无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
高中数学必修一教学设计全套篇一
【教学目的】
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
【重点难点】
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
【内容分析】
1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明
【教学过程】
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(p4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作n,
(2)正整数集:非负整数集内排除0的集 记作n__或n+
(3)整数集:全体整数的集合 记作z ,
(4)有理数集:全体有理数的集合 记作q ,
(5)实数集:全体实数的集合 记作r
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作n__或n+ q、z、r等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成z__
3、元素对于集合的隶属关系
(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a
(2)不属于:如果a不是集合a的元素,就说a不属于a,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如a、b、c、p、q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈a颠倒过来写
三、练习题:
1、教材p5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是 -2,0,2
4、由实数x,-x,|x|, 所组成的集合,最多含( a )
(a)2个元素 (b)3个元素 (c)4个元素 (d)5个元素
5、设集合g中的元素是所有形如a+b (a∈z, b∈z)的数,求证:
(1) 当x∈n时, x∈g;
(2) 若x∈g,y∈g,则x+y∈g,而 不一定属于集合g
证明(1):在a+b (a∈z, b∈z)中,令a=x∈n,b=0,则x= x+0__ = a+b ∈g,即x∈g
证明(2):∵x∈g,y∈g,
∴x= a+b (a∈z, b∈z),y= c+d (c∈z, d∈z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈z, b∈z,c∈z, d∈z
∴(a+c) ∈z, (b+d) ∈z
∴x+y =(a+c)+(b+d) ∈g,
又∵ =且 不一定都是整数,
∴ = 不一定属于集合g
【小结】
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
高中数学必修一教学设计全套篇二
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一. 基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
二.问题讨论
例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市o(如图)的东偏南方向
300 km的海面p处,并以20 km / h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,
并以10 km / h的速度不断增加,问几小时后该城市开始受到
台风的侵袭。
一. 小结:
1.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.
三.作业:p80闯关训练
高中数学必修一教学设计全套篇三
教学准备
教学目标
教学重难点
教学重点:熟练运用定理.
教学难点:应用正、余弦定理进行边角关系的相互转化.
教学过程
一、复习准备:
1. 写出正弦定理、余弦定理及推论等公式.
2. 讨论各公式所求解的三角形类型.
二、讲授新课:
1. 教学三角形的解的讨论:
① 出示例1:在△abc中,已知下列条件,解三角形.
分两组练习→ 讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况. (a为锐角时)
② 练习:在△abc中,已知下列条件,判断三角形的解的情况.
2. 教学正弦定理与余弦定理的活用:
③ 出示例4:已知△abc中,,试判断△abc的形状.
分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?
三、巩固练习:
3. 作业:教材p11 b组1、2题.
教学准备
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一. 基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
二.问题讨论
例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市o(如图)的东偏南方向
300 km的海面p处,并以20 km / h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,
并以10 km / h的速度不断增加,问几小时后该城市开始受到
台风的侵袭。
一. 小结:
1.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.
三.作业:p80闯关训练
教学准备
教学目标
教学重难点
教学过程
等比数列性质请同学们类比得出.
【方法规律】
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
【示范举例】
教学准备
教学目标
数列求和的综合应用
教学重难点
数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和sn=n2-7n-8,
(1) 求{an}的通项公式
(2) 求{|an|}的前n项和tn
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn ,求数列{bn} 前n项和公式
. 已知数列{an},an∈n,sn= (an+2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0. 已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈n)
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是 f(t)=
销售量 g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
教学准备
教学目标
1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;
归纳——猜想——证明的数学研究方法;
3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点
难点:等比数列的性质的探索过程。
教学过程
教学过程:
1、 问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
公式的推导:(师生共同完成)
若设等比数列的公比为q和首项为a1,则有:
方法一:(累乘法)
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。
答案:1458或128。
(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)
1、 小结:
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、 作业:
p129:1,2,3
教学设计说明:
1、 教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。
2、 教学设计过程:本节课主要从以下几个方面展开:
1) 通过复习等差数列的定义,类比得出等比数列的定义;
2) 等比数列的通项公式的推导;
3) 等比数列的性质;
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的高潮,通过类比
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
高中数学必修一教学设计全套篇四
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。
教学重点:熟练运用定理。
教学难点:应用正、余弦定理进行边角关系的相互转化。
1、写出正弦定理、余弦定理及推论等公式。
2、讨论各公式所求解的三角形类型。
1、教学三角形的解的讨论:
①出示例1:在△abc中,已知下列条件,解三角形。
分两组练习→讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况。 (a为锐角时)
②练习:在△abc中,已知下列条件,判断三角形的解的情况。
2、教学正弦定理与余弦定理的活用:
①出示例2:在△abc中,已知sina∶sinb∶sinc=6∶5∶4,求最大角的余弦。
分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。
②出示例3:在δabc中,已知a=7,b=10,c=6,判断三角形的类型。
分析:由三角形的什么知识可以判别? →求最大角余弦,由符号进行判断
③出示例4:已知△abc中,,试判断△abc的形状。
分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?
3。 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。
作业:教材p11 b组1、2题。
高中数学必修一教学设计全套篇五
解三角形及应用举例
解三角形及应用举例
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。
例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市o(如图)的东偏南方向300 km的海面p处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。
1、利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3、边角互化是解三角形问题常用的手段。
高中数学必修一教学设计全套篇六
1教学目标
1.知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积的求法.
2.能运用公式求解柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
2学情分析
通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。
3重点难点
重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。
难点:会求柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
4教学过程 4.1 第一学时 教学活动 活动1【导入】第1课时柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(二).尝试学习
1.柱体的表面积
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积s表=s侧+2s底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积s侧=__________,表面积s表=__________.
2.锥体的表面积
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积s表=s侧+s底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积s侧=__________,表面积s表=__________.
3.台体的表面积
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积s表=s侧+s上底+s下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积s侧=____________,表面积s表=________________________.
(三).互动课堂
例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,侧棱长为b,则其侧面积为()
a. c.(+)ab
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是()
a.2π b. c.6π d.9π
(2)已知棱长均为5,底面为正方形的四棱锥s-abcd,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为()
a. b.2 c. d.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为()
a.81π b.100π c.14π d.169π
(五)、 课堂小结:
求柱体表面积的方法
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
(4)求棱锥侧面积的一般方法:定义法.
(5)求圆锥侧面积的一般方法:公式法:s侧=πrl.
(6)求棱台侧面积的一般方法:定义法.
(7)求圆台侧面积的一般方法:公式法s侧=2(r+r′)l.
五、当堂检测
1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()
a.32 b.16+16
c.48 d.16+32 网]
2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为()
a.180 b.200 c.220 d.240
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于()
a.6 b.6π c.3π d.6π
六、作业:(1)课时闯关(今晚交)
七、课后反思:本节课你会哪些?还存在哪些问题?
1.3空间几何体的表面积与体积
课时设计 课堂实录
1.3空间几何体的表面积与体积
1第一学时 教学活动 活动1【导入】第1课时柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(二).尝试学习
1.柱体的表面积
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积s表=s侧+2s底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积s侧=__________,表面积s表=__________.
2.锥体的表面积
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积s表=s侧+s底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积s侧=__________,表面积s表=__________.
3.台体的表面积
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积s表=s侧+s上底+s下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积s侧=____________,表面积s表=________________________.
(三).互动课堂
例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,侧棱长为b,则其侧面积为()
a. c.(+)ab
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是()
a.2π b. c.6π d.9π
(2)已知棱长均为5,底面为正方形的四棱锥s-abcd,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为()
a. b.2 c. d.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为()
a.81π b.100π c.14π d.169π
(五)、 课堂小结:
求柱体表面积的方法
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
(4)求棱锥侧面积的一般方法:定义法.
(5)求圆锥侧面积的一般方法:公式法:s侧=πrl.
(6)求棱台侧面积的一般方法:定义法.
(7)求圆台侧面积的一般方法:公式法s侧=2(r+r′)l.
五、当堂检测
1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()
a.32 b.16+16
c.48 d.16+32 网]
2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为()
a.180 b.200 c.220 d.240
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于()
a.6 b.6π c.3π d.6π
六、作业:(1)课时闯关(今晚交)
七、课后反思:本节课你会哪些?还存在哪些问题?

一键复制