后面的同学都没能看清楚;另一方面我预想的比较简单,所以说了一遍后也没请学生再复述一遍。在说到“谁是谁的倍数,谁是谁的因数”时应该在中相继出示这两句话,这样的话让学生看着说印象会更深刻,相信学生说的也会比较好。
针对最后请学生找一找发现倍数的共同特点这一问题,我觉得我在设计时问题提得太大,太笼统。学生听到问题后可能无从下手,不知道该找什么。可以问:刚才找了2,3,5的倍数,观察这几个数的倍数,他们有什么共同特点?这样学生就会比较有针对性地去寻找结果。
3.第三个环节是探求找一个数因数的方法,找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找一个数的因数,对于刚刚对倍数因数有个感性认识的学生来说有是一定困难的,而这个环节我处理的也不到位,学生对找一个数因数的方法掌握的不够好。
我一开始设计请学生自主找36的因数,在巡视时发现有一部分学生没有头绪,无从下手,时间倒是花去了不少。所以我觉得是否可以先从12下手,因为前面一开始已经找过12的因数了,如果这里能用12做一下铺垫,可能找36的因数时就会好一些。
在学生自主探索完36的因数有哪些后,交流不同学生的结果,有一位出现了1,36;2,18;3,12;4,9;6,6我就问你是怎么找到的?学生说是用除法找到的,于是就用36分别去除1,2,3……得到了36的因数。其实这里除了用除法来找之外,还可以用乘的方法来找,而乘的方法似乎对于学生来说在找得时候还更简单一点。更重要的是我觉得一对对的找对于找全一个数的因数是一个很重要的方法,而我却把这个方法忽略了,所以学生对于找一个数的因数的方法不够深刻,在练习中也发现做的不理想。
4.第四个环节是巩固练习,我设计了2个小游戏。一个是看谁反应快,符合要求的请学生起立,这个游戏学生参与面广,学生也感兴趣,还从中发现了找谁的学号是几的因数,1每次都会起立,就更好的巩固了一个数的因数最小是1。但是也有个别学生反应比较慢。第二个小游戏是猜一猜老师的手机号码是多少?但是由于前面时间用的比较多,所以没来得及做。
原本认为简单的课却一点都不简单,每个细小环节的把握都要求我去仔细的钻研教材,设计好每一步,这样才能上好一节课。
倍数的特征评课倍数的特征教案篇六
课时安排
第四课时
:1、经历探索3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数。
2、在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力
: 1、经历探索3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数。
2、在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力
:图片
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢,把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9能被3整除。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
练习:第7页的1、2题。
个性化教学思路
:学生的判断方法就很多样了,学生对后面的这种方法接受很快,也很乐意运用。但在实际作业中,我感到学生对3的特征的运用不是很主动,不象2和5的特征来得快,似乎有些想不到。因此,要加强练习。
倍数的特征评课倍数的特征教案篇七
《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。
首先我说说这两堂课教学内容上的差异。第一堂课安排的教学内容有三部分。第一部分是认识因数和倍数,指导学生正确描述因数和倍数。其次安排的教学内容是找一个数的因数和倍数。第三部分是了解因数和倍数以及一个数的最大因数和最小倍数的特性。第二堂课先建立了整除的概念,理清除尽和整除之间的关系,然后在整除的基础上认识因数和倍数,最后让学生学会描述因数和倍数。(即4句话:谁能被谁整除,谁能整除谁,谁是谁的倍数,谁是谁的约数。)
接着我来说说自己的想法。
第一堂课的上法比较严谨,通过教师的传授和学生的练习,相信大多数学生都能认识因数和倍数并能正确描述,同时也会找一个数的因数和倍数,能根据因数和倍数的特性解决问题。完成了本课的技能目标。在课中,教师让学生说得很充分,并有针对性的进行了练习,使学生扎实地掌握了知识,为后续的学习打下了结实的基础。
在这一课的导入中,教师用加,减,乘,除四个不同的算式,让学生先说一说各部分的名称,然后对7×3=21给出描述性的语句“我们说7是21的因数,3也是21的因数;21是7的倍数,21也是3的倍数。”这个导入,除了在乘法里出现了因数这个词和本课内容有关联外,其他关系并不大,用这样的练习作为切入点,它的用处并没有体现。
其次,教师对学生提醒:“我们说的因数和倍数一般指的是整数,不包括0”,在这里,我觉得教师给出的定义一定要准确“我们说的因数和倍数都是指“0”以外的自然数。”说到这个0是否除外的问题,人教论坛上还有争议,因此对这个问题暂不考虑。在判断是否能说倍数和因数的练习题中,对于加和减题是否能说倍数和因数的判断,我觉得没有存在的必要。在这里教师设计的.题“判断8÷4=2,4和2是8的因数,8是4和2的倍数这句话的对错”很有价值,让学生感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
第三,在找18的因数中,教师对找的方法进行了指导,要一对一对有序地找。在这里教师可以继续提问学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。
第四,在最后的巩固练习中,有一题讲到一个数的最大因数和最小倍数的和是20,问学生这个数是多少。这题是学生对因数和倍数特性的反馈,在这题完成后,我想到了一个练习题“一个数最小的倍数是18,找出这个数的其他因数”,这样整合特性和找一个数的因数这两个知识点。还有一题在数轴上面标出3的倍数,在数轴下面标出4的倍数,这里出现共同的点,这样的话能否对公倍数适当地提点一下呢?让学生留点疑问结束课堂教学,为后一课的学习埋下伏笔。
第二堂课的开始教师比较开放,让学生想一个除法算式,然后把这些出发算式归类,分类出除不尽和除尽,在除尽里再分出整除。这里充分发挥了学生的主体作用,教学的素材来源于学生自己,提高了学生的学习积极性。在对除尽的区分中,教师让学生用语言来描述除尽,我觉得对学生来说只要会辨别就行了,不需要要准确的语言去定义概念。教师给出的整除的概念不够严密,既然没有向学生说明整除所说的数都不包括0,那么在定义给出时,应向学生说明除0以外的自然数。
倍数的特征评课倍数的特征教案篇八
《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。
首先我说说这两堂课教学内容上的差异。第一堂课安排的教学内容有三部分。第一部分是认识因数和倍数,指导学生正确描述因数和倍数。其次安排的教学内容是找一个数的因数和倍数。第三部分是了解因数和倍数以及一个数的最大因数和最小倍数的特性。第二堂课先建立了整除的概念,理清除尽和整除之间的关系,然后在整除的基础上认识因数和倍数,最后让学生学会描述因数和倍数。(即4句话:谁能被谁整除,谁能整除谁,谁是谁的倍数,谁是谁的约数。)
接着我来说说自己的想法。
第一堂课的上法比较严谨,通过教师的传授和学生的练习,相信大多数学生都能认识因数和倍数并能正确描述,同时也会找一个数的因数和倍数,能根据因数和倍数的特性解决问题。完成了本课的技能目标。在课中,教师让学生说得很充分,并有针对性的进行了练习,使学生扎实地掌握了知识,为后续的学习打下了结实的基础。
在这一课的导入中,教师用乘算式,让学生先说一说各部分的名称,然后对7×3=21给出描述性的语句“我们说7是21的因数,3也是21的因数;21是7的倍数,21也是3的倍数。”这个导入,除了在乘法里出现了因数这个词和本课内容有关联外,其他关系并不大,用这样的练习作为切入点,它的用处并没有体现。
其次,教师对学生提醒:“我们说的因数和倍数一般指的是整数,不包括0”,在这里,我觉得教师给出的定义一定要准确“我们说的因数和倍数都是指“0”以外的自然数。”说到这个0是否除外的问题,人教论坛上还有争议,因此对这个问题暂不考虑。在判断是否能说倍数和因数的练习题中,对于加和减题是否能说倍数和因数的判断,我觉得没有存在的必要。在这里教师设计的题“判断8÷4=2,4和2是8的因数,8是4和2的倍数这句话的对错”很有价值,让学生感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
第三,在找36的因数中,教师对找的方法进行了指导,要一对一对有序地找。在这里教师可以继续提问学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。
第四,在最后的巩固练习中,有一题讲到一个数的最大因数和最小倍数的和是20,问学生这个数是多少。这题是学生对因数和倍数特性的反馈,在这题完成后,我想到了一个练习题“一个数最小的倍数是18,找出这个数的其他因数”,这样整合特性和找一个数的因数这两个知识点。还有一题在数轴上面标出3的倍数,在数轴下面标出4的倍数,这里出现共同的点,这样的话能否对公倍数适当地提点一下呢?让学生留点疑问结束课堂教学,为后一课的学习埋下伏笔。
第二堂课的开始教师比较开放,让学生想一个除法算式,然后把这些出发算式归类,分类出除不尽和除尽,在除尽里再分出整除。这里充分发挥了学生的主体作用,教学的素材来源于学生自己,提高了学生的学习积极性。在对除尽的区分中,教师让学生用语言来描述除尽,我觉得对学生来说只要会辨别就行了,不需要要准确的语言去定义概念。教师给出的整除的概念不够严密,既然没有向学生说明整除所说的数都不包括0,那么在定义给出时,应向学生说明除0以外的自然数。
倍数的特征评课倍数的特征教案篇九
我改变了例题,用杯子翻动的次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。
倍数的特征评课倍数的特征教案篇十
因数和倍数是最基本的两个概念,理解了因数和倍数的含义对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了。因此,教学时,我引导学生观察生活中的情景图引出乘法算式2×6=12,让学生在多说中体会、理解乘法算式中两数之间的因数与倍数的关系。学生在交流中轻松地理解了两数之间因数与倍数之间的关系,同时引出12的所有因数,让孩子感受到用乘法算式找一个数的因数的方法,为后面学习找一个数的因数做好铺垫。
在学习找一个数的因数时,让孩子们动脑思考,小组合作中探究方法,孩子们想出的方法很多,充分发挥了他们智慧,然后在老师的引导中优化了方法,孩子们在体验中逐步掌握了方法,学得深刻,方法熟练。
教学中,注重学生的动脑思考、观察,让学生在自主的探究学习中表达自己的想法,通过一些特殊的例子,引导学生用数学的语言总结概括一些概念,逐步形成从特殊到一般的归纳推理能力。

一键复制