我们将通过这个分类来介绍一些与学习和工作生活等相关的新概念和新方法。2.合理的总结结构可以使内容更加有条理和易于理解培养自己的独特的写作风格,可以让文章更具个性。
一个数除以小数教学反思篇一
今天,本着常态课的思想,给年段老师上了一节课。从基本理念、教学构思、操作过程等方面去审视《一个数除以小数》的备课、教学教过程,发现了不少值得深思、改进的问题。
思想解放的程度不够,从备课到讲课,因为受传统教学思想的影响,生怕重难点不突出,生怕学生不能较为熟练地掌握“一个数除以小数”的计算方法和技巧,生怕完成不了教学任务,追求40分钟以内的所谓知识的完整性……太多的顾虑,导致产生前怕虎,后怕狼的心理,缩手缩脚,该放手做的事情不敢理直气壮地去做,走不出传统教学模式的影子,影响着新课标、新理念的实施,特别是以下几个方面存在的问题尤其突出。
二、在教学“除数是小数的除法法则”时,存在操之过急,包办太多的现象本来,通过例4和例5的学习,学生已经理解除数是小数的除法计算方法的算理是“商不变性质”和“小数点位置移动引起小数大小变化”的规律,把除数是小数的除法转化成除数是整数的除法后,就能用“除数是整数的小数除法”的计算方法进行计算利用迁移,明确转化原理,完全可以由学生通过小组讨论总结出“除数是小数的计算法则”不必要把这个过程总让教师“扶着走”
一个数除以小数教学反思篇二
一个数除以小数是在学生学习过除数是整数的除法后进行的。除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据214.5÷15=14.3,利用商不变的规律直接写出21.45÷1.5、2.145÷0.15、0.2145÷0.015的商。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。
在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我也进行了考虑。让学生明白,小数除以小数的关键在于转化,即把除数转化为整数。如何转化,要利用商不变的性质。先把除数的小数点画去,为使学生看得更清楚,我要求学生在原有的小数点上打上小叉,再把被除数的原有的小数点打上小叉,向右移动,移动的位数取决于除数的小数位数。除数有几位小数,被除数的小数点就向右移动几位。然后按照整数除法的方法进行计算。最后通过一些课后练习及生活中的数学,让学生巩固方法。
在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误,适时引用儿歌可以帮助学生较好的突破这个难点。“外移几,里移几;方向一致要注意;里缺补零要牢记;上下点点要对齐。”
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:。
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,个别同学书写不认真,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点与被除数原来的小数点对齐。
四、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似“简单”的问题却出现了纷繁的错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样或许效果会好许多。
文档为doc格式。
一个数除以小数教学反思篇三
本节课的学习自认为有一下几点做得比较好:
第一,学习时我重视知识间的联系,引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的数学思想方法。
第二,课堂上注意给学生充分独立思考的时间和机会。比如,列出算式7.6÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不一样?你会算吗?自己先试试。”
尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。
当然也有许多不足之处,首先,我对一些细节处理得不够明确,比如:给0.544÷0.16列竖式时,当除数和被除数扩大到它的100倍时,原来的0和小数点没用了就应该划去,课堂上的板书这一点做到了但没有强调,结果一部分学生在练习时没有划掉0.
一个数除以小数教学反思篇四
一个数除以小数是在小数除以整数的基础上教学的,小数除以整数这一部分学生掌握好了,一个数除以小数的教学就容易很多。学生在这个部分学习的重点是理解把除数转化成整数是根据商不变的性质,只有学生理解这个性质,学生在把除数变成整数时才会有意识的把被除数扩大相同的倍数。另外在学习竖式计算时要让学生学会正确的书写格式。在上过这一课时时,我班主要出现以下问题:
1.部分学生不理解为什么要把除数变成整数,导致在计算中生硬地模仿例题,例题除数是一位小数,扩大十倍变成整数,在练习中学生遇到除数是两位小数的也是扩大十倍,然后计算。
2.有的学生对商不变性质理解不够,错误地认为遇到除数是小数的除法只要把除数变成整数就可以了,不注意把被除数扩大相同的倍数。
3.还有的.学生知道被除数和除数扩大相同的倍数,但在计算时认为小数点对齐,就是和原来的小数点对齐,不知道和扩大后的小数点对齐。
4.在要求学生用乘法验算时,学生搞不明白到底被除数和除数是扩大后的还是扩大前的,在验算中用商乘扩大后的除数。
一个数除以小数教学反思篇五
经过听课与讨论发现,探究一个数除以小数的计算方法并能正确计算,学生需要具备三方面的基础知识。一是理解并灵活运用商不变的性质;二是能正确地把小数或整数的小数点向右移动按要求移动;三是能熟练地计算除数是整数的小数除法。
因学生刚刚接触除数是整数的小数除法学生需要具备的技能——除数的小数点向右移动几位,被除数的小数也向右移动几位,是结合了上面的第一与第二个知识点,也是本课的难点。分析难点难在这里思维层次比较多。
第一层次:把除数变为整数,去掉除数的小数点即可;——这一层次思维含量比较低。
第二层次:除数变成了整数,小数点隐掉或省略了。需要思考:划掉除数的小数点相当于把它的小数点向右移动几位。
第三层次:被除数的小数向右移动相同的位数时,有时小数位数够,如果不够还需要考虑添几个0,怎样添的问题。
因学生刚刚接触除数是整数的小数除法,计算不太熟练,更达不到半自动化(借用《给教师的建议》中的提法),再加上一个数除以小数的思维层次比较多,这部分的内容对于学生来说是比较难的。所以课前如果设计专门的准备课,再进行新知的探究也许能提高的教学效率,正所谓“磨刀不误砍柴功”嘛。
因为这节内容比较难,自己总怕学生自己学不好,所以我和王霞老师都采用了“半扶半放”的教学方式进行教学,而苗洁老师是完全放手让学生自主探究,然后收集各种问题进行分析。于是思考:自己不放手的原因是什么?是不相信学生的能力?还是怕一节课的时间不够用?(可能太拘于常规时间的限制)
大家都认为苗老师的方法好,但在处理学生不同的计算方法的顺序上有分歧。一方的意见是先展示正确的方法,再分析错误的方法;另一方的意见是先处理有明显小错误的方法,再逐步地处理有大问题的方法,最后确定正确方法。经过讨论,大家多数同意第一种意见,先引导学生分析正确方法的算理,再用其中的道理分析错误方法的问题所在,这样不仅可以促使学生从另一个侧面理解算理,还可以帮助出错的学生弄清自己错在何处。这样学生“知其然也知其所以然”,才能更加灵活地解决综合在一起的各种计算题。
一个数除以小数教材上的第一个例子是“7。65÷0.85”,经过分析这是一个特例,特殊在被除数与除数的小数位数相同,紧跟着的“做一做”中前两个例子的被除数与除数的小数位数也相同,最后一个是三位小数除以两位小数的计算。这样安排会给学生造成“一个数除以小数,把被除数与除数都变成整数(或去掉小数点)”的表面印象。所以我将例子改为“1.296÷0.72”,这样的例子更为一般,也不会让学生形成上面不太严谨的印象。我的想法是“从一般到特殊”地引导学生进行探究。而苗老师与吕老师认为“7.65÷0.85”比较简单,应该按“从简单到复杂”的顺序引导学生展开探究。最终没有形成统一看法,认为在以后的教学中进行对比实验,看究竟哪一种方式的教学效率更好。
一个数除以小数教学反思篇六
本课是在学习了“除数是整数的小数除法”地基础上,重点学习“除数是小数的小数除法”。通过作业情况的反馈来看,学生对于一个数除以小数错误的地方表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点位置不对。
采取的措施:探究算理,“循理入法,以理驭法”,以“用”引“算”,“以算促用,以算强用”
总结列竖式的过程进行细化:1.“一看”——移动除数的小数点,移动几次变成整数。2.“二移”——被除数也移动同样的次数。位数不够的,在被除数的末尾用0补足。3.“三算”——用整数的除法法则进行计算。商的小数点和被除数的小数点要对齐。如果除到被除数的末尾仍有余数,就在被除数末尾添0继续除。突出除到哪位,商那位,不够商1时要在商的位置上写0占位。
一个数除以小数教学反思篇七
在小组教研活动中,与苗老师和王老师同课异构,听评课中大家重点讨论了三个问题:
经过听课与讨论发现,探究一个数除以小数的计算方法并能正确计算,学生需要具备三方面的基础知识。一是理解并灵活运用商不变的性质;二是能正确地把小数或整数的小数点向右移动按要求移动;三是能熟练地计算除数是整数的小数除法。
因学生刚刚接触除数是整数的小数除法学生需要具备的技能——除数的小数点向右移动几位,被除数的小数也向右移动几位,是结合了上面的第一与第二个知识点,也是本课的难点。分析难点难在这里思维层次比较多。
第一层次:把除数变为整数,去掉除数的小数点即可;——这一层次思维含量比较低。
第二层次:除数变成了整数,小数点隐掉或省略了。需要思考:划掉除数的小数点相当于把它的小数点向右移动几位。
第三层次:被除数的小数向右移动相同的位数时,有时小数位数够,如果不够还需要考虑添几个0,怎样添的问题。
因学生刚刚接触除数是整数的小数除法,计算不太熟练,更达不到半自动化(借用《给教师的.建议》中的提法),再加上一个数除以小数的思维层次比较多,这部分的内容对于学生来说是比较难的。所以课前如果设计专门的准备课,再进行新知的探究也许能提高的教学效率,正所谓“磨刀不误砍柴功”嘛。
因为这节内容比较难,自己总怕学生自己学不好,所以我和王霞老师都采用了“半扶半放”的教学方式进行教学,而苗洁老师是完全放手让学生自主探究,然后收集各种问题进行分析。于是思考:自己不放手的原因是什么?是不相信学生的能力?还是怕一节课的时间不够用?(可能太拘于常规时间的限制)。
大家都认为苗老师的方法好,但在处理学生不同的计算方法的顺序上有分歧。一方的意见是先展示正确的方法,再分析错误的方法;另一方的意见是先处理有明显小错误的方法,再逐步地处理有大问题的方法,最后确定正确方法。经过讨论,大家多数同意第一种意见,先引导学生分析正确方法的算理,再用其中的道理分析错误方法的问题所在,这样不仅可以促使学生从另一个侧面理解算理,还可以帮助出错的学生弄清自己错在何处。这样学生“知其然也知其所以然”,才能更加灵活地解决综合在一起的各种计算题。
一个数除以小数教材上的第一个例子是“7。65÷0.85”,经过分析这是一个特例,特殊在被除数与除数的小数位数相同,紧跟着的“做一做”中前两个例子的被除数与除数的小数位数也相同,最后一个是三位小数除以两位小数的计算。这样安排会给学生造成“一个数除以小数,把被除数与除数都变成整数(或去掉小数点)”的表面印象。所以我将例子改为“1.296÷0.72”,这样的例子更为一般,也不会让学生形成上面不太严谨的印象。我的想法是“从一般到特殊”地引导学生进行探究。而苗老师与吕老师认为“7.65÷0.85”比较简单,应该按“从简单到复杂”的顺序引导学生展开探究。最终没有形成统一看法,认为在以后的教学中进行对比实验,看究竟哪一种方式的教学效率更好。
一个数除以小数教学反思篇八
今天,我上了一节《一个数除以小数》。从基本理念、教学构思、操作过程等方面去审视《一个数除以小数》的备课、教学教过程,发现了不少值得深思、改进的问题。
思想解放的程度不够,从备课到讲课,因为受传统教学思想的影响,生怕重难点不突出,生怕学生不能较为熟练地掌握“一个数除以小数”的计算方法和技巧,生怕完成不了教学任务,追求40分钟以内的所谓知识的完整性太多的顾虑,导致产生前怕虎,后怕狼的心理,缩手缩脚,该放手做的事情不敢理直气壮地去做,走不出传统教学模式的影子,影响着新课标、新理念的实施,特别是以下几个方面存在的问题尤其突出。
本来,通过例5的学习,学生已经理解除数是小数的除法计算方法的算理是“商不变性质”和“小数点位置移动引起小数大小变化”的规律,把除数是小数的除法转化成除数是整数的除法后,就能用“除数是整数的小数除法”的计算方法进行计算。利用迁移,明确转化原理,完全可以由学生通过小组讨论总结出“除数是小数的计算法则”不必要把这个过程总让教师“扶着走”。
一个数除以小数教学反思篇九
一个数除以小数是在学生学习过除数是整数的除法后进行的。除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。重点是要让学生掌握:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法进行计算。在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我也进行了考虑。让学生明白,小数除以小数的关键在于转化,即把除数转化为整数。如何转化,要利用商不变的性质。先把除数的变成整数,为使学生看得更清楚,我要求学生把除数和被除数的小数点位置移在竖式上,移动的位数取决于除数的小数位数,除数有几位小数,被除数的小数点就向右移动几位。然后在旁边重新列一个竖式,然后按照整数除法的方法进行计算。
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、对算理的理解不够,应该多让学生来交流竖式中每一步所表示的含义。我改学生的作业时发现,很多学生移动小数的位数错误,导致了计算思路不清晰,影响计算结果!而商不变的性质是小学中高阶段很重要的性质,它对于分数的学习也至关重要,但真正能把这个性质弄懂弄透,并不容易,很多学生不能体会这个性质的内涵,当利用商不变的性质解题时,其实是将小数除法的计算过程进行简化的,但是当被除数和除数发生相应的改变后,学生的思路跟不上,造成计算失误严重。
二、学生整数除法的基础打得不牢,特别是商中间有0这种类型,它既是除法的重点,也是难点,可能是前面的教学有疏忽的地方。除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
三、部分学生的学习习惯较差,做题老是丢三落四的,不是忘了打小数点,就是忘了商0,或者是忘了被除数和除数同时扩大相同的倍数。有部分学生认为学习小数除法是比较复杂的,懒与计算,动手太少。
四、商的小数点与被除数原来的小数点对齐。在完成竖式的过程中,个别同学书写不认真,数位对不齐。这也是部分学生错误的原因之一。
以后教学中需要改进的地方:
二、总结列竖式的过程进行细化:
1、移动除数的小数点,移动几次变成整数。
2、被除数也移动同样的位数。
3、在商的位置上标上小数点,与被除数对齐。
4、用整数的除法法则进行计算。突出除到哪位商那位,不够时先在商的位置上写0,再落下一个数继续除。
一个数除以小数教学反思篇十
新课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。《一个数除以小数》的教学内容,正体现了这一点。在教学中,我有以下反思:
计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,没有必要计算时在小数点的问题上过多纠缠,增加学生的学习难度。教学中一是让学生在计算前多说一说除数和被除数要同时扩大到原数的多少倍,小数点同时向右移动几位。二是多让学生进行一些简单的除数是小数的除法的口算练习。使学生习惯于把除数是小数的除法转化成除数是整数的除法来计算。
学生在练习中产生的错题让学生找错改正,效果大于让学生做书上改错题。让同学们判断,分析,订正即对新知的巩固练习,又起到学生间互相帮助效果,学生印象更深。通过学生自己学的过程中一步一步分析,自己得出了除数是小数除法的计算方法。通过后面练习发现效果很好。

一键复制