通过总结我们可以发现问题所在,找到解决问题的方法,并在今后的工作和学习中避免类似的错误。为了提高效率和工作质量,我想我们需要掌握一些高效的总结方法。以下是小编为大家收集的总结范文,希望对大家有所帮助。
比应用教学设计与反思篇一
设计思路:本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。
教学内容:六年级上册比的应用。
教学目标:
1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。
2、能正确解答按比例分配问题。
3、培养解决问题的能力,促进探索精神的养成。
教学重点:掌握解答按比例分配应用题的步骤。
教学难点:根据题中所给的比,掌握各部分量占总数量的几分之几,会用两种方法解决分配问题。
教学过程:
一、创设情境,感受价值。
1、师:同学们,老师这里有一个问题需要大家解决,你们愿意吗?
你们觉得怎样分配才合理呢?为什么?
3、那么第二种情况呢?也是平均分配吗?
(学生经过思考,发现不合理,但是又不知道该怎么分配,于是引出今天的课题:比的应用)。
学生齐读:按比例分配的概念。
二、探究教学。
1、探究例题。
(2)出示题目:我按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?引导学生自学:
1、认真读题,思考“500ml”表示什么?“1:4”表示什么?
2、要求的是?
(3)学生完成3、根据你的理解,怎样解决这个问题?先独立思考,然后四人小组交流。
4、怎样检验你的结果是否正确?
请四人小组汇报解题方法,两位学生写,两位学生补充方法一:每份的体积:500÷(1+4)=100(ml)浓缩液的体积:100×1=100(ml)水的体积:100×4=400(ml)。
方法二:总体积平均分成的份数:1+4=5浓缩液的体积水的体积:
2、思考:如何检验答案是否正确呢?
讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?
指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。
3、小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。大屏出示,学生更加明确。
三、巩固练习。
2、(1)把20根小棒按2:3的比例分成两堆,一堆()根,另一堆()根。
(2)把20根小棒按1:1的比例分成两堆,一堆()根,另一堆()根。
3、面包100g。
(1)小明今天早餐是按怎样的比例搭配的?
(2)小明的妈妈按同样的比吃了大约420g的早餐,算算妈妈今天早晨各种食物大约分别吃了多少。
四、小结。
通过这节课的学习,你有什么收获?点名学生回答,然后集体回答。
鸡蛋50g。
1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在导入环节中,设问如何分配利润才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。
2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。我从生活中的实际经验出发,介绍什么是浓缩液?什么是稀释液?先让学生明白这几个量之间的关系。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。
3、在练习题的设计上,我是安排从简到难,一共三个题目,让学生在练习中进步,感受按比例分配的问题。
4、在授课过程中也有很多的不足,比如刚开始的导入那道题,虽然提出来了,但是在最后却没有解决这个问题,导致课程感觉不完整,这是这节课的一大遗憾。
比应用教学设计与反思篇二
设计思路:本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。
教学内容:六年级上册比的应用。
教学目标:
1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。
2、能正确解答按比例分配问题。
3、培养解决问题的能力,促进探索精神的养成。
教学重点:掌握解答按比例分配应用题的步骤。
教学难点:掌握解题的关键。
教学过程:
一、创设情境,感受价值。
1、师:同学们,大家平时放过东西吗?
2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)。
3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。
注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。
二、探究教学。
1、探究例题。
呈现例题,根据学生的建议,共同完成例1。
师:请同学们独立思考,独立完成(教师巡视、指导)。
(3)展示结果。
根据学生的回答板书解题方法。
第一种:60÷(2+3)=12(棵)12×3=36(棵)12×2=24(棵)。
第二种:2+3=5。
60×3/5=36(棵)60×2/5=24(棵)。
注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。
2、揭示课题。
师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。
3、思考:如何检验答案是否正确呢?
讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?
指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。
三、
巩固练习教材做一做。
四、
总结。
通过这节课的学习,你有什么收获?教学反思:
1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。
2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。
比应用教学设计与反思篇三
生乙:‘地球上的淡水含量与地球上水总量的比为3:100。 。
生丙:安利洗涤剂与水的正常比为1:8。 。
生丁:市场上出售的一种咖啡奶,咖啡和奶的比为2:9。 。
教学反思: 。
"比的应用"一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,因此,课前让每一个学生到生活中调查生活中的比,并且说一说你是怎么获得这些比的。以此引人新课,使学生感受到按比例分配的计算就来源于自己的生活实际。通过从生活实际引人按比例分配的计算,并应用所学知识解决了一些简单的实际问题,使学生真切地感受到数学知识和生活实际的紧密联系,数学来源于生活,并能解决实际问题,充分体现了应用题教学的应用性。数学教学活动必须建立在学生的认知发展水平和已有的知识经验、生活经验基础之上,教师应激发学生的学习积极性。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。
比应用教学设计与反思篇四
北师大版小学数学六年级(上册)第四单元第54页“比的应用”。
【教学目标】。
能运用比的意x决按照一定的比进行分配的实际问题,进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
【教学重点】。
1、理解按一定比例来分配一个数量的意义。
2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
【教具准备】。
cai课件。
【教学设计】。
教学过程。
教学过程说明。
一、创设情境:
2、请同学们想一想:你认为怎么分合理?说一说你的分法。
二、探究新知:
1、出示题目:这筐橘子按3:2应该怎样分?
(1)小组合作(用小棒代替橘子,实际操作)。
(2)记录分配的过程。
(3)各小组汇报:自己的分法。
大班小班。
3个2个。
6个4个。
30个20个。
…………。
2、出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1)小组合作。
(2)交流、展示。
(3)比较不同的方法,找找他们的共同点。
方法一:
大班小班。
30个20个。
30个20个。
…………。
方法二:画图。
140个。
方法三:列式。
3+2=5。
140×=84(个)。
140×=56(个)。
答:大班分84个,小班分56个,比较合理。
(还会出现用整数方法来列式计算的。)。
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
三、巩固新知。
完成课本第55页:
1、独立试做:试一试。
2、独立试做练一练的1题、2题,3题抢答,并说明理由。
四、知识拓展:数学故事。(共同探讨方法)。
五、总结:
1、学生看书总结本节所学内容。
2、提出自己还有些疑惑的问题。
六、【板书】。
比的应用。
3+2=5。
140×=84(个)。
140×=56(个)。
答:大班分84个,小班分56个,比较合理提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。
有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。
培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。
比应用教学设计与反思篇五
北师大版小学数学六年级(上册)第四单元第54页“比的应用”。
能运用比的意x决按照一定的比进行分配的实际问题,进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
1、理解按一定比例来分配一个数量的意义。
2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
cai课件。
教学过程。
教学过程说明。
一、创设情境:
2、请同学们想一想:你认为怎么分合理?说一说你的分法。
二、探究新知:
1、出示题目:这筐橘子按3:2应该怎样分?
(1)小组合作(用小棒代替橘子,实际操作)。
(2)记录分配的过程。
(3)各小组汇报:自己的分法。
大班小班。
3个2个。
6个4个。
30个20个。
…………。
2、出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1)小组合作。
(2)交流、展示。
(3)比较不同的方法,找找他们的共同点。
方法一:
大班小班。
30个20个。
30个20个。
…………。
方法二:画图。
140个。
方法三:列式。
3+2=5。
140×=84(个)。
140×=56(个)。
答:大班分84个,小班分56个,比较合理。
(还会出现用整数方法来列式计算的。)。
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
三、巩固新知。
完成课本第55页:
1、独立试做:试一试。
2、独立试做练一练的1题、2题,3题抢答,并说明理由。
四、知识拓展:数学故事。(共同探讨方法)。
五、总结:
1、学生看书总结本节所学内容。
2、提出自己还有些疑惑的问题。
六、【板书】。
3+2=5。
140×=84(个)。
140×=56(个)。
答:大班分84个,小班分56个,比较合理提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。
有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。
培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。
比应用教学设计与反思篇六
教学目标具体要求:
1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:
勾股定理的应用。
难点:
勾股定理的应用。
教案设计。
一、知识点讲解。
知识点1:(已知两边求第三边)。
1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形abc中,ab=10,ac=17,bc边上的高线ad=8,求bc的长?
知识点2:
利用方程求线段长。
(1)使得c,d两村到e站的距离相等,e站建在离a站多少km处?
(2)de与ce的位置关系。
(3)使得c,d两村到e站的距离最短,e站建在离a站多少km处?
利用方程解决翻折问题。
3、在矩形纸片abcd中,ad=4cm,ab=10cm,按图所示方式折叠,使点b与点d重合,折痕为ef,求de的长。
5、折叠矩形abcd的一边ad,折痕为ae,且使点d落在bc边上的点f处,已知ab=8cm,bc=10cm,以b点为原点,bc为x轴,ba为y轴建立平面直角坐标系。求点f和点e坐标。
6、边长为8和4的矩形oabc的两边分别在直角坐标系的x轴和y轴上,若沿对角线ac折叠后,点b落在第四象限b1处,设b1c交x轴于点d,求(1)三角形adc的面积,(2)点b1的坐标,(3)ab1所在的直线解析式.
知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系。
1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。
(2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的确切形状是_____________。
二、课堂小结。
谈一谈你这节课都有哪些收获?
应用勾股定理解决实际问题。
三、课堂练习以上习题。
四、课后作业卷子。
本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。
针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:
一、复习引入。
对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。
二、例题讲解,巩固练习,总结数学思想方法。
活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。
活动二:解决例二梯子滑落的`问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。
活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。
二、巩固练习,熟练新知。
通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。
在教学设计的实施中,也存在着一些问题:
1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。
2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。
比应用教学设计与反思篇七
本节课设计巧妙,重难点明确,尤其在情境教学的应用方面表现突出,内容设计与生活联系紧密,结合丰富的小组合作学习教学效果良好。
【情境一】火箭发射联想情境。
通过让学生观察图片,产生联想,利用学生学过的实例提出理论计算焓变的问题,激发了学生学习兴趣,为引出“盖斯定律”埋下伏笔。
【情境二】高炉炼铁问题情境。
基于盖斯定律学习的基础上创设高炉炼铁的问题情境,通过研讨设计合理的“路径”解决高炉炼铁中co反应热的测定,让学生总结利用盖斯定律计算焓变的方法,进一步理解认识化学反应的规律和特点。
【情境三】“西气东输”生活情境。
通过提出生活情境西气东输工程,让学生感受到化学知识在生活中的重要性和自我学习对于生活的价值感和参与感,利用所学解决解释生活情境,从而巩固概念学习。
本节课的设计除了应用大量情境教学外同样注重运用生活中的实例加深学生对概念的理解,例如:以登山经验“山的'高度与上山的途径无关”浅显地对特定化学反应的反应热进行形象的比喻,帮助学生/理解。说明盖斯定律是能量守恒定律的必然结果,也是能量守恒定律在化学过程中的应用。从而,引出盖斯定律的实质:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关。
经本节课教学设计及实践反思可发现,情境创设的频次越高对于学生构建知识认知,完善价值观认知帮助效果越明显,当然,任何一节课的教学都不能是单一的教学模式的反复,而应该是一种教学方式为主,多种教学方式为辅共存的叠加设计,才能在学生的学习认知中产生多元效果的构建和叠加。
比应用教学设计与反思篇八
“比的应用”实际就是我们所熟知的“按比例分配”知识,今天应届毕业生小编为大家精心准备了六年级《比的应用》教学设计及反思,更多教学设计请关注应届毕业生考试网。
比的应用是在学生学习了比与分数的关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
1、理解按一定比来分配一个数的意义。
2 掌握按比例分配应用题的结构特点及解题方法,。
1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。
2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。
1、在问题解决过程体验成功的喜悦,对数学产生良好的情感。
2、了解比在实际生产生活中的.广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。
掌握解答按比例分配应用题的步骤。
掌握解题的关键。
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
3、教学准备
学生准备小棒140根。
一课时
一、创设生活情景,谈话引入。
1、创设情景提出问题。
2、学生交流分配方案。
(1)平均分配,把橘子平均分给两个班
(2)按人数分配,人多的班分多点,人少的班分少点。
二、探讨解决问题的方法
1、抓住契机,适时提问。
(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。
( 2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?
2、合作交流,动手操作。
(1)用小棒进行实际的操作。
(2)分组进行操作,组长记录分配的过程。
(3)让学生说一说自己的分法。
3、提升认识,板书课题。
师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题—比的应用(板书课题)。
4、实际应用,解决问题。
(2)学生独立完成,小组交流方法。
(3)提问方法,学生板书。
方法一:3+2=5140÷5=28(个) 28×3=84(个) 28×2=56(个)
方法二:3+2=5140×3/5=84(个) 140×2/5=56(个)
小结:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
三、实践运用,巩固练习
师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。
1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。
(1)引导学生选用喜欢的方法做题。
(2)讨论解决问题的方法。
四:联系生活,介绍比的应用的广泛性。
1、举例
2、数学书第56页练一练第2题。
3、数学故事:
孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。
五:回顾教学,总结方法。
1、引导学生总结比的应用的一些方法。
2、这节课你有什么收获?
六:作业
我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。
七:板书设计:
比的应用
方法一:3+2=5 方法二:3+2=5
140÷5=28(个)140×3/5=84(个)
28×3=84(个) 140×2/5=56(个)
28×2=56(个)
答:大班分到84个,小班分到56个。
一、充分挖掘教材,旧知迁移新知。
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。
二、借助多媒体或教具,助学生理解新知识。
学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。
三、教师在小结升华时讲解。
学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
比应用教学设计与反思篇九
教学目标:
1.帮助学生理解、掌握稍复杂的分数乘法应用题的数量关系,学会用两种方法解答求一个树比少几分之几的分数应用题。
3.经过小组合作,让学生发现和探讨问题,在合作和交流的过程中,获得良好的情感体验,激发学生学习的兴趣,体验到数学与生活的密切联系。
教学重点:理解分数应用题的数量关系,会用两种方法灵活解答。
教学过程:
一.巧设铺垫,激趣导入。
1.创设情景:同学们,今天我们班来了一位特殊的嘉兵,谁呢?(请出小记者)现在我们来做个现场采访:在前面所的知识中,你感觉哪部分知识比较难理解?(学生自由发言,与小记者产生共鸣,从而引出“应用题”)。
2.设疑:小记者请求大家来帮助他如何理解、掌握应用题?
3.小记者设问探讨:解答前面所学的分数应用题关键在哪?(学生自由探讨,发表意见,引出找关键句、找单位“1”及数量关系,也可画线段图理解关系)。
4.小记者示题:说出下面各题的单位“1”及数量关系。
(1)一些奖状,发了3/5。
(2)已经看了全书的1/8。
(3)男生占全班人数的3/7。
(学生自由口述,选择喜欢的题目解答)。
引出“刚刚的3句话,在应用题中是作为什么部分?(关键句)。
5.示问:除了刚刚的几句关键句,你能找出在生活中哪些地方也用过类似的话?又如何找出单位“1”及数量关系(学生自由探讨,根据学生回答选择适当的关键句写在黑板上,为后面服务)。
二.探索交流,建构新知。
(一)自由构建新知。
1.设疑:一道完整的应用题除了关键句,还需要什么部分?(学生交流,引出“条件、问题“)。
2.编题:那你能否选择自己喜欢的关键句,补充一道完整的应用题?并思考如何解决?我们分小组比赛,看哪小组合作的既快又有新意,可邀请我们的小记者和老师一并参与(分小组合作探讨、交流)。
[设计意图:富有挑战性的问题犹如一枚枚石子投入蓄势已入的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作、足以让学生获得积极的、深层次的体验。行云流水般的分数应用题教学全无例行公事、思路闭所,空间狭小之嫌。正所谓“灵感总青睐有准备的头脑”。学生结合自己的生活经验,自由提问,可以培养学生的发散性思维,并培养学生的问题意识。往往提出一个问题可能比解决问题更为有意义。这一环节,把学习的主动权真正交给了学生,让学生通过小组合作的方式操作,通过动脑编题——动手写题——自主探索、合作交流解题,放手让学生去探索,并通过小组合作比赛,这样不仅充分激发了学生的学习积极性,而且使学生体会了发现、掌握新知的方法。
(二)探讨交流新知。
1.交流展示成果:选一些小组向全班交流。
根据小组的汇报,选出一些典型的题目(多媒体)适时展示,全班共同交流。
例如:一些奖状共15张,发了3/5,还剩几张?(发了几张?)(发了的的比剩下的少几张?发了的比剩下的少几分之几?)。
示问:对刚刚那小组的成果(题目),你们会帮忙解答吗?(全班尝试解答,请部分学生板演)。
2.交流:“还剩几张”你是怎么想的?
学生介绍方法:
(1)根据数量关系,总共的—发了的=剩下的,总共的×3/5=运走的。
15—15×3/5。
=15—9。
=6(张)。
(2)画线段图帮助理解。
分析:结合线段图理解“把什么看作单位“!”,运走了几分之几,还剩几分之几,各是哪部分?怎么表示的?)。
15×(1—3/5)。
=15×2/5。
=6(张)。
整个方法介绍过程中,全班同学共同参与,群策群力,教师根据学生回答情况适时点拨。
3.小结:刚刚由于全班的共同努力,我们自己的问题自己想办法解决了,真是聪明!看来我们集体的智慧是无穷的。我们用了哪些方法来解答刚刚那一小组的题目的,说说你比较喜欢那种。(自由发言)。
那对于刚刚的方法还有什么困惑的吗?提出来大家共同解答。
(三)灵活运用新知。
2.学生解答剩余的题目,拓展、巩固对新知的理解。(自由发言、交流)。
4.小记者兴致昂然,想展示一下自己学到的本领,请其余同学出题来考他。(学生出题,视平台展示)。
4.创设情景:小记者解答有困难(数量关系出错,对应分率出错)请同学们帮助解答。
突出强调解答应用题的方法(理清数量关系,理清对应分率)。
[设计意图:结合学生表现颁发奖状,与我们的例题浑然一体,学生兴趣昂然激发了学生后面解决问题的积极性。同时设立小记者遇到困难,突出强调今天所学的知识的重点。这一活动,还是放手让学生自己去提问,再自己解决,充分相信学生,有助于扩展学生的思维空间,培养学生的创新意识和合作精神,增强了数学内容的趣味性、开放性。
三.巩固应用。
小记者出题:看同学们表现那么棒,考官做的那么溜,也想当会考官,你们敢不敢应战?(多媒体演示出题)。
[总体设想]:
1.从生活经验导入新课,使数学问题生活化。
课一开始,联系学生学习生活实际,说说学习方面比较困惑的知识话题导入新课,从“解答应用题关键所在”来切入主题。这样做使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲切感,他们被浓浓的生活气息所感动,兴致勃勃的投入到新课的学习之中。
2.让学生亲身体验知识的形成和发展。
小学生已经具有了一定的生活经验,因此教师设计了这样一个情节:小组自由选择喜欢的关键句编题并思考如何解答。学生通过合作探讨交流,得出解答的方法。从自己质疑——解疑问——汇报交流,整个教学过程环环相扣,双基训练扎实。教学中设置了许多开放性问题,拓宽了学生进行实践、创新学习的课程渠道,注重学生的情感体验和个性发展,增强数学内容的趣味性、开放性,强调学生数学学习的过程。
3.注重学习的开放性,学生的自主探究、合作交流。
整个学习过程,从问题导入,引出新知,到自由探讨新知,解决问题都是学生自主探究形成,真正主人教师只是参与其中,从而引导和辅助。学生是整节课引发的一环有一环,促使学生层层深入的思考,让学生自觉地、全身性的投入到学习活动中,用心发现、用心思考、真诚交流。
比应用教学设计与反思篇十
教学内容:
浙教版第十一册第103页例1例2,练习十七题。
教学目标:
1、掌握求一个数与它的几分之几的差(和)是多少的应用题的数量关系,并能正确解答。
2、通过分析、比较,培养学生善于思考问题提出问题的能力。
3、培养学生良好的审题习惯。
4、渗透环保观念和终身学习观念。
教学重点和难点和关键。
教学重点:分析题中的数量关系和掌握解题思路,并能正确解答。
教学难点:1、寻求所求问题对应的几分之几。2、弄清两种不同的解题思路。
教学关键:1、确定单位“1”。2、找出所求问题占单位“1”的几分之几。
教学过程:
一、复习铺垫。
1、找单位“1”
(1)一本书,已经看了1/4,还剩几分之几?
(2)实际投资是计划投资的4/5。
(3)男生25人,占全班人数的5/9。
2、口答:
(1)一堆煤,运走了3/5,还剩几分之几?
(2)女生人数比男生人数多1/3,女生比男生多的人数占()的1/3。
(3)白兔比黑兔少1/4,白兔是黑兔的几分之几?
二、创设情景、引入新知。
1、你们喜欢鸟吗?鸟类种数减少了,就意味着许多美丽的鸟类从此就永远消失了。你们知道为什么吗?由于人类的这些行为,有的鸟类灭绝了,还有一些鸟类,尽管还存在,但数量已经很少了,如果再不加以保护,也将很快灭绝掉。丹顶鹤就是这样的一种鸟类。丹顶鹤是国家的一级保护动物,是我国特产鸟类,群居黑龙江省的扎龙,丹顶鹤生活特别有规律,它体姿优美文雅、风貌优秀、翩翩起舞可与孔雀开屏媲美,是长寿动物与龟并称,古人将它作为长寿和幸福的象征,所以特别受中国人的钟爱。
2、今天老师还给大家带来了几条有关丹顶鹤的信息。
出示信息1:国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的1/4。
根据这些信息:你能算出2001年我国约有多少只丹顶鹤吗?怎样列式?你是怎么想的?
(2000×1/4=500(只),求2000只的1/4是多少?)。
3、如果我们把我国约有多少只?这个问题去掉,你能提出哪些问题?(外国约有多少只?)。
出示信息2(例4):
揭示课题:这就是我们今天共同探讨的问题“稍复杂的求一个数的几分之几的应用题”(板书课题)。
三、引导探究,解决问题。
1、请同学们把信息2表达的'意思用线段图表示出来。
展示并口述画的线段图。
2、是把什么看着单位“1”?平均分成几份?(1/4)表示谁占谁的几分之几呢?怎样解答这道题呢?请同学们根据线段图列出算式。(先独立解答,师巡视,再交流)。
3、两名学生板演两种解法。
4、你怎样想的?能说出解题思路吗?(学生口述思路,教师在线段图上展示)。
方法一:把全世界的丹顶鹤的只数看着单位“1”,先求出我国的只数,再用总只数减去我国的只数,剩下的就是其他国家的只数。
5、比较一下,这两种解法有什么区别?有什么联系?(学生小组交流、汇报。)。
〈1〉相同点:单位“1”相同。
〈2〉不同点:第一种解法是用总只数减去我国的只数算出其它国家的。第二种解法是先求出其他国家的只数占总数的几分之几,再用总只数乘这个几分之几,就算出其他国家有多少只。
四、再次探索。
1、教师引言:正如前面所说:丹顶鹤是“长寿和幸福”的象征,人们称它为仙鹤,因此我国在扎龙专门设立自然保护区又誉为“鹤的乐园”。在人们的得力保护下,近两年来,丹顶鹤的数量逐年增多,请看下面信息:
2、请同学们默读信息3,已知什么?要求什么?理解哪一句话对解题最有帮助?怎样理解2007年我国丹鹤的只数比2001年的只数多呢?(把2001年500只丹顶鹤看作单位“1”,2007年比2001年多的只数是2001年只数的4/5)。
3、(师生齐画线段图)这道题有几个不同的数量相比,画几条线段图更好表示?(用两条线段表示)。
教师引导学生画出2001年的线段,然后让学生独立完成余到此为下部分,一人板演。(巡视)。
4、展示线段图并叙述。
指线段图引导分析:我们把什么看着单位“1”?平均分成几份?把2007年的只数分成了几部分?哪两部分?(一部分与2001年同样多,另一部分比2001年多2/5。)。
5、请同学们根据线段图列出算式。(师巡视,指名板演两种代表性的解法)。
6、你能说出解题思路吗?
(第一种解法:先求多的只数+2001年的只数=2007的只数,第二种解法:先求出2007年占单位“1”的几分之几,或2007年是2001年的(1+4/5)倍,再求2007年的只数;也就是求500只的(1+4/5)倍是多少)。
五、回顾小结。
1、刚才同学们用自己的聪明才智解决了以上问题,现在我们一起研究信息2和信息3这两问题有什么共同特点。
(信息2把总数2000只分成两部分,一部分是我国的只数,另一部分是其它国家的只数。信息3是把2007年和2001年相比,把2007年的只数分成两部分,一部分是和2001年的只数同样多,另一部分比2001的只数多2/5。
2、相同点:
单位“1”的数量都是已知的。
3、没有直接告诉所求问题占单位“1”量的几分之几,解题时需要用单位“1”的量减去或加上它的几分之几,或者先算出要求的数量占单位“1”的几分之几,再用单位“1”的量乘这个几分之几。)。
4、指导学生看书例题5,完成课本内容并质疑问难。

一键复制