在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
小升初经典奥数题十道篇一
考点: 列方程解含有两个未知数的应用题;差倍问题。
专题: 和倍问题;列方程解应用题。
分析: 设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.
解答: 解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:
10x﹣x=288,
9x=288,
x=32;
则桌子的价格是:32×10=320(元),
答:一张桌子320元,一把椅子32元.
点评: 此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱.再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元.
考点: 整数、小数复合应用题。
专题: 简单应用题和一般复合应用题。
分析: 可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答
解答: 解:45+5×3,
=45+15,
=60(千克);
答:3箱梨重60千克.
点评: 本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量.
考点: 简单的行程问题。
专题: 行程问题。
分析: 根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.
解答: 解:4×2÷4
=8÷4,
=2(千米);
答:甲每小时比乙快2千米.
点评: 解答此题的关键是确定甲比乙在4小时内多走了多少千米,然后再根据路程÷时间=速度进行计算即可.
考点: 整数、小数复合应用题。
专题: 简单应用题和一般复合应用题。
分析: 根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱.据此解答.
解答: 解:0.6÷[13﹣(13+7)÷2],
=0.6÷[13﹣20÷2],
=0.6÷3,
=0.2(元);
答:每支铅笔0.2元.
点评: 本题的关键是求出李军给张强0.6元钱,是几支铅笔的价钱.
考点: 简单的行程问题。
专题: 行程问题。
分析: 根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间.根据两车的速度和行驶的时间可求两车行驶的总路程.
解答: 解:下午2点是14时.
往返用的时间:14﹣8=6(时)
两地间路程:(40+45)×6÷2
=85×6÷2,
=255(千米);
答:两地相距255千米.
点评: 解答此题的关键是确定两车行驶的时间,然后再根据公式速度×时间=路程计算出两车行驶的总路程,再除以就是两地相距的距离.
考点: 追及问题。
专题: 行程问题。
分析: 第一小组停下来参观果园时间,第二小组多行了[3.5﹣(4.5﹣3.5)]千米,也就是第一组要追赶的路程.又知第一组每小时比第二组快( 4.5﹣3.5)千米,由此便可求出追赶的时间.
解答: 解:第一组追赶第二组的路程:
3.5﹣(4.5﹣3.5),
=3.5﹣1,
=2.5(千米);
第一组追赶第二组所用时间:
2.5÷(4.5﹣3.5),
=2.5÷1,
=2.5(小时);
答:第一组2.5小时能追上第二小组.
点评: 此题属于复杂的追击应用题,此类题的解答方法是根据“追及路程÷速度差=追及时间”,代入数值,计算即可
考点: 列方程解含有两个未知数的应用题;和倍问题。
专题: 简单应用题和一般复合应用题;和倍问题。
分析: 设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,则根据等量关系:“两个仓库的存粮一共有32.5×2=65吨”,由此列出方程解决问题.
解答: 解:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,根据题意可得方程:
x+4x﹣5=32.5×2,
5x=70,
x=14,
则甲仓库存粮:14×4﹣5=51(吨),
答:甲仓库有51吨,乙仓库有14吨.
点评: 此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.

一键复制