无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
倒数的认识教学反思倒数的认识教学案例与反思篇一
“倒数的认识”是一节概念教学课,这部分内容是在学习了分数乘法的基础上进行教学的。理解倒数的意义,会求一个数的倒数是学生学习分数除法的前提。学生只有学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
一、课前的思考与预设
针对本课内容,看似简单,实质内涵非常丰富的特点,结合本班学生大多数基础薄弱的现状。认真思考了本节课中教学目标和重、难点。力争能让学生听的清楚,练的活泼,学的轻松。所以课前思考时从以下几个方面入手。
1、本课的知识点
2、本课的关键点
《小学数学新课程标准》中指出既要关注学生的学习结果,又要关注学生的学习过程。对倒数的意义教学,进行了仔细的剖析,把意义分为几个部分:“乘积是1”,“两个数”,“互为倒数”这三个部分,看起来简单,但是每个部分再仔细推敲,就发现“怎么才能得到1;几个数,是几个什么样的数;“互为”如何理解呢?,在生活中有类似的思路可以迁移的事物吗?这些方面对学生清楚理解倒数的意义非常重要。
3、本课的着力点
基于对关键点的认真思考,发现“互为”一词比另两个关键点更难理解,难说的清楚。因此,必须在这个方面需要花功夫,下力气,因为理解这一关键点是学生掌握倒数意义的标志,也是帮助学生能识别“倒数”这一概念的方法之一。
4、本课的深化点(预设)
基于对倒数的意义的思考,发现定义中的“两个数”这一关键点的外延非常丰富,两个怎样的数呢?能不能 都是整数?能不能都是分数?能不能都是小数?……有没有特殊的数呢?比如整数都有倒数吗?小数都有倒数吗?分数都有倒数吗?因为整数中有0、1这样特殊的数,还有负整数。小数中有有限小数、无限小数、无限不循环小数。它们有没有倒数这样的情况课堂中学生会出现这些疑问吗?出现了如何处理呢。如果不出现又如何处理呢。
二、课堂的实施与体会
1、创设情景导入新课
在课的导入部分,由一些有趣的文字引出本节课所要探究的问题----倒数,从形象直观上感受颠倒位置,既激发了学生的探究兴趣,为学生学习新知识做了充分的准备,为学生较好理解倒数的意义做了铺垫。
2、合作探究学习
变例题教学为学生自学课本,找到倒数的意义,并与学生一起剖析,发现求一个数的倒数的方法,然后通过举例,检查学生的掌握情况,小组合作讨论:0和1的倒数问题,再总结出求一个数的倒数的方法。
3、练习形式多样
充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习中提高。比如设计的“每人出题同桌互说”,让学生不仅在课堂上学,也在课堂上用,做到真正掌握。
三、课后思考与感悟
通过教学,我感受到教师在教学中应相信学生的能力,并积极成为学生学习的合作者、帮助者和促进者,教学中处理好扶与放的关系。
1、给学生独立思考的时间;相信学生能具有独立思考的能力,教学中每一个问题的提出,要使学生不是坐等听别人讲,而是能养成先自己积极思考的习惯。
2、 给学生合作学习的机会;当学生有困惑时,教师可以充分发挥学生集体智慧,引导学生小组合作、互相学习、互相交流,在合作中交流、在合作中提高、在合作中解决困惑。
在教学中,我对于探求“0和1有没有倒数”环节,充分发挥合作交流的作用,群策群力解决问题。为深入浅出的理解“互为”,我举例“互为同桌”,“互为朋友”,让学生觉得“互为”就在身边,对于理解关键点,就能引起共鸣。
在练习中,紧紧围绕关键点设计了三条判断练习,让学生在练习中明白成为倒数的条件,缺一不可。
3、存在的困惑与不足
通过本节课的教学,我发现:大部分学生能够理解倒数的意义,掌握求一个数的倒数的方法,但有少数学生对于倒数的认识,仅仅是停留在是不是分子、分母颠倒这一表面形式上,忽略了两个数的乘积为1这一本质条件,于是他们错误的认为小数和带分数是没有倒数的。后来,虽然大部分学生通过简单的交流讨论,明白了小数和带分数也是有倒数的,但是在找倒数时还是出现了0.5的倒数是5.0, 1 的倒数是1 错误的情况。
倒数的认识教学反思倒数的认识教学案例与反思篇二
倒数的认识是一节概念教学课,它是在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点引导学生认识倒数,主要是为后面学习除法作准备的 , 在教学中,必须打下坚实的基础,为以后学习分数除法扫清障碍,提高学习效率。
这节课我主要围绕“导入、探究、深讨、练习、小结”这几个环节进行。
在导入中通过一个小故事中的对联,借助语文学科与数学学习之间的联系为切入点,由文字构成规律激发学生的好奇心,引起学习兴趣。让学生初步感知“倒”的意思。这样学生对马上接触到的“互为倒数”就比较容易理解了。在学生知道什么叫倒数后,让学生根据倒数的意义举例,通过学生的举例进一步理解“乘积是1的两个数是互为倒数”这句话。同时让学生说说你认为在“乘积是1的两个数互为倒数。”这句话中哪几个词比较重要。然后根据学生的回答,理解:“互为”、“乘积是1”、“两个数”。对倒数的定义作深入的剖析。
综观全课下来, 觉得整节课教得比较扎实,该传授的时候做到了适当的传授,练习也有层次感, 对于两个特例“1”和“0”,教学中没有专门由老师提出,而是在学生的深入思考中得出的,这就是学生学习的成果。自我感觉处理得较好。
学生的积极性在家长听课当中也充分的得到了发挥, 平时不做声的孩子当天也敢积极举手发言了,充分的调动了孩子回答问题的欲望。
在设计中,感觉练习的设计还是缺少了难度,缺少了灵活性的题目,对“倒数”的运用练习设计不够丰富。
倒数的认识教学反思倒数的认识教学案例与反思篇三
《倒数的认识》属于一节典型的数学概念课,对概念知识技能的教学目标的达成并不是很难。但这样的课堂,教师可以花更过的心思达成其他数学素养的培养。在这一节课上,学生经历了解到模糊再到深刻理解的概念认识过程,通过交流、合作自主梳理总结方法,在解决问题中感受数学的严谨之美、科学之美,这才是学生最大的收获。
这节课对我自己的教学的启示如下:
1、读懂教材、吃透教材是对教学重难点的把脉。教材在编写上分成三格部分-认识、求解、练习,给出的层次很清楚。呈现方式上是给出算式,学生计算,观察再发现,虽然表现的模式有些生硬,但其指向是学生自主探究倒数的定义,倒数的特征。在例题一当中,主要教学求倒数的方法,教材并没有给出所有倒数的求找方法,是因为求倒数的方法也不能一言概之,需要分类思考。那么在教学过程中,教师侧重在引导学生去进行有序的分类思考。只有这样,学生在接下来的方法总结交流是才能总结的完整、严谨。
2、概念的本质远高于概念的形式。倒数的定义是乘积为一的两个数互为倒数,特征是分母、分子相互颠倒的两个数。很多学生以特征代替定义,这样的认识是不充分,不准确的。所以在教学设计中我以游戏的方式写乘积互为1的两个数,那他们写下的各种形式的两个数互为倒数吗?一个纲领性问题顺势产生,直接激发学生求知欲望。对定义的根本认识直接反应在后续求倒数方法的多样性上。教材中给出颠倒分子分母的方法学生可以用,在对倒数认识后,还有相当一部分学生会用1除以一个数求出倒数。同时“1”的倒数是多少?0有倒数吗?这样的问题都可迎刃而解。注重数学概念的本质含义,让学生自主经历概念形成的过程是几乎所有概念课的要求。
3、在高年级数学教学中,还要加强学生数学阅读习惯培养。数学文字的阅读不仅仅是一种视觉上的感受,更是思维上的活动。在真正阅读倒数定义时,学生大脑里应该经历思考、筛选的过程。从定义中提取核心内容,对疑惑进行质疑、猜测、证明,最终达到对定义认识的新高度。良好的数学阅读习惯也可以有效地加强思维的严谨性。
4、放手学生自主学习,开展有趣的数学活动。设计有趣的数学活动是提高学生参与度的准绳。这节课从开课就是速算比赛,然后小组交流对倒数的认识,生生交流突破对倒数认识最后一层隔膜到最后小组内总结求倒数的方法,这一系列的活动都是学生自主完成的,这样的教学过程对学生学习的意义完全不同。但要到达到预期设计的效果,老师需要准备充分。首先,对学生充满信任,相信学生的能力,给学生留有充足的时间和空间。第二,充分预设学生学情,这样才能是老师对课堂组织的监控有的放矢,才便于在更高层面引导学生活动的发展方向。另外,教师需要对教案相当熟练、在课堂中关注所有学生的反馈,尤其后进生的知识生长,从而提高课堂效率。
困惑与不足:
1、课堂节奏太快留给学生思考时间不够。
2、要适时注意引导学生如何正确思考解决问题。
3、要注意控制语速和语言的启发性、目性。
倒数的认识教学反思倒数的认识教学案例与反思篇四
此次于老师来听课,我按照教学进度选择的内容是第四单元知识链接教材中《倒数的认识》一课,这一节课是在学生学习了分数乘法的基础上进行学习的,是为后面单元学习分数除法知识做准备。本节课的内容不多,首先是用两个数的.乘积是1这样的几个算式来引出倒数的概念,然后是求一个数的倒数的方法。
本节课我的教学思路是:
第一大环节:利用课前三分钟的口算练习这一素材,可以按照乘积是否是1进行分组整理,再将乘积是1的一类进行二次分类,分成分数乘法与小数乘法,先从比较直观的分数乘法入手研究因数的特征,继而过渡到小数乘法算式中因数的特征,由发现到猜想再到举例验证,继而得出倒数的概念。
第二大环节,由如何求一个数的倒数入手?引导学生交流方法,并在练习中巩固求倒数的方法。
本节课在研究分数乘法这组算式的特征之后,我引导学生用“颠倒数”这样的一个词来反复描述两个分数的特征,而忽视了乘积是1的这一个大的背景。而如果从“为什么它们的乘积是1”这一个大问题入手,学生会顺藤摸瓜,思考它们因数之间存在的特殊关系。
正是因为本节课,我一直在强调分数的分子与分母相互颠倒这一点,造成学生没有真正从意义上理解倒数的意义,才会出现在+()=1这个加法算式中,有的学生填这一错误。
为了巩固求一个数的倒数,在练习这一环节我分四类设计并总结出:
(1)真分数的倒数都是大于1的假分数;
(2)大于1的假分数的倒数都是真分数;
(3)分数单位的倒数都是自然数;
(4)非零整数的倒数都是几分之一。
反过头来再看,真如于老师所说的那样,学生根本没有深刻的记忆,只是走马观花,但是如果按照于老师的建议,利用数轴的形式,在数轴上表示,我想即方便学生直观认识,也加深了学生的认识。
非常感谢于老师能在百忙之中来听评课,感谢于老师的指点,借着这次听课的东风,在教学路上且思且行!
倒数的认识教学反思倒数的认识教学案例与反思篇五
本节课的知识是在学习了学生掌握了整数乘法、分数加法和减法、分数乘法及运用等知识的基础上进行教学的,倒数的认识教学反思。倒数这部分内容属于分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则运算和相关的知识运用打下基础。
在教学中通过出示几组乘积是1的四组算式,让学生观察发现其中的规律:两个因数的分子和分母交换了位置,由此得出乘积是1的两个数互为倒数,并指出3/8的倒数是8/3,而8/3的倒数是3/8,从而理解互为倒数的含义。在教学倒数的含义时还要注意两个数互为倒数的条件:一是乘积是1,二是仅限于两个数,为练习中出现的争论扫清障碍。
在例1的教学中,学生对于求一个数的倒数方法都非常容易理解,但是对于求小数和带分数的方法教材没有涉及,但是要进行补充,在后续的练习中往往容易出现类似的题目。如果没有预设到,学生就会在此知识点上出现问题,影响学习知识的效果。
学生对于练习题中的判断容易出错。例如:一个数的倒数一定比这个数小。通过这个题目要让学生知道一个数可以分为真分数和假分数,真分数的倒数却比这个数大,而假分数又包含两种情况:一是分子和分母相等的情况,另一种是分子比分母大的情况。分子比分母大的分数的倒数一定比这个数小,而分子和分母相等的分数的倒数等于这个分数。
对于判断题的练习要予以重视,由一题发散多题,以不变应万变。
倒数的认识教学反思倒数的认识教学案例与反思篇六
本文所谈的不是教学流程上的问题,而是通过倒数这个概念,谈一谈对概念教学的理解,从拆句的角度,乘积是1的两个数互为倒数拆为:乘积是1、两个数、互为倒数。
针对倒数这个概念,我认为:内涵是指向正例的,外延是指向反例的。比如:书上出示乘积是1的正例,我们需要出示商、和、差是1的反例;书上说的是两个数互为倒数,没有出示3个数的反例。这两个反例是针对倒数概念本身的。
学生在倒数的答案呈现上,习惯于用等号表示“的倒数是”这样的错误,比如2=1/2,从数学表达式上说这是非常明显的错误,学生确实犯了,而且每届都有这样的情况,在今年的教学中我已经强调并且纠正了这样的错误,这说明教学方式对于不同学生是不一样的,学生本身的理解和态度的端正与否也是重要的问题,需要引起重视。
本节课需要重视的第二个问题就是1和0的问题,这两个问题实际上牵涉到其他的概念:假分数、整数、自然数。假分数分为1和大于1的假分数;整数和自然数里都有0,在这个问题上需要处理好,学生的理解需要通过不同的方式来体现。
单独的概念教学,或者说倒数概念本身不是一个很复杂的问题,有关倒数的知识主要包括两点:一点是倒数的意义,另一点是求倒数的方法。学生建立倒数的概念以后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。
相同的教学内容,几年的教学实践下来,发现:同样的教学内容,同样的知识点,为什么会出现这么大的差别?究其原因就是因为我们需要关注概念结构出现的次序,比如:整数的概念是复习、假分数的概念是辨析。
皮亚杰理论中认知发展的三个基本过程--同化、顺应、平衡,对于倒数概念来说,学生之前毫无经验,是属于顺应,其实顺应更类似一个质变的过程,有对于知识结构的扩展和修正,会形成一个新的认知图式。
但是本节课的教学难度不大,原因是这个知识点本身是不难的,从形式到本质,需要考虑的问题主要就是0,所以我在教学的时候特别关注了数字0的问题,然后在书本上39页第19题的处理上特别强调了数字1的问题。
从整个概念系统来说,同化和顺应是相互依存的,如:本节课中倒数的概念是顺应,而用到的外围概念是整数、自然数、假分数,我在学习的时候注重对概念本身的解读,数包括自然数和整数,倒数的形式是分数,但不是分数的整数和小数需要先转化为最简分数之后再处理。
在概念的形式实现之后的环节就是对倒数概念的辨析,如:题目a都有倒数,这句话本身是有问题的,但是我们关注的点应该是a这个数的取值范围,是取正整数?负整数?0?非正整数?非负整数?自然数?这里都是学生需要考虑的问题,其实有没有倒数的核心概念就是:0没有倒数,但是对于具体的表现形式是我们需要花时间去思量的问题。

一键复制