自然界是一个独特而复杂的系统,包含了无数种类的物种和自然现象。结合个人经验和感悟,可以让总结更富有个性和深度。如果你对总结范文有任何疑问或建议,欢迎随时与我们交流。
大数据的论文篇一
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革――商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道出现的h1n1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
大数据的论文篇二
职责:
1、负责构建数据挖掘与数据分析体系,负责海量运营数据的分类汇总和分析研究;
3、负责数据管理团队的建设工作,有效领导数据分析与挖掘团队支持和推动业务发展;
4、协助完成业务关键目标指标制定、目标达成过程管理。
任职资格:
1、数学、统计学,计算机软件相关专业全日制本科及以上学历,至少4年相关工作经验;
4、对业务变化有敏锐的洞察力;能利用数据对于业务形态与商业模式有深入的理解;
5、数据敏感、善于创新、思维敏捷、精力充沛,沟通能力强,具备较强的团队合作精神并能够承受较大工作压力。
大数据的论文篇三
“除了上帝,任何人都必须用数据来说话。”――这是《大数据时代》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。
美国是《大数据时代》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,web3・0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。
透过全书,一个立体的美国及美国人民的思想呈现在我们面前――美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。
读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。
作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的.文化以及能用于教学的鲜活案例。
每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据时代》就这样在坚持中溶入我的思想。
大数据的论文篇四
摘要:随着就业信息化建设的发展,信息技术已经被广泛应用于高校毕业生就业中,就业信息化建设是近年来大学生就业问题关注和努力的重点方向。但目前就业信息化建设中依然存在很多不足,如信息整合程度低、信息利用率低下、信息平台功能不完善、信息交流不足、网络求职成功率偏低等。在当今大数据时代背景下,就业信息化建设迎来了新的发展机遇。
关键词:大数据;信息化;就业
随着互联网的发展,信息技术被广泛用于生活、工作、学习、服务、交通、生产等各个领域,改变了世界,为人类带来了诸多便利。就业信息化建设对我国经济社会发展稳定具有重大战略意义。在各种信息化平台的帮助下,大学生能够更容易、更便捷地找到就业岗位,在我国高校扩招造成毕业生数量逐年递增的情况下,极大地缓解了社会的就业压力,为我国经济建设提供了各方面的劳动力和人才。因此国家高度重视就业信息化建设,21世纪以来,党中央、国务院、教育部多次下达指令,要求大力开展各项就业信息化建设工作。
一、目前我国就业信息化建设的现状及不足
经过十几年的努力,目前我国就业信息化建设已经基本完善,形成了以各级政府就业指导部门、用人单位、高校、毕业生为核心的就业信息化体系,通过各种信息化平台,把各级政府就业指导部门、用人单位、高校、毕业生连接起来。各级政府就业指导部门网络平台、各高校就业指导中心网站、各种招聘信息、毕业生求职信息等信息化要素的相互作用,实现大学生完成就业。但目前我国就业信息化建设依然存在很多不足,主要有一下几点:
(1)信息整合程度低、信息利用率低下。目前已有的就业信息平台数量很多,各种就业平台发布的信息数量非常巨大,但信息分布松散,整合程度较低。比如,同一岗位的招聘信息,可能会在多个不同的招聘网站上看到,求职者需要到多个求职网站去搜寻。这就增加了求职者获得求职信息的时间成本,导致信息利用率低下。
(2)信息化建设视野狭窄,平台之间联系不够,信息交流不足。政府部门在信息化建设统一规划方面做得不好,没有从高的层面进行部署,建设视野不够宽广。各个信息平台一叶障目,平台之间的联系不够紧密,最终导致了信息交流不足。
(3)信息平台功能不完善,不能更好服务就业工作。目前大部分的信息平台以发布就业信息为主,一些平台具备网络简历投递的功能,但这些对于实现求职者顺利就业是不够的。求职者需要通过信息化平台了解到当前就业形势、各行业就业现状、薪酬水平、地域差异、前景分析等信息,需要得到实时疑问解答,进行广泛交流,这些都是当前的信息平台所缺乏的功能。
(4)网络求职成功率不高。十几年来信息化建设促进了大学生就业工作的开展,越来越多的求职者在网上进行简历投递等求职活动,但不可否认的一个事实是招聘会、宣讲会、人才市场对于就业依然作用突出。调查显示,很多求职者认为网络对于求职的最大帮助是提供便捷、高效、廉价的就业信息,而网络招聘中简历投递成功率太低,所以求职者更愿意到招聘现场去求职,各地招聘现场的火爆状况就是很好的证明。这也说明了目前信息化对求职的帮助仍然处于较低的水平。
二、大数据时代的到来,为就业信息化建设提供了新的发展机遇
随着信息化技术的发展,家用电脑、智能手机、宽带技术、移动互联网、物联网等数据来源及数据承载方式的高速发展,全球的信息数据量出现了跨越式增长,信息大爆炸成了时代的特征,大数据时代已经正式到来[1]。
大数据(big data, mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产[2]。在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的特点可以概括为4v:volume(大量)、velocity(高速)、variety(多样)、value(价值)。大数据最核心的价值就是在于对于海量数据进行存储和分析。大数据技术可以从各种各样类型的数据中,快速获得有价值的信息。
利用大数据技术可以解决目前就业信息化建设中存在的种种不足,进一步加强就业信息化建设,更好帮助大学毕业生就业。
(1)加强预测分析,更好开展就业指导工作,加强就业针对性。大数据技术通过对国内国际形势、当前经济发展、过往就业信息、地域信息等大量数据进行分析,预测就业形势、各行业就业前景、薪酬水平、地域竞争状况、行业前景等能内容进行分析,给出可靠的预测数据,便于政府就业指导部门更好安排部署就业工作;企业可以合理安排招聘岗位,选择适合的求职者,避免员工频繁跳槽现象,节约招聘成本;高校可以更好地开展大学生就业指导工作,大学毕业生根据自己专业、兴趣、爱好、特长、个人发展规划,有针对性地明确求职目标,进行充分的求职准备。这些能加强各方面开展就业工作的针对性。
(2)高度整合信息,紧密联系信息平台,加强信息交流,提高信息利用效率。通过对大量信息的收集和分析,大数据平台可以完成信息的高度整合,使各个信息平台紧密联系在一起,平台之间的信息可以实现快速交流,大幅度提高信息利用效率。在大数据的帮助下,求职者搜寻求职信息时,重复的信息可以自动合并,同一类信息可以全部展现,信息获取效率得以提高;求职者的简历、求职信等求职信息可以储存在云端,在需要时随时可用于不同的网络招聘,这样求职者可以省去大量重复写简历的时间;通过大数据综合分析,网络上的虚假招聘信息可以迅速被识别剔除,信息审核得以强化,避免求职者上当受骗。
(3)完善信息平台功能,扩展信息平台种类,提高网络求职成功率。大数据技术可以进一步完善各信息平台的功能。信息平台将不仅仅提供求职信息,还会增加就业分析预测、实时交流、就业指导、网络简历投递和筛选、视频面试等功能。
随着大数据技术的发展,信息的传播已经不只是依赖电脑,智能手机、便携平板电脑、智能穿戴设备都成了信息传播媒介,信息平台也不再局限于互联网网站,qq、微信、微博等实时交流工具和各种app应用也成了新的信息平台,更加方便、快捷地发挥作用,借助于这些平台,求职者可以随时、随地进行信息浏览、投递简历、疑难询问、交流沟通等,企业hr可以随时发布信息、筛选简历、疑问解答、视频面试等,极大地提高求职的便捷性和成功率。
总而言之,大数据时代的到来,为以后的就业信息化建设提供了新的发展机遇和发展思路,充分利用大数据技术的各种优点和优势,就业信息化建设将更好服务于就业工作。
参考文献:
[2] 杨旭, 汤海京, 丁刚毅. 数据科学导论[m]. 北京理工大学出版社, 2014.
大数据的论文篇五
大数据从被人们所熟知到现在各大领域的广泛应用,标志着人类已经正式走入“第三次工业革命”时代。大数据在营销领域的应用使传统的营销活动变得更加的科学化和个性化,本篇大数据论文的笔者认为,在享用大数据带来的便利同时,需要兼顾大数据带来的伦理问题。
1大数据的概念
近些年随着移动互联网、物联网、云计算的迅猛发展,it业又出现了一个新名词——大数据(bigdata),“大数据”(bigdata)的横空出世是it行业又一次颠覆性的技术变革,且已在各行各业逐渐形成燎原之势,大数据的出现不仅给当今世界带来了翻天覆地的变化,同时也潜移默化的影响着人们生活的各个领域。
对于大数据的概念,迄今为止仍然没有形成统一的准确定义,francisdiebold是第一个提出“大数据”术语的学者,他认为:大数据就是正在激增的数量和潜在的相关数据,主要是当今空前发展的数据记录和存储技术。而meta集团(现为gartner)的分析师douglaslaney()在研究报告中,就指出数量(volume)、速度(velocity)和种类(variety)的增加可能是未来的一大趋势。虽然这一描述最先并不是用来定义大数据的,但在此后的十年间很多企业如ibm和微软仍然使用这个“3vs”模型来描述大数据。对此也出现了一些不同的意见,大数据及其研究领域具有影响力的领导者的国际数据公司(idc)在20做的报告中定义大数据为:“大数据技术描述了新一代的技术和架构体系,通过高速采集、发现或分析,提取各种各样的大量数据的经济价值。”从这个定义来看,大数据的特点可以总结为4个v,即volume(数量),variety(种类),velocity(速度)和value(价值)。4vs和3vs的不同之处就是增加了一个价值,指出了大数据最为核心的问题就是如何从规模巨大、种类繁多、生成快速的数据集中挖掘价值。demauro,a-,greco,m-和grimaldi,m-()对大数据的定义进行了统一:大数据指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。由于利益相关者的角度不同,因此学者们对大数据定义的表述也不尽相同,但大数据的重要性却得到了一致的认同,即大数据在其数据量、数据复杂性和传播速度三大方面都显著的超出了传统的数据形态,也超出了现有的技术处理手段。
正是有了数据的爆炸式增长,大数据已经在学术领域、商业领域乃至政治领域都得到了密切的关注。《nature》出版了专刊“bigdata”,从互联网技术、网络经济学、超级计算、环境科学和生物医药等多个方面介绍了大数据带来的挑战。年《science》推出关于数据处理的专刊“dealingwithdata”,讨论了数据洪流(datadeluge)所带来的机遇,同时也指出如果能够有效地利用好这些数据,人们将会得到更多的机遇,并能对社会发展产生巨大的推动作用。
2大数据给营销领域带来的变化
国外学者danielnunan()就指出了大数据可能会产生影响的五大领域:社交网、数据所有权、存储问题、数据收集、公众隐私,因此大数据时代各大领域都将迎来新一波的迅猛发展期,同时它也决定了未来商业的发展趋势,尤其在营销领域大数据与营销的结合更是颠覆了传统的营销模式。
2-1营销活动将更科学化
大数据的特征是容量大、种类多、高速度和有价值,因此大数据时代的营销不再是基于经验和直觉,而是基于科学的数据分析进行精准营销。曾经有过一个经典的大数据案例讲的就是“啤酒与尿布”的故事,在20世纪末的美国沃尔玛超市中,超市的管理人员意外的发现两个毫无关联的物品啤酒和尿布会经常同时出现在一个购物篮中,后续研究发现原来是因为美国一般都是年轻的爸爸出来为小婴儿购买尿布,顺便为自己购买啤酒,当然其中就用到了商品间的关联算法,而大数据正是通过海量的数据来实现精准的营销为企业竞争赢得先机。
2-2营销活动将更个性化
随着数据的挖掘、采集、分析等环节的效率不断地提高,大数据的大容量、高速度、多样性以及高价值四个特点使得个性化的营销服务成为可能。营销的最终目的就是能够准确的了解每一个潜在的或者现实的客户需求并为其提供满意的产品和服务从而实现利润最大化,而大数据恰好能够利用其显著的优势,从海量的数据中提取有用的信息,准确地把握客户的兴趣点,了解客户的个性偏好,因此大数据背景下利用网络技术平台提供个性化服务是未来的一大趋势。
2-3企业营销组织机构和人员工作职能将围绕数据展开
大数据时代下对于企业来说数据是最重要最珍贵的资源,因而数据的收集和整理以及数据的分析和处理将是营销人员制胜的关键。因此营销人员的工作将更多的是围绕着数据的采集、分析和处理展开。在营销领域采用数据挖掘是营销发展到一定阶段的必然趋势,而数据挖掘技术的应用能对企业的营销管理带来很多显著的利益,因此未来企业的营销人员的职能会发生转变,以数据挖掘、分析为主的组织机构将会成为企业的重要职能部门。世界著名的管理咨询公司埃森哲和麦肯锡都先后发布报告称,数据科学家的需求将会持续扩大,未来如何培养高技能的数据人才会是各大数据业务公司的重中之重。
2-4营销活动将可预测
大数据是一场技术性的革命,海量的数据资源使得营销管理开启量化的进程,而运用数据进行决策是大数据背景下营销模式的一个重要特征。未来企业的竞争将是数据的竞争,谁能挖掘潜在的客户掌握客户的需求谁将能取胜,因此企业营销活动的成败关键就在于是否能准确地判断顾客的价值,而大数据的出现使得营销管理活动能够实现精确的预测成为可能。大数据之“大”就是数据量大,能搜集全面和综合的数据,并再结合数据算法建模的使用,便能充分地挖掘数据间的相连性,从而来预测市场的发展趋势,帮助提升营销活动的'可预见性。
总之,大数据时代的到来给营销领域带来了巨大的商机。可正当人们还沉浸在大数据所带来的各种便利和价值的时候,有一个问题已慢慢引起了全世界的关注,即大数据营销活动中一些有悖于道德伦理问题的存在令人担忧。
3大数据时代面临的挑战
3-1数据的质量问题和数据人才的缺乏
大数据的“大”是指数据量大,但数据量大不一定代表信息量大或者数据的价值大,相反由于数据量太大容易造成很多繁杂无用的垃圾数据的泛滥。高质量的数据是大数据发挥效能的重要手段,因此如何应用相应的技术手段对大量的数据进行深加工成为企业发展的关键。同时由于大数据时代营销人员的职能已逐渐转化为数据相关的工作,而数据人才的缺乏也是当今营销领域的一大挑战,因此如何培养数据人才充分利用数据的挖掘采集和分析技术来获取高质量的数据信息是我们的当务之急。
3-2数据的复杂化难以管理
当今世界对数据的争夺问题已日趋白热化,各大企业都为获取有效的数据信息来赢得竞争的优势。虽然数据就像黄金一样把它们放在一个数据库可以保证安全,但这却不是一个实际的处理方案,一方面没有那么大的内存去存储;另一方面由于数据的珍贵,每个企业都小心翼翼地将数据当作财产一样存储在不同的服务器上,彼此之间互不连通形成一个个“数据孤岛”。而大数据时代又需要广泛的研究数据间的相关性才能从中发现客观规律,需要个体和集体的配合才能实现数据的共享从而实现数据的价值最大化。
3-3公众和个人隐私问题日益凸显
当今数据的收集和存储能力已远远超过了数据的利用率(jacobs,),而目前这两种能力还不能有效的结合,使得数据的利用率较低且数据的泛滥很可能会使得公众的隐私受到侵犯。在大数据的营销过程中很多用户相关的信息都是以数据的形式存储在电脑上,而互联网的广泛传播使得数据的隐私问题越来越令人担忧。例如,很多企业为了经济利益将用户的个人资料私自出售,甚至还有一些不法分子窃取用户的个人信息对用户进行诈骗等,这已给个人造成了严重的困扰。
3-4数据精准性与服务精准性不对称
尽管大数据营销可以让企业了解客户的需求,但精准的数据不一定能全面把握客户的心理活动。比如说一个顾客一直徘徊在商场一楼的鞋子特价区,此时这个顾客的举动可能说明了这个顾客对鞋子是有需求的,但不能说明这个顾客一定是一个价格敏感者。尽管大数据的确能够发现、跟踪和分析消费者的每个显性变化,但却无法全面把握消费者的内心活动,因为顾客的购买心理本来就是一个“暗箱”,他的购买行为是由很多因素综合决定的,可能是心理,可能是价格,还有可能是环境因素,等等。因此尽管大数据能够提供精准的数字,但却很难提供精准的预测,这里面涉及了一个不可确定性因素,就是顾客的心理。
4大数据背景下营销领域伦理问题的解决途径
大数据对于营销领域来说是一把双刃剑,既是机遇也是挑战。它既能给企业带来巨大的商业价值,有效地提升企业的竞争力,同时也可能因为安全隐患问题给社会带来极大的危害。因此,本文试着从国家、企业以及技术手段三个层面来探讨如何有效地规避大数据自身带来的伦理问题。
4-1国家应当制定相应的法律法规来约束不法行为
由于我国相对于西方发达国家来说,大数据营销起步较晚,因此相关的法律法规还不是很健全,许多不法分子利用一些法律漏洞来窃取消费者的隐私、侵害消费者的利益。从宏观层面来说,国家是市场有序进行的保证,而法律是依靠国家的强制力来维护公共生活的秩序。因此国家应加强相关的法律法规的建设来严厉打击不法分子、保护消费者的隐私安全。
4-2通过行业自律来约束自身的伦理机制
由于法律仅仅是外在的约束因素,而要从根本上解决问题还需要加强行业的内在自律性,加强企业的内在道德观念,自觉的遵守道德约束。而事实证明,企业通过建立消费者隐私的保护机制,依法保障消费者的合法权益,是解决这些伦理问题的源头。(3)利用技术手段解决自身的问题。大数据的安全隐患问题是由大数据发展过程中自发产生的,因此可以充分的利用技术的优势有效的规避这些问题。人的自律行为是需要相当大的决心的,因为往往拒绝不了利益的诱惑,而法律的制定往往是滞后于技术的进步,人们往往是等到出现了问题后才会想办法制定相关法律,事实上也正是因为技术的不完善才给了那些不法分子钻空子的机会,因此依靠技术自身的优势来解决大数据背景下营销伦理问题是最切实有效的。
5结论
大数据与营销管理领域的结合也是时代发展的必然趋势,更是企业在激烈竞争下取胜的关键举措。与此同时,我们在享受大数据带来的巨大商业价值时,也应客观的认识到大数据时代的安全相比传统安全更加复杂,对此理应结合法律的强制措施和行业的自律以及技术的显著优势,来保障大数据背景下营销朝着正确的方向发展。
大数据的论文篇六
《普通高中英语课程标准(实验)》指出,高中英语课程的总目标是使学生在义务教育阶段英语学习的基础上,进一步明确英语学习的目的,发展自主学习和合作学习的能力;形成有效的英语学习策略;培养学生的综合语言运用能力。对于处在海峡西岸的英语教师更应该深刻领悟体会实践《课程标准》,一切为了学生的发展,真正提高学生的综合语言运用能力,培养实用型海西建设者。以下是笔者平时教学过程中使用新教材后的点滴体会。
一、调查研究
学生从初中升入高中,进入了崭新的学习阶段,他们对英语充满了新鲜感,对英语老师也充满了好奇心。所以,我们应该抓住这一契机,充分研究学情。首先,笔者对两个班级103位学生进行了问卷调查。调查显示72.8%的学生对高中英语教学内容充满了兴趣;67.3%的.学生对高中英语学习方法不清楚;90.1%的学生对英语老师充满了好奇心。89.6%的学生学英语的目的不明确。调查结果表明,端正学生的学习态度,指导学生的学习方法很有必要,同时,教师与学生的情感交流也与学生学英语的热情程度息息相关。
二、上好高中英语第一课
大数据的论文篇七
王石磊陈楠
(江苏省靖江市第一高级中学)
摘要:当今时代,随着计算机和信息技术的快速发展,数据的传递和交换越来越频繁,人类迎来了大数据时代。在大数据的背景下,高中历史教学也深受影响。借助于现代技术,不仅教学手段得到了创新,教学方法也得以改进,教学内容也大为丰富。因此,新时代的高中历史教师,一定要掌握相应的技术,以便为历史教学服务。
关键词:大数据;高中历史;兴趣
近年来,随着时代的发展,信息技术和多媒体技术越来越多地被应用到教育领域。这种技术的极大进步,不仅直接改变了教学手段和教学形式,而且对教学内容和教学理念也产生了重大影响,在高中历史教学中发挥着越来越重要的作用。其作用大致如下:
一、创新教学手段,激发学生的兴趣
在传统的历史教学中,黑板、粉笔是最主要的教学工具,教师的口头讲解是最主要的教学方式,这种黑板、粉笔加老师的教学手段较为原始单一。整个教学活动,往往是教师居于绝对主动地位,而学生则处于被动接受地位。教学手段的单一加之教学内容的枯燥无味,对学生学习的积极性产生了严重的影响。
尽管许多老师都在努力地培养学生的学习兴趣,但由于技术条件的限制,效果并不尽如人意。自从信息技术普及之后,教学手段得到了极大改善,学生的兴趣问题也有了很大改观。
就以《孔子与老子》这一教学内容为例,教师可以借助多媒体将孔子、老子的图片展现在学生的面前,同时教师要引导学生回顾在孔子、老子生活的时期,世界各国还诞生了哪些思想家,有的学生说:亚里士多德;有的学生说:柏拉图;有的学生说:释迦牟尼。通过这样简单的介绍,让学生对这个时代有了较为全面的认识。在制作多媒体的时候,教师要将孔子的思想与老子的思想进行对比,这样做既可以让学生了解到孔子与老子思想的不同之处,又方便了学生的记忆。可见,在高中历史教学中运用多媒体,可以将枯燥无味的历史知识变得有趣味性,从而提高学生历史课的学习效率。
二、促进了教学方法的改进
在大数据背景下,信息技术不仅可以提高学生的学习兴趣,还有利于教师对教学方法的改进。由于多媒体可以展示大量的信息,基本上取代了教师的板书,也在相当程度上取代了教师的`讲授,从而使教师节省下大量的时间。这样,教师就有机会从一个单纯的讲授者转变为一个学习的指导者,在向学生传授知识的同时,教师可以将更多的时间用来进行师生互动,引导学生思考,帮助学生分析问题。由此,便可以实现师生地位的转变,让教师成为课堂的主导,学生就成为课堂的主体。
同时,借助于多媒体技术,教师可以使用更多新的教学方法,从而实现教学方法的多样化。比如,以《新航路的开辟》这一教学内容为例,教师可以利用地图动态演示法、表格归纳法使学生对新航路开辟的过程形成较为清晰的认识,同时也能提高学生的读图识图能力。通过利用多媒体,可以将理论知识更为直观、形象地呈现在学生面前,从而让学生获得更多有用的信息,培养学生的发散性思维。
在这种新的教学环境下,一些新的教学方法、新的教学思想开始涌现出来,如,合作学习法、探索式学习法等。这些教学方法的涌现,都在相当程度上得益于大数据。
三、丰富教学内容,拓宽学生的视野
为全面提高学生的历史综合素养,历史教学内容不应该仅仅局限于教科书,而是要以教科书内容为基础,适当引进一些教科书之外的内容。但是,由于技术条件的限制,此前对于教材的拓展和补充并不多。现在,随着大数据时代的到来,教师可以利用信息技术来查找提炼相关的教学内容,将这些新的教学内容引入到教学课件中,不断拓宽学生的视野。
以《大一统与秦朝中央集权制度的建立》这一教学内容为例,教师可以借助多媒体将长城、秦始皇陵兵马俑、阿房宫等图片展现在学生面前,然后引入本节的新课。教师也可以在多媒体课件中加入同时期世界其他国家的相关图文介绍,在讲解完教科书的内容之后,可以引导学生看一看在这一时期世界其他各国的发展形势。如此,既可以让学生形成较为完整的知识体系,又能对相关历史时期的世界大势有一个宏观把握。
目前,信息技术发展速度惊人,作为一名高中历史教师,不仅要掌握丰富的历史专业知识,还要掌握一定的信息技术。只有熟练地掌握了相应的信息技术,才能有效地创新教学手段,全面改进教学方法,真正拓展学生的视野,从而取得更好的教学效果。
参考文献:
[1]艾音红。高中新课程教学中历史素养的培养[a]。第五届中国教育技术装备论坛获奖论文集:中[c],.
[2]王毓高,石莉萍。新课程改革背景下的高中历史教学[j]。改革与开放,(02)。
[3]张荷。运用“友善用脑”理念,创设高中历史课堂的导入设计[a]。·学术前沿论丛——中国梦:教育变革与人的素质提升:下[c],2013.
大数据的论文篇八
大数据或海量数据是指所涉及的海量数据,无法通过当前主流软件工具检索、管理、处理和整理成更活跃的信息,帮助企业在合理的时间内做出商业决策。以下是为大家整理的关于,欢迎品鉴!
摘要:近年来由于计算器技术和信息产业的快速发展,促使了相关的数据量也产生了极大的增长。然而面对这些庞大且杂乱的多维数据集,我们无法快速且有效的找到我们所需要的信息。因此我们必须要使用数据挖掘技术以从数据集中去提取我们所需要的资料,并且进行分析与处理。在本中,将介绍大数据挖掘分析软件rapidminer,并且与其他旧有的数据挖掘分析软件来做一个功能性的比较。
关键词:信息;rapi;dminer;大数据;挖掘;应用
0引言
透过线性回归、类神经网络、判定树和支持向量机,说明应用rapidminer进行大数据挖掘分析的运作流程,并介绍rapidminer的操作接口跟分析方法。本篇论文采用rapidminer的原因,主要是因为它拥有非常便捷的图形化接口,而且使用者在操作上不需要再额外去学习其它的程序语法,只需要透过选取组件以及设定参数的方式就可以完成。而且在分析结果的显示上也非常的多样化,可以让使用者自行选择要观看哪一种图形显示分析的结果。
1数据探勘流程探讨
1.1资料清除
是过滤掉数据当中的那些噪声和无法判别的资料跟不一致的数据,保留可用的且有效的数据。
1.2数据的整合
不一定都来自相同的一个数据库,所以必须做数据的整合,将来自不同数据库的数据整合处理完后处理在我们的数据仓储。
1.3数据选择
在数据探勘中是一个相当重要的环节,选到有用的数据可以提高分析预测的准确度,但是选到无用的数据却可能会拉低分析预测的准确度,所以在做数据的选择时必须先对这些数据有一定的认识,才能做出正确的选择。
1.4数据转换
由于人类和计算机的沟通的语言不同,所以当我们要让计算机来处理事情时,必须先将手头的数据转换成计算机可以识别的资料格式,或合并成数据探勘所需的数据形式来让计算机判读,像是执行汇总与聚合。
1.5数据探勘引擎
数据探勘系统在数据探勘中算是非常重要的一个环节,因为它包含了探勘工作所需要的功能,像是特征化、相关系数与相互关系分析、判别、预测、群组分析、分群、离异值分析与演化分析等等。
1.6样式评估
样式评估根据某些有趣度量,来辨认代表知识的有趣样式,也可以说是评估数据跟数据之间的关联性是否是有用的、重要的、是否正确。
1.7用户接口
这个模块让用户可以与数据探勘系统进行沟通,他允许使用者透过设定数据探勘查询或工作与系统进行互动、提供讯息来帮助搜寻,对暂时数据探勘结果进行探索性数据探勘。
2数据探勘工具
2.1rapidminer
rapidminer开源式框架,支持各种类型的数据挖掘像是文本、网络、图像或是链接开放式的数据挖掘[1]。透过它复杂的图形用户接口,数据挖掘的過程可以更加的简洁且快速,直观地实现和执行,并且不需要额外的程序语言编辑技术。
2.2weka
weka用于数据挖掘任务的算法的集合,算法可以直接应用在数据集上,也可以从自己设计的jave代码调用[2]。weka它包含了数据的预处理、分类、回归、聚类、关联规则和可视化的工具也就是图形接口,weka可以算是最古老,且最成功的开元数据挖掘库和软件,随后被集成为rapidminer和r的扩充软件,也因为rapidminer和r的出现,它们提供了使用者更加舒适且便利的使用环境,使得weka的用户开始大幅的下降。
2.3knime
knime图形接口的自由开源信息汇整系统,它具有杰出的数据统合能力,并且可以运用在数据查询(datamining)、数据处理、数据分析、流程绘制以及流程规划与管理(workflow)等等各方面。
3数据探勘工具比较
rapidminer:独立平台;使用者:学习者、高级用户、专业用户、企业用户;用户接口:主要是透过图形接口来做流程的设计,也可以同时开启多个窗口来做操作;功能:大于500种,可透过扩展来新增额外的功能,且可扩展weka和r作为它的扩充元件,并进行协同工作;操作接口:简洁易懂的操作接口,不需要额外的学习程序语言的编辑能力,使用者只需要透过拉取所需的原件并且将其连接起来即可使用,使用者可自由配置操作接口;支持的输入格式:csv、excel、xml、access、aml、arff、xrff、spss、sasdatabases、jdbc....;支持输出模型格式:模型可以导出为不同的档案格式,像是bmp、jpg、pdf、postscript、raw、xml等各种文件格式。
weka:独立开发平台;使用者:学习者、一般用户;用户接口:图形接口;功能:约500种;操作接口:有四种模式可供使用者选择使用,每种模式都各有其优缺点,使用者需挑选最合适的使用模式使用;支持的输入格式:arff、csv、c4.5、bsi、localfile、urls、jdbc..;支持输出模型格式:不支援。
knime:java平台;使用者:学习者、一般用户;用户接口:可在同一时间开启四个不同的视窗,用来做不同的功能;功能:约100种;操作接口:简洁易懂的使用接口,可以让使用者很容易得学会,也可以自由配置操作接口;支持的输入格式:arff,csv,pmml,localfiles,urls、jdbc..;支持输出模型格式:可以将档案汇出成压缩文件(zip),只有从knime导出的模型才可以再次汇入到knime中。
4结语
现今是个信息科技的时代,几乎所有事情都是可以用数字和数据来解释的,每件事情的发生都会有它的前因后果,所以我们可以从这些数据当中找出这些因果关系,并且加以利用就可以预测出我们所要的结果,单单只有一大堆的数据是没用的,需要使用rapidminer这个数据挖掘分析软件,来从这些杂乱的数据库中萃取出我们所需要的信息,也就是从数据进行知识发掘,并且找出他们的相对应关系为我们使用。
参考文献
[1]胡可云.数据挖掘理论与应用[m].清华大学出版社,2008.
摘要:我国大数据产业目前已进入快速推进阶段。对于企业来说,大数据是一项极其重要的战略资产。文章从大数据的起源及基本特征出发,分析大数据给企业财务信息管理带来的影响,并提出大数据时代加强企业财务信息管理的有效策略。
关键词:大数据;财务信息管理
伴随互联网+、云计算、物联网、社交网络平台、传感技术等新兴技术与服务的出现,人类社会的数据种类和规模正以前所未有的速度呈爆发式增长和累积。据市场调研机构idc预计,未来全球数据总量年增长率将维持在50%左右,到2020年,全球数据总量将达到40zb,其中我国数据量将达到8.6zb,是2013年的10倍。海量数据的产生已经完全不受时间、地点的限制,其规模效应给数据存储、管理以及数据分析带来了极大的挑战。
大数据产生经历了被动-主动-自动三个发展阶段。第一阶段是数据库技术的出现。数据库技术被广泛应用于运营系统,数据伴随着系统的运转产生并被记录下来。这种数据的产生是被动的;第二阶段是互联网技术的诞生。新型社交平台的开发与各类便携式移动设备的使用,给人们更多的表达个人想法的途径与机会,这个阶段数据的产生方式是主动的;第三阶段是感知式系统的广泛应用。装配微型传感器的设备被广泛布置于社会的各个角落,这些设备源源不断记录下大量的新数据。这种数据的产生是自动的。这些被动-主动-自动记录与存储的数据共同构成了大数据的数据源。
关于大数据的特征,在国外大数据研究先河之作的《大数据时代:生活、工作与思维的大变革》一书中,作者指出,大数据是以4v为基本特征的数据集,即规模性(volume)、多样性(variety)、高速性(velocity)、价值性(value)。而ibm认为,大数据还必然具有真实性(veracity)。维基百科则通过简单明了的描述,对大数据进行定义:大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。2017年国际电信联盟首次以大数据作为世界电信日主题,提出了“发展大数据,扩大影响力”。
企业财务信息管理起源于16世纪初的西方资本主义萌芽时期,早期并没有形成专业、独立的财务信息管理系统。企业的业务单一,信息资料也比较笼统、简单。随着20世纪初期工业革命的成功,公司制企业迅速发展并成为主要的企业组织形式,财务管理和财务信息的重要性日益突出,财务管理理论、制度、法规逐步完善。政策法规对财务信息有了规范性的要求,甚至对财务信息的披露、存档时间、保存形式有了详细的规定。到20世纪90年代,微型计算机应用逐渐普及,财务信息由传统手工编制过渡到手工+计算机辅助编制。随着计算机应用软件技术的进步,专业性的财务软件逐步代替了手工记账方式,进入财务电算化时代。当前,随着互联网和云存储、指纹加密、人脸识别等信息技术的兴起,云算盘、精斗云、云账房等新型财信息管理系统已开始得到广泛应用。
在企业财务信息管理中,数据来源的真实、有效、可验证性,数据采集的及时性、数据与本企业经营决策的相关性,数据的可计量性等是企业做出正确经营决策和投资参照的重要基础,为明确企业财务现状和运营前景提供依据;先进设备与技术的应用,是企业财务信息管理的有力支撑;而信息管理制度及人才队伍的建设,更是企业财务信息管理的关键所在。在大数据时代,财务数据,设备与技术,制度与人才多项因素紧密相结合,对于促进企业快速、良性发展有着重要的意义。
1、财务信息来源增加
在计划经济时代,财务信息最主要的来源是各项经营的收支,并以货币计量方式表达。在大数据时代,除了传统的纸质或电子形式存在的文字、表格,电子设备、传感器、刷卡机、收款机、网站浏览点击行为、电子地图、社交网络媒体互动等设施与平台记录下来的数据与信息都可成为影响企业经营决策的信息源。
2、财务信息类型增多
传统财务信息管理主要是以货币形式出现的跟收入与支出相关的数据,信息类型单一。而大数据的基本特征之一是信息类型繁多,涵盖了文本、音频、图片、视频、模拟信号等。信息整合难度加大。
3、财务管理职能前置
传统的财务管理是事后管理,且局限于对现有数据进行简单的统计分析、查询。大数据的应用能够对企业经营情况进行实时分析和及时预测,提供更具时效性、指标多样化、更贴近经营管理需求的财务管理动态分析报告。财务管理的职能前置到市场预测、产品设计、供应链建设等价值规划阶段,财务体系由核算型向价值型转变。
1、提高财务信息质量
大数据时代,海量数据的价值性呈现低密度,高附加值特点。单个数据看起来价值很低,但同类型的数据规模增加到一定数量,就会有很高的商业价值,对企业经营决策的指导力越强。当前,财务信息来源可分为二个方面:一是企业经营过程中产生的信息,这类信息属于内部数据。除日常收支外,还应括用户注册信息、浏览记录、定位记录等;也包括构成产品价值链的各个环节产生的数据,比如研发记录、生产作业记录、采购过程动态监控记录、物资出入库数据、销售业务数据等;还包括人事、战略、公共策略、专业知识库、企业文化等非结构化信息数据。二是本行业及跨行业相关数据信息,这类信息属于外部数据。外部数据应注重从目标人群、行业、大环境等方面收集。伴随着各种随身设备、物联网、移动互联网等技术的发展,人成为了移动互联网的核心网络节点,通过用户点击行为、电子地图、社交网络行为等数据,可以对目标人群进行有效分析。行业数据既包括本行业的产品种类、销售状况、研发趋势、竞争对手情况等,还包括跨行业的关联性信息,以全面性提高数据的准确度和价值。大环境指所处社会的经济、政治、法律等环境。国务院《促进大数据发展行动纲要》提出要稳步推动公共数据资源开放,这将成为重要的外部数据来源。
2、强化财务信息整合
大数据搜集,重点不在于占有,而在于利用。而要利用好数量庞大,来源广泛,格式多样的财务信息数据,就必须对其进行实时整合,存储与管理。其方法主要是分类,聚类,存储。分类是找出大数据中的一类数据对象的共同点,通过分类模型将其划分为不同的类。同一类数据由于具有不同特征,可以被分到多个类别中去。聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大。存储则是以根据财务管理需要将大数据划分成分布式存储模块,如生产计划模块、销售管理模块、会计核算模块、资产管理模块、业绩评价模块和企业间关系模块等,以便数据管理和使用。
参考文献
[2]东梅.论财会信息的现代化管理[j].北方经贸,2013(2)
[3]何冰.大数据会计与财务信息相关性研究[j].会计之友,2017(7)
[4]程平.云會计环境下人、数据和系统对会计信息质量的影响[j].重庆理工大学学报(社会科学版),2016(7)
精准扶贫是政府提出的扶贫政策,其目的在于帮助贫困地区脱贫。精准扶贫中的扶贫资金,不仅涉及到政府管理部门,还涉及到社会各界及贫困地区经济发展,所以全面有效实施精准扶贫显得非常重。资料显示,大数据的应用能够使精准扶贫资金效益得到最大发挥,能够完善精准扶贫资金管理,使精准扶贫实现“真扶贫”。对此,笔者根据自己对“精准扶贫”及“大数据”的了解,分析了大数据助力精准扶贫的原理、问题及措施等。
“大数据”是社会经济及科学技术发展的产物,已经被应用于人们的生产及生活,对各大领域发展都起到了积极的推动作用。大数据是基于信息技术基础上对数据进行分析及整合的科学技术,其核心在于利用数据对信息进行分类、管理、整合、分析及处理,具有数据体量大、种类多、数据处理速度快及价值密度低等特点。
大数据助力精准扶贫时需要应用到信息技术,以获取准确的扶贫信息及数据;利用大数据能够对复杂的扶贫数据及信息进行分类、调整及分析,以了解多种影响因素,为精准扶贫的实施提供依据;当大数据被应用到精准扶贫时,需要相关部门对应用时产生的各种信息进行收录,并利用互联网进行整合、分析、挑选、筛查及汇总,以便于扶贫工作者利用这些数据对扶贫工作进行现实状况分析,最后找到有效的扶贫举措,提高扶贫决策的科学性及合理性,使精准扶贫得到实现。
第一,在大数据支持下,遥感技术、媒体信息技术、宽带网络技术等都能够应用到精准扶贫工作中,如可以用这些技术调查和分析扶贫产业、贫困人口和周边环境等数据。第二,利用大数据能够实现对农村基础设施与地理环境、交通等信息整合,从而全面了解贫困对象基本信息及生活需求等。第三,在大数据支持下能够了解贫困地区的人口及经济水平等信息,为精准扶贫工作提供重要依据。
第一,对贫困群体的精准识别基础工作不扎实,导致一些非贫困群体享受到帮扶待遇。第二,精准扶贫管理部门及相关工作者的职责界定不清晰,且资金审批、拨付等工作手续繁多,降低了扶贫工作效率。第三,没有按照国家相关规定及实际需要管理扶贫资金,导致部分扶贫资金被骗取和套取。
(一)对扶贫对象进行精准定位。第一,利用大数据下的媒体信息技术、通信技术及计算机技术等对贫困地区的人口进行调查,并确定符合扶贫要求的人群。第二,利用计算机信息技术对贫困对象进行建档立卡,并构建贫困人口的基本信息库,信息录入包括扶贫对象的年龄、工作、性别、年收入及家庭人口数量等。第三,信息录入后还需要进行基层走访、信息核实汇总,以保证扶贫对象信息的真实性,减少非贫困群体骗取和套取扶贫资金。
(二)利用大数据对扶贫工作进行动态跟踪管理。第一,利用大数据下的信息技术、遥感技术及媒体信息技术等,构建动态识别系统,以实现对扶贫对象的高效管理,同时还能够收集和分析相关数据,从而优化贫困户识别系统,提高精准扶贫工作质量及效率。第二,利用计算机信息技术及通信技术等,构建扶贫对象资源数据库,以提高识别系统准确性及扶贫对象信息数据完整性。第三,进行动态管理时,不仅需要对扶贫对象的基本信息进行动态监察,还需要管理扶贫资金流向和追踪扶贫资金使用方向等,以保证扶贫资金切实应用到扶贫对象身上。第四,通过实时更新扶贫对象信息系统,了解扶贫对象是否已经脱贫、是否进入帮扶范围等动态,以保证精准扶贫得到全面贯彻和实施。
(三)利用“大数据”预测贫困需求。第一,利用大数据下的数学方法来定位扶贫方向,并分析扶贫对象实际需求。第二,利用大数据对扶贫对象的基本信息进行分析,并利用数学法计算贫困事情发生率,以了解扶贫对象的贫困需求,从而制定具有针对性的扶贫对策。第三,利用大数据中的遥感技术、媒体信息技术等构建扶贫资金管理系统及监督系统,以实时了解扶贫资金的取向及利用率,以保证扶贫资金能够真的解决扶贫对象的实际问题,减少资金浪费,最终提高精准扶贫工作质量及效率。另外,在精准扶贫中还需要注意以下两点:第一,实行脱贫工作责任制,保证扶贫工作执行力。第二,积极转变贫困人口的思想,引导贫困人口通过自身努力实现小康生活。
总之,精准扶贫是针对我国贫困地区提出的扶贫政策,已经在很多贫困地区得到贯彻,而大数据则能够提高精准扶贫工作质量及效率,使贫困地区脱贫速度加快,加快我国小康社会发展。基于此,上文先简单概述了大数据,然后分析了大数据助力精准扶贫的原理以及对精准扶贫的技术支持,并探讨了精准扶贫中存在的问题,最后分析了大数据有效助力精准扶贫的措施。
【参考文献】
[1]解静静.大数据助力精准扶贫问题研究[j].江西农业,2019(14):131+135.
[3]李秀玲.大数据助力精准扶贫[j].中国国际财经(中英文),2018(07):197.
大数据的论文篇九
在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。
2。2开发与内容的管理形式
在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。
大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。
其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。
2。3对大数据架构进行全面的管理
在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。
与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。
3结语
综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。
大数据的论文篇十
随着信息时代的到来,人们生活中的各个方面都开始涌现出海量的数据。这些大数据以惊人的速度增长,使得人们需要运用更加高效的方法来处理和分析这些数据,从而获得有价值的信息和洞察。在我与大数据打交道的过程中,我深深领悟到了大数据的重要性和它对我们生活的影响力。在这篇文章中,我将分享我对大数据的心得体会。
首先,大数据为我们提供了更全面和准确的信息。在过去,我们往往只能凭经验和感觉来判断事物的发展趋势和决策的方向。然而,随着大数据的普及,我们可以通过收集、分析和挖掘大量的数据,了解事物的真相和本质。比如,在市场营销领域,大数据可以帮助企业分析用户购买行为、消费偏好和市场趋势,从而制定更加精准和有效的推广策略。在医疗健康领域,大数据可以帮助医生分析患者的病例和治疗效果,为患者提供更加个性化和有效的治疗方案。通过大数据,我们可以更加科学地进行决策和规划,使我们的行动更加明确和高效。
其次,大数据为我们提供了更深入和全面的洞察。传统的数据处理方法往往只能分析孤立的数据点,而难以发现数据之间的联系和规律。然而,大数据具有强大的处理能力,可以将各个领域的数据进行整合和分析,从而帮助我们发现隐藏在庞大数据中的规律和趋势。比如,交通领域的大数据可以帮助我们了解城市交通状况和交通拥堵的原因,从而优化交通管理和规划。而在科学研究领域,大数据可以帮助科学家们分析海量的实验数据,发现科学事实和新的知识。因此,只有运用大数据的方法,我们才能够获取到更加准确、全面和系统的洞察,为我们的工作和生活带来更大的价值。
第三,大数据为企业和组织提供了更广阔的发展空间。在信息时代,数据已经成为企业竞争的重要资源。通过收集和分析大数据,企业可以了解市场需求、优化产品和服务,并制定合适的商业策略。比如,Amazon通过分析用户购买记录和偏好,为用户推荐个性化的商品,提高销售效率和用户满意度。而在政府组织中,大数据可以帮助政府进行城市规划、资源分配和社会管理,提高行政效率和服务质量。此外,大数据还为创新提供了更多的可能性。通过挖掘大数据中的信息和资源,创业者可以发现新的商业机会和创新方向,为社会的发展带来新的动力和活力。
第四,大数据也带来了一系列的挑战和问题。首先,大数据的处理和分析需要高度的技术和运算能力。大数据往往以海量的形式存在,数据存储、处理和分析需要庞大的计算资源和算法模型。其次,大数据的安全和隐私问题也引起了人们的关注。随着大数据的应用,个人和机构的隐私面临着更大的风险,需要制定更加完善的数据保护和隐私政策。此外,大数据的分析和使用也需要遵守法律和伦理的规范,避免滥用和侵犯他人的权益。
综上所述,大数据对我们生活的影响力是巨大的。通过大数据的处理和分析,我们可以获得更全面、准确和深入的信息和洞察。大数据为企业和组织提供了更广阔的发展空间,也为创新提供了更多的可能性。然而,大数据的应用也面临着一系列的挑战和问题。因此,我们需要积极应对这些挑战,保障大数据的安全、隐私和合法性,从而更好地利用大数据的力量,为我们的社会和生活带来更大的进步和发展。
大数据的论文篇十一
4月6日,联合交通部科学研究院对外发布《第一季度中国主要城市骑行报告》。该报告以ofo出行大数据为参考,首次采用城市骑行指数作为评估指标,对北京、上海、广州、深圳、天津、南京、西安、杭州等20座国内一二线城市的共享单车发展水平进行评估排名。
可以发现,在单车使用水平、节能减排水平、健康贡献水平、停车设施水平、服务环境水平和社会文明水平六个方面,每个城市的表现各有不同。行业专家分析称,该报告对透视我国城市慢行交通发展现状、追踪共享单车行业发展、推动智能绿色城市建设事业起到参考作用。
18~45岁人群成共享单车主要用户西安广州最男人、天津昆明最均衡
报告显示,18~45岁人群成共享单车骑行的主力用户,占比接近90%,其中30岁及以下群体占比达到55%,30~45岁占比约35%。由此可见,共享单车的用户不仅覆盖年轻群体,也受到了中年群体的广泛认可和使用。
同时,在用户男女比例分布中,不同的城市区分为了两大派系。一个是以西安、广州为代表的五座城市成为了“最男人”的共享单车骑行城市,男性用户占比达到55.90%~59.70%,较高于女性用户。而以天津、昆明为代表的五座城市则成了“最均衡”的共享单车骑行城市,男女比例在48%~52%之间,可以说基本相差无几。但综合来看,女性用户占比能达到45%左右。
中国城市整体骑行水平53.6分空间巨大综合指数六大榜单昆明东莞上榜
报告显示,20第一季度中国城市整体骑行水平为53.6分,其中北京以84.3位居榜首,上海、成都分别以79.3分和65.1分紧随其后。除此之外,深圳、昆明、杭州、广州、南京、厦门、福州、武汉等八座城市也高于平均分,城市骑行水平较为领先。
而53.6的整体骑行水平虽然较满分100分来看属于偏低水平,但考虑到年初共享单车才迎来一波的快速发展,诸多方面尚不完善,例如城市停车设施的建设,北京、上海、杭州三城虽然达到13分以上,但其他20座城市停车设施平均得分仅为7.55分,远低于满分20分。未来,随着共享单车的健康发展、城市停车设施的建设、服务环境的提升等因素逐步完善,分数还将进一步上升。
报告同时给出“2017年第一季度主要城市六大榜单”,北京位列“停车设施相对完善”、“节能减排贡献最大”、“政府服务环境最好”三个榜单之首。昆明则成为“最爱骑共享单车的城市”,东莞成为“我骑行·我健康”的榜首城市。
城市文明程度杭州12.9分排第一20城q1累计骑行5.93亿公里
报告针对社会文明程度,对各城市对共享单车的友好度进行了评分,杭州市以12.9分排名第一,南京、西安分别以12.75和12.22排名第二第三,北京仅以9.94分排名第九。在服务环境水平评估中,北京以满分15分位列第一。近期,全国各地陆续出台了针对共享单车的管理办法,如上海出台了《共享自行车服务规范》,成都推出了《成都市关于鼓励共享单车发展的试行意见》。
报告显示,我国20座城市第一季度累计骑行5.93亿公里,相当于绕地球14794圈,日均累计骑行距离为659万公里,相当于地球赤道的164倍。不仅如此,20个城市第一季度人均累计骑行消耗热量6840千卡路里,相当于燃烧掉1.8斤脂肪。
共享单车缓解城市交通出行难问题
数据统计,从1995年至,随着民用汽车保有量从1040万辆攀升至1.9亿辆,自行车的.保有量却从6.7亿辆,急剧下降至3.3亿辆。汽车成为代步工具的同时,给城市交通和生态环境也带来了极大压力,城市居民的出行成本急剧上升。
专家认为,共享单车+公共交通的出行模式,正逐渐替代家用汽车+步行+公共交通的出行模式,快速发展中的共享单车正改善着我国城市居民的出行模式,也对我国交通新体系建设产生深远影响。
大数据的论文篇十二
美国国家标准和技术研究院对大数据做出了定义:“大数据是指其数据量、采集速度,或数据表示限制了使用传统关系型方法进行有效分析的能力,或需要使用重要的水平缩放技术来实现高效处理的数据。”我们认为大数据价值链可分为:数据生成、数据采集、数据储存以及数据分析。数据分析是大数据价值链的最后也是最重要的阶段,是大数据价值的实现,是大数据应用的基础,其目的在于提取有用的值,提供论断建议或支持决策,通过对不同领域数据集的分析可能会产生不同级别的潜在价值。
虽然这些传统的分析方法已经被应用于大数据领域,但是它们在处理规模较大的数据集合时,效率无法达到用户预期,且难以处理复杂的数据,如非结构化数据。因此,出现了许多专门针对大数据的集成、管理及分析的技术和方法。
布隆过滤器:其实质是一个位数组和一系列hash函数。布隆过滤器的原理是利用位数组存储数据的hash值而不是数据本身,其本质是利用hash函数对数据进行有损压缩存储的位图索引。其优点是具有较高的空间效率和查询速率,缺点是有一定的误识别率和删除困难。布隆过滤器适用于允许低误识别率的大数据场合。
hash法,其本质是将数据转化为长度更短的定长的数值或索引值的方法。这种方法的优点是具有快速的读写和查询速度,缺点是难以找到一个良好的hash函数。
索引:无论是在管理结构化数据的传统关系数据库,还是管理半结构化和非结构化数据的技术中,索引都是一个减少磁盘读写开销、提高增删改查速率的有效方法。索引的缺陷在于需要额外的开销存储索引文件,且需要根据数据的更新而动态维护。
trie树:又称为字典树,是hash树的变种形式,多被用于快速检索,和词频统计。trie树的思想是利用字符串的公共前缀,最大限度地减少字符串的比较,提高查询效率。
并行计算:相对于传统的串行计算,并行计算是指同时使用多个计算资源完成运算。其基本思想是将问题进行分解,由若干个独立的处理器完成各自的任务,以达到协同处理的目的。
传统数据分析方法,大多数都是通过对原始数据集进行抽样或者过滤,然后对数据样本进行分析,寻找特征和规律,其最大的特点是通过复杂的算法从有限的样本空间中获取尽可能多的信息。随着计算能力和存储能力的提升,大数据分析方法与传统分析方法的最大区别在于分析的对象是全体数据,而不是数据样本,其最大的`特点在于不追求算法的复杂性和精确性,而追求可以高效地对整个数据集的分析。总之,传统数据方法力求通过复杂算法从有限的数据集中获取信息,其更加追求准确性;大数据分析方法则是通过高效的算法、模式,对全体数据进行分析。
[2]黄晓斌,钟辉新.基于大数据的企业竞争情报系统模型构建[j].情报杂志,20xx(03).
大数据的论文篇十三
今年,火车票预售期由春节前60天缩短至30天。昨天下午,去哪儿网通过对60多万条飞机航线、50余万条铁路客运线进行大数据计算,对外发布了《春运大交通数据报告》,为回家旅客提供参考。报告显示,20春运期间,预计铁路车票中高铁占比将超4成;航班出发最集中的日期是年1月24日,十大难买票航线中,北京占了一半。同时“怡起回家”福利通道已开启,将为旅客提供最高金额达100元的火车票减免优惠券等多项福利。
火车票
超四成人将坐高铁
铁路向来是春运客运量最高的交通工具,据去哪儿网大数据预测,2017年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。
今年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的人群比例也达到了10.3%,整体超过了总数的一半。乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。
飞机票
北京飞佳木斯特难买
2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态,返程高峰则从大年初六即2017年2月2日开始。
北京至成都、深圳至重庆、上海至哈尔滨、北京至三亚、广州至重庆、深圳至成都、成都至北京、重庆至广州、北京至哈尔滨、上海至成都,这十条是往年最热门的空中回家路。据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早很多,平均会提前36天。而从深圳回海口更早,一般提前43天,堪称最难买航线。记者注意到,在“春运期间十大最难买线路”中,北京起飞地就占了一半。
接送站
4点到11点为乘车高峰
春运期间,95%的旅客会有行李箱、背包并携带各种礼品,专车接送机/站成为热门出行工具。北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。
在接送机/站的用户中,25至35岁年龄段人群最高,占比48%,35至45岁占比也超过两成。在预约时间上看,男性一般提前在出发前3.5天至4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天至5.6天。
从出行时段上看,4点至11点为旅客乘车去机场、火车站高峰,其中5至6点出发人群最高,高达6.9%;10至11点又会出现小的高峰,出行占比为5.1%。
发福利
买火车票最高减100元
由华润怡宝饮料(中国)有限公司和去哪儿网发起的2017“怡起回家”春节活动于昨天正式启动。即日起至2017年2月11日,旅客打开去哪儿网app找到“怡起回家”专题可以参加红包抽奖,覆盖去哪儿网旗下机票、火车票、汽车票、接送机租车、度假、门票、酒店等全线产品。
其中,活动力度最大的是乘坐比例最高的“火车票”,活动为旅客提供了最高金额达100元的火车票减免优惠券,并可直接用于购票抵扣,还有千张“1元机票”秒杀、4000份车车代金券、4万份出游保险等多种优惠。过年期间,旅客还将享受到国内外12条免费度假线路、3万份怡宝定制红包和1万份出游保险的额外奖项。
相关
北京至昆明高铁首发
记者从北京铁路局获悉,自2017年1月5日起,北京将首开昆明、福田和绍兴方向高铁列车,北京西至昆明南最快旅行时间较现行直达特快压缩约21小时,实现“朝发夕至”。
铁路部门提示,为了配合此次运行图和下一步春运运行图的调整,12月30日以后的火车票预售期调整为30天。按此计算,今日最远可以买到2017年1月4日的火车票,有出行需求的旅客,可登录中国铁路客户服务中心网站或通过车站窗口、火车票代售处、拨打北京铁路局订票电话(95105105)购买车票。
列车调整
首开北京西至昆明南g403/4次、g405/6次高铁列车2对;
首开北京西至福田高铁列车2对,g71/2次、g79/80次;
首开北京南至绍兴北高铁列车1对,g39/40次;
增加1对北京南至商丘g1567/8次高铁列车;
延长3对快速列车运行区段:北京西至桂林北k21/2次延长至南宁;保定至南京k849/52/49、k850/1/0次延长至上海;天津至大同k608/5次延长至朔州;大同至秦皇岛2604/1次改为朔州至秦皇岛。
大数据的论文篇十四
一、12月15日进入火车票抢票高峰高铁占比超4成
众所周知,铁路向来是春运客运量最高的交通工具。相比去年,由于春运火车票只能提前30天购买,火车票抢票形势更加严峻。
如图所示,2016年春节提前一个月,旅客进入购票高峰。去哪儿网大数据预测,春节将至,2016年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。
2016年春运,互联网售票量占总售票量的64.6%,占比超过一半,其中手机app发售车票1.5亿张,售票总量比例由去年的15.7%上升至39%。去哪儿网预测,生长在互联网时代的90后将是20春运的主力军。
在火车用户画像中,选择乘坐火车回家的男女比例分别为52.5%、47.5%,其中90后人群占比高达43%,80后人群为27.8%,两者占比超过70%,成为绝对的中坚力量。
近年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。
一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的'人群比例也达到了10.3%,整体超过了总数的一半。
去哪儿网大数据预测显示,乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。
与热门出发地相对应的,重庆、上海、杭州、成都、郑州是往年国内最热门的目的地。这些城市周边铁路、公路、航空线路密集,以此作为中转目的地的旅客也不在少数,抢票难度成几何倍数增加。
非高铁、城际等高速列车的出发地,北京最为热门。不过与高速列车热门出发地不同,紧随其后的重庆、昆明、西安、郑州出发的票量与北京之间相差并不多。
二、最难买航线已经进入抢票模式多数航班恢复全价
从2016年春运的大数据看,预定高峰期出现在距离春节20天,这一天的预订量创出近期以来的新高,与上个月同期环比增长100%。
大数据显示,2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态。返程高峰则从大年初六即2017年2月2日开始。
三、85后成机票预订主力军天秤座成“空中飞人
移动互联网时代来临,网上购票已经成为消费者最便捷的预订方式。来自去哪儿网大数据显示,选择乘坐飞机回家的旅客男女比例相近,天秤座在12星座中乘坐比例为9.8%,力压群雄。
家乡越北,越会提前购买回家的机票。去哪儿网机票专家分析,排名前十名的航线,以大机场往小机场飞为主,每天的航班数多在30班以内,是北京至广州这种热门航线航班数的三分之一。
根据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早得多,堪称最难买航线。在去哪儿网平台预订过年前三天回家的机票中,北京至佳木斯这条航线,用户平均会提前36天。从深圳回海口更早,一般提前43天。
四、十条热门空中回家路出炉平均飞行1416公里
从热门航线看,北京-成都、深圳-重庆、上海-哈尔滨、北京-三亚、广州-重庆、深圳-成都、成都-北京、重庆-广州、北京-哈尔滨、上海-成都,这十条是往年最热门的空中回家路。
去哪儿网统计了往年春运返乡票量最高的50条航线,发现追逐梦想的人们,选择求业、求学城市距离家乡的平均飞行距离是1416.2公里,这几乎是从深圳到西安的里程。
通过去哪儿网平台订票的用户,大多选择在早上7点就坐上飞机,按照平均离家距离1416公里来计算,飞行时间近3个小时,98.8%的用户选择乘坐经济舱。
五、行李多礼物重专车成热门接送工具
春运期间,95%的旅客会有行李箱、背包以及各种礼品出行,为了能够快速到达机场、火车站,专车接送机/站成为热门出行工具。
去哪儿大数据显示,北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。
其中,在预约时间上看,男性一般提前在出发前3.5天-4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天-5.6天。
从出行时段上看,4点-11点为旅客乘车去机场、火车站高峰。其中5-6点出发人群最高,高达6.9%;10-11点又会出现小的高峰,出行占比为5.1%。数据显示,使用接送机/站的用户平均行驶27.2公里,平均时长为36分钟。
大数据的论文篇十五
各位小伙伴们:
大家好!
我是负责编写政治押题部分的清华学长,在整理资料的过程中有一些心得,在此分享给大家。首先要和大家说明的是,通过大量的数据分析和整理,师兄可以得出这样的结论,即考研政治押题的套路无非两种:
我们判断一个机构是否押题成功,往往有两个标准:一是材料是否命中;二是知识点是否命中。可以说,只命中其中之一就算押中题目的话,其实是非常简单的。因为每一年的热点很有限,很多机构出的最后4套题常常题量不止四套,或者每个问题之间都没什么关系,一个问都赶上一道大题了,完全是为了押题而出题,题目本身不具备质量。
一般来说,小伙伴们真正需要的是两个标准都达到,但考研机构只要达到了其中之一,即算是押中了。这样看来,我们就不难理解一些小伙伴们常常听到某些机构年年都押到了百分之六七十,但真正考试的时候问题与材料都对上的却很少,或者即便对上了也是小伙伴们自己都能想到的简单考法一类的情况也就不足为奇。因此,大家在最后复习的这几天时间里,切勿盲目背诵押题卷纸。我们购买押题卷子的目的是通过押题卷纸把握今年的热点和重点,并进行模拟训练。此外,大家也可以通过答案来熟悉知识点如何与材料结合,要如何套话,保证我们书写量的足够。而最后对知识点的把握,还是要回归书本才行。
相信很多小伙伴们都应该看过我们为大家推出的政治押题板块,其中的内容师兄在这里就不再赘述了。依法治国、抗日战争、apec、小平同志诞辰110周年等等,几乎都是必考的内容。这些内容很有可能以大题的形式出现,而且形式也非常多样:例如谈谈小平的改革开放和今天的'“顶层设计”;谈谈apec蓝与人与自然;依法治国和道德与法律;抗日战争胜利和甲午海战失败,等等等等。以此,涉及的知识点真的非常多,不仅需要大家熟悉地把握这些热点本身,还要对一些关联到的知识点也要有清楚的认识。可以说,这些内容占大纲的比例已经非常大了,要背诵的内容很多,大家一定要好好加油才是。
除此之外,还有很多内容虽然不在热点之中,但同样非常容易出题。特别是马原和思修两大部分,特别是单多选,常常就知识点直接命题。例如马原直接考一道计算题,算一下有机构成或者是剩余价值率;或者出一个古诗词或者小故事或名人警句,谈一下涉及到哪些原理。大题上,思修也可以谈一谈理想,谈一谈大学生就业与创业之类。这些内容,各个机构押得也非常分散,带有很强的运气成分。这就要求大家对马原的基本原理一定要熟练把握,思修也要会套话,能讲出东西来。
特别是考取名校和跨考的同学,更是要努力在初试中取得靠前一些的成绩,才能在复试中保持优势。离考试只剩下几天,现阶段最好提分的就是政治和英语的写作部分。师兄的一位好友考前一周临时突击政治,也考了57的成绩,最后压线进了清华。但这位同学本来是知名985理工类热门专业前百分之十的成绩,又非常有天赋,学神级别,才最终被录取。大家既应该学习他突击时的劲头,也不能像之前他那样太过轻视政治。政治是一门短时高效的学科,虽然背诵很辛苦,但是在这最后几天的时间中,它最能给人回报。特别是对于不像师兄这样考取京畿之地的小伙伴们,政治上七十也是不难的。最后师兄给大家一点小建议,我们背诵的时候不能只是对着背,还要多多动笔,写的时候也要尽量工整。政治是一门也得多也会有辛苦分的学科,常年使用电脑和手机的大家,在这最后几天里多多动笔,顺便练练字,在考试的时候就会有下笔如飞的感觉。
大数据的论文篇十六
12月8日消息,第一财经商业数据中心发布的《中国互联网消费生态大数据报告》显示,中国7.1亿网民将成为潜在的互联网消费者。
80后、90后消费观念大不同
报告显示,80后与90后作为互联网消费领域的核心消费人群,90后在线上拥有鲜明消费特征,主要的标签是娱乐至上、爱新鲜和个性化。90后在玩乐方面的兴趣广泛,既表现出对桌游、美食、夜生活的喜爱,也对二次元、游戏等虚拟领域有着更高的付费意愿。
相比较下,80后则更顾家,在互联网理财、互联网地产、电商等消费领域有显著的消费特征,是互联网消费的主力人群。从阅读内容方面看,80后更加偏爱看健身、旅游、时尚、房产等话题的资讯;购物方面看,80后也更偏爱大家电、汽车用品、童装等居家物品,由此可以看出,80后互联网消费者特征的关键词是家庭化、品质和资讯控。
网红借力电商成“吸金王”
今年电商和社交的融合成为一个典型现象。数据显示,红人经济的发展使得红人店铺的浏览成交高于一般女装店铺,近50%的粉丝有重复购买的行为,并且规模大的红人店铺比一般红人店铺转化率高出57%。可以看出电商红人的店铺具有粉丝粘性高、高浏览高转化以及销售爆发力强的优势。
便捷和品质成互联网消费核心诉求
移动互联网的渗透和众多新应用的兴起使得我国互联网消费生态不断孕育繁衍,消费者的需求也因此更加清晰细分,便捷与品质的诉求是两大明显特征。
报告提出,消费趋势的便捷主要体现在降低门槛、资源优化、服务整合和随时随地四个特性。以滴滴出行为例,滴滴优化夜间运力资源极大满足了人们夜间个性化出行的需求。数据显示,机场、火车站、餐饮等夜间交通资源不足的地方,使用滴滴出行的偏好度均呈现上升趋势,体现出网约车满足了消费者的`交通需求。
需求“品质化”则大大促进了商家运营发展轨迹的高端化、定制化、专业化和服务化。报告数据显示,从趋势上看,飞猪三年跟团游的增幅高于自由行的增幅,且跟团游中有近8成的订单数是当地游,可以看出组件式的“diy自由行”已成为了消费者旅游出行的新风尚,同时也反映了多元化的自由行产品为消费者提供了更丰富的定制体验。

一键复制