在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
三年级奥数数字游戏篇一
参考答案:
1、个位有3的总共有10×1=10个
十位有3的总共有10×1=10个
因33这数出现两次
则含有3的数总共有10+10-1=19个
2、一样多。从头到尾共喝了一杯苹果汁。第一次加了半杯水,后来又加半杯水,一共加了一杯水,所以喝的苹果汁和水是一样多的。
所以甲的速度:(150+30)÷2=90米/分
答:甲的速度为90米/分 乙的速度为60米/分
4、100÷(6+4)=10小时
10×10=100千米
答:这只狗一共跑了100千米。
5、要求混合后的什锦沙拉每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数。即:什锦沙拉的总价:2×8+3×11+4×17=117(元),什锦沙拉的总千克数:2+3+4=9(千克)
什锦沙拉的单价:117÷9=13(元)
6、方阵每向里面一层,每边的个数就减少2个。知道最外面一层每边放14个,就可以求第二层及第三层每边个数。知道各层每边的个数,就可以求出各层总数。
解:最外边一层棋子个数:(14-1)×4=52(个)
第二层棋子个数:(14-2-1)×4=44(个)
第三层棋子个数:(14-2×2-1)×4=36(个)。
摆这个方阵共用棋子:52+44+36=132(个)
还可以这样想:中空方阵总个数=(每边个数一层数)×层数×4进行计算。
解:(14-3)×3×4=132(个)
答:摆这个方阵共需132个围棋子。
三年级奥数数字游戏篇二
总结多年奥数学习经验,我们要在老师讲新知识之前,认真阅读要学的内容,课前自学例题。看书时,要动脑思考,学会运用已有知识去独立探究新的知识。下面给大家带来三年级奥数题及答案,希望对你们有所帮助。
01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。
02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。
岁,那么妈妈今年37岁。
【解析】站队问题,要注意不要忽略本身。从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。
04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。第600颗是( )颜色。
【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。
05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。
【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。
06、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。
【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。
07、锯一根10米长的木棒,每锯一段要2分钟。如果把这根木棒锯成相等的5段,一共要( )分钟。
【解析】把这根木棒锯成相等的5段,只需要锯4次,每次要2分钟,所以一共需要4×2=8分钟。
08、3只猫3天吃了3只老鼠,照这样的效率,9只猫9天能吃( ) 只。
【解析】事情发生的同时性,3只猫3天吃了3只老鼠,说明1只猫1天吃了1只老鼠,所以9只猫9天能吃9只。
09、 ┖┴┴┴┴┴┴┴┴┴┚图中共有( )条线段。
1+2+3+4+5+6+7+8+9+10=55条
10、有10把不同的锁,开这10把锁的10把钥匙混在一起了,最多要试多少次,才能把这10把锁和钥匙全部配对。
【解析】抽屉原理,考虑最不利的情况,第一把最多尝试9次,第二把最多尝试8次,以此类推,得出最多需要尝试的次数为:1+2+3+4+5+6+7+8+9=45次。
【解析】四、五年级种的棵树为:2×80+14=174棵,所以三个年级共种树的棵数为:80+174=254棵。
【解析】学校有808个同学,第一辆车已经接走了128人,那么还剩下的人数为:808-128=680人,而剩下的这些人被平分到了5辆车上,所以最后的一辆车有680÷5=136个同学。
【解析】因为舞蹈队有24人,舞蹈队的人数比器乐队少8人,所以器乐队有24+8=32人;又因为合唱队的人数是器乐队人数的3倍,所以合唱队的人数是32×3=96人。
【解析】被除数=除数×商+余数=15×67+5=1010
因为1010÷76=13....22,所以正确的商为13
所以原来每只箱里有300÷3=100个铅笔盒
【解析】男同学=女同学+2;女同学=男同学÷2+2;
【解析】假设正方形的边长为x厘米
所以,解得x=25厘米
因此正方形的周长为25×4=100厘米
21、 从10000里面连续减25,减多少次差是0?
【解析】10000÷25=400,所以减400次差是0
【解析】因为被除数÷除数=商,即被除数=除数×商
所以[被除数+(除数×商)]÷被除数=1+1=2
所以第二棵原有的只数为:8-4+5=9只。
25、 两袋糖,一袋是84粒,一袋是20粒,每次从多的一袋里拿出8粒糖放到少的一袋里去,拿几次才能使两袋糖的粒数同样多。
每次拿出8粒一共需要的次数为:32÷8=4次
26、 小强、小清、小玲、小红四人中,小强不是最矮的,小红不是最高的,但比小强高,小玲不比大家高。请按从高到矮的顺序,把名子写出来。
【解析】简单逻辑推理题,因为小强不是最矮的,小红不是最高的,但比小强高,所以小强只能是第三高的,小红是第二高的;而小玲不比大家高,说明小玲最矮,此外就是小清最高;即从高到矮的顺序为:小清、小红、小强、小玲。
位数共有4×4=16个。
28、 五个同学参加乒乓球赛,每两人都要赛一场,一共要赛多少场?
【解析】排列组合,一共需要赛的场次为1+2+3+4=10次
所以2把小刀与6支铅笔的价钱相等,即1把小刀与3支铅笔的价钱相等;
因为一把小刀1角8分,所以一支铅笔3角24分,即5角4分
所以苹果树棵数为78÷3=26棵,梨树棵数为78+26=104棵。
33、甲、乙、丙三个数,甲、乙的和比丙多59,乙、丙的和比甲多49,甲、丙的和比乙多85,求这三个数。
【解析】甲+乙=丙+59....(1) 乙+丙=甲+49....(2) 甲+丙=乙+85.....(3)
相加得到:甲+乙+丙=59+49+85=193......(4)
(4)-(1)得:丙=134-丙,解得丙=67;
(4)-(2)得:甲=144-甲,解得甲=72;
(4)-(3)得:乙=108-乙,解得乙=54
【解析】(7+爷爷)-(爸爸+30)=5,化简为:爷爷-爸爸=28......(1)
又因为7+30+爷爷+爸爸=129,化简为:爷爷+爸爸=92...............(2)
(1)+(2)得:爷爷=60,(2)-(1)得:爸爸=32
所以爷爷年龄是60岁,爸爸年龄是32岁。
那么锯成10段需要锯9次,所以需要的时间是5×9=45分钟。
大米共有多少千克?
【解析】将被除数个位的0去掉与除数相等,说明被除数是除数的10倍;
39、鸡和兔共有34只,鸡比兔的2倍多4只。鸡、兔各有几只?
【解析】因为鸡比兔的2倍多4只,所以鸡和兔共有兔的3倍多4只;
所以兔只数为:(34-4)÷3=10只,鸡只数为:2×10+4=24只。
【解析】男生人数=女生人数+46........(1)
男生人数=2×女生人数-4...............(2)
【解析】甲布-乙布=12.......(1)
丙布-甲布=28................(2)
丙布=3×乙布..................(3)
(1)+(2)得:丙布-乙布=40.......(4)
将(3)代人(4)中得:3×乙布-乙布=40,解得乙布=20米
所以甲布=12+乙布=12+20=32米,丙布=3×20=60米
44.找规律填后面的数:1,4,9,16,( ),36……
2,3,5,8,( ),21……
45.运动场上有一条长45米的跑道,两端已插了二面彩旗,体育老师要求在这条跑道上每5米隔再插一面彩旗,还需要彩旗( )面。
【解析】间隔问题,45÷5=9,所以包括两段有9+1=10个,那么还需要彩旗10-2=8面。
46.一条毛毛虫长到成虫,每天长一倍,10天能长到10厘米,长到20厘米时要( )天。
47. ab分别代表不同的数学,a=( )b=( )
a b
× 3
1 1 1
48. 下图中小格都是正方形,图中共有( )正方形。
【解析】有14个(9+4+1=14),分别是9个格子、左上左下右上右下各1个、还有1个最大的外框。
49. 王勤同学的储蓄箱内有2分和5分的硬币20个,总计人民币7角6分,其中2分硬币有( )个。
【解析】假设其中2分硬币有x个,那么5分的硬币有20-x个
2x+5×(20-x)=76,解得x=8 所以其中2分硬币有8个
50. 一个钥匙开一把锁,现在有8把钥匙和8把锁被搞乱了,要把它们重新配对,最多试( )次,最少( )次。
其次考虑最有利的情况,也就是每次都是第一下就配对了,由于第7把配对完后,最后一把也就无需尝试了,所以最少只需要试7次即可。
51. 哥哥5年前的年龄和妹妹3年后的年龄相等,当哥哥( )岁时,正好是妹妹年龄的3倍。
那么哥哥此时的年龄是3×4=12岁。
52. 从午夜零时到中午12时,时针和分针共重叠( )次。
【解析】午夜零时第一次重叠开始,以后每过一小时重叠一次,即重叠12+1=13次。
53. 一根木头长24分米,要锯成4分米长的木棍,每锯一次要3分,锯完一段休息2分,全部锯完需要( )分。
那么前4次锯完需要的时间为4×(3+2)=20分钟
第5次需要3分钟,所以全部锯完需要20+3=23分。
54. 王冬有存款50元,张华有存款30元,张华想赶上王冬。王冬每月存5元,张华每月存9元,( )个月后才能赶上王冬。
20÷4=5,所以得到5个月的时候两人存款一样,到6个月后才能赶上王冬。
55. 三年级有164名学生,参加美术兴趣小组的共有28人,参加音乐兴趣小组的人数是美术小组人数的2倍,参加体育兴趣小组的是音乐小组的2倍,如果每人至少参加一项兴趣小组,最多只能参加两项兴趣小组活动,那么参加两项至少有( )人。
56. 张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他。它们三人中有一个说了真话,做好事的是( )。
【解析】如果“张三说是李四”只真话,那么“王五说也不是他”也是真话,所以不是李四;所以可以知道“李四说不是他”一定是真话,那么“王五说也不是他”一定是假话,也就是说做好事的是王五。
57. 一本故事书,李明12天可以看完,而王芳要比李明多2天看完,李明每天比王芳多看4页。这本故事书有( )页。
页,也就是说王芳2天看了这48页,即王芳一天看48÷2=24页,所以这本故事书有24×14=336页。
数的3倍少39。则原来的这个三位数是( )。
【解析】因为4年前父亲年龄是儿子的3倍,今年父亲比儿子大24岁
根据差倍关系可得:4年前儿子的年龄为24÷(3-1)=12岁,所以儿子今年年龄为12+4=16岁,父亲年龄为16+24=40岁。
【解析】父亲和儿子的年龄差为50-26=24岁,当父亲年龄是儿子年龄的2倍时,年龄差为儿子的年龄即24岁,也就是说26-24=2年前,父亲年龄是儿子的2倍。
【解析】当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥的一半,也就是年龄差也是哥哥的一半,即现在弟弟年龄的一半,所以根据和差关系得:弟弟的年龄=(60-弟弟年龄的一半)÷2,解得弟弟年龄为24岁,哥哥为60-24=36岁。
即弟弟年龄为8÷2=4岁,说明是18-4=前。
龄的2倍还少60岁,老翁现在多少岁?
68. 求从1~的自然数中,所有偶数之和与所有奇数之和的差。
4+2,5+8,6+14,7+20……
所以第100个算式的得数为103×596=61388
最下层有2106块砖,这堆砖共有多少块?
【解析】2+6+10+14+18+.....+2106,观察这个数列,容易发现为首项为2,公差为4,末项为2106的等差数列。
首先要计算此数列的项数,依次是4×0+2、4×1+2、4×2+2、....4×526+2,所以一共有527项。
72. 100~200之间不是3的倍数的数之和是多少?
数是多少?
所以这另外8个连续自然数中的最小数是249+11=260
74、1+2+3+……+100=
【解析】原式=(100+1)×50=5050
75、从1到300一共用了( )个0。
所以一共用了9+42=51个
76、甲仓库存粮108吨,乙仓库存粮140吨,要使甲仓库存粮数是乙仓库的3倍,必须从乙仓库运出( )吨放入甲仓库。
远的有( ) 人。
【解析】参加赛跑的人数是参加跳远的4倍,也就是比参加跳远的多参加跳远人数的3倍,又因为比参加跳远的多66人,所以参加跳远人数为66÷3=22人,参加赛跑的有22+66=88人。
78、鸡兔同笼,共100个头,320只脚,那么,鸡有 ( )只,兔有 ( )只。
【解析】鸡兔同笼问题,假设全部是鸡,那么就有脚100×2=200只,相比320只还少了120只,所以兔子的头数为120÷(4-2)=60只,所以鸡的头数为100-60=40只。
79、小明今年2岁,妈妈26岁,那么,( )年后妈妈的年龄是小明的3倍。
【解析】妈妈与小明的年龄差为26-2=24岁,当妈妈的年龄是小明的3倍时,此时的年龄差为小明年龄的2倍,即小明年龄为24÷2=12岁,也就是12-2=10年后。
一个人是好人,句句话都是真的,查询中问及三个人的职业,回答是:
甲:我是推销员,乙是司机,丙是美工设计师。
乙:我是医师,丙是百货公司的业务员,甲呀,你要问他,他肯定说是推员。
丙:我是百货公司的业务员,甲是美工设计师,乙是司机。
请问这三个人中说假话的小偷是———— 。
【解析】逻辑推理题,关键是找到切入点,其中乙说的第三句话一定是真的,因为问甲甲的确是说自己是推销员,所以乙一定不是小偷,那么就分乙是从犯或好人两种情况来考虑,很容易就能判断出甲是小偷。
81、小张、小王和小李练习投篮球,一共投了100次,有43次没投进,已知小 张和小王一共投进了32次,小王和小李一共投进了46次,小王投进了() 次。
【解析】小张、小王和小李练习投篮球,一共投了100次,有43次没投进,说明有100-43=57次投进。因为小张和小王一共投进了32次,所以小李一共投了57-32=25次,又因为小王和小李一共投进了46次,所以小张一共投了57-46=11次,所以小王一共投进了57-11-25=21次。
82、有不同的语文书5本,数学书6本,英语书3本,自然书2本。从中任取一本,共有( ) 种取法。
【解析】共有5+6+3+2=16种取法。
83、用7个7组成4数,加上运算符号使它结果等于100( )
【解析】777/7-77/7=100
84、学雷锋小组为学校搬砖,如果每人搬18块,还剩2块;如果每人搬20块,就有一位同学没砖可搬。共有( ) 块砖。
【解析】两种情况相比较,后者每人多搬了2块,最后比前者多20+2=22块,所以一共有22÷2=11人,即共有18×11+2=200块砖。
小时12千米。这只机帆船往返两港要( )小时?
所以速度每小时12千米的帆船逆流航行的速度为12-3=9千米/小时,顺流航行速度为12+3=15千米/小时;所以需要的时间为360÷9+360÷15=40+24=64小时。
22米的列车错车而过,问需要( )秒钟?
【解析】342+车长=23×速度............(1)
234+车长=17×速度............(2)
错车时间=(72+88)÷(22+18)=160÷40=4秒
87、填上运算符号,使等式成立。
1 13 11 6=24 1 2 3 4 5=1
88、按规律填数
(1) 1, 4, 7, 10, ( ), ( ), 19。
【解析】前一项比后一项差3,所以( )处填13、16
(2) 1, 2, 2, 4, 3, 8, ( ), ( )。
(3) 0, 1, 4, 9, ( ), 25, ( )。
(4) 0, 1, 1, 2, 3, 5, 8, ( )。
【解析】从第三项开始,每一项都是前两项之和,所以( )处填13
(5) 2, 6, 18, 54, ( ), ( )。
89、下面数列的每一项由3个数组成的数组表示,它们依次是;
(1,4,9 ),(2,8,18),(3,12,27)那么第50个数组内三个数是( , , )
所以第50个数组内三个数是(50 ,200 ,450 )
90、计算下列各题
【解析】原式=(1+30)×30÷2=465
【解析】原式=(100+5)×(100÷5)÷2=1050
【解析】原式=(1+49)×25÷2=625
那么他从一楼走到五楼有4楼,要走4×15=60个台阶。
92、在除法算式□÷7=5……□中,被除数最大是多少?
93、先观察再填空
3×4=12 33×34=1122 333×334=111222 3333×3334=( ) 33333×33334=( )
【解析】通过观察找规律,3×4=12 33×34=1122 333×334=111222 3333×3334=(11112222)
33333×33334=( 1111122222 )
是多少?(8分)
少只?(8分)
【解析】设黄鸡有x只,所以黑鸡有x-13只,白鸡有x+18只,又因为白鸡的只数是黄鸡的2倍,所以x+18=2x,解得x=18.所以白鸡有18+18=36只,黑鸡有18-13=5只,一共有36+5+18=59只。
女同学各有几人获奖?(8分)
【解析】设女同学有x人,那么男同学有x+2人,所以x= (x+2)+2,解得x=6人,所以男同学获奖人数为6+2=8人,女同学有6人获奖。
最快,她最多做多少朵?(简要说出算理)(10分)
【解析】5个女同学做纸花,平均每人做5朵,说明一共做了5×5=25朵。已知每个同学做的数量各不相同,其中有一个人做得最快,,当其他四个人分别做了1、2、3、4朵时,她做的最多为25-1-2-3-4=15朵。
颗珠子是什么颜色的?(10分)
【解析】(1)周期循环,以3+2=5个为一周期,14÷5=2....4,所以第14颗珠子是白颜色的。
(2)1998÷5=399....3,所以第1998颗珠子是黑颜色的。
99、巧添符号。
(1)6○6○6○6=1 (2)6○6○6○6=2
(3)6○6○6○6=3 (4)6○6○6○6=4
(3)(6+6+6)/6=3 (4)6-(6+6)/6=4
100、想想、算算、填填。
(1)18乘516写作( ),还可以读作(),表示( )个( )连加的和是多少。
【解析】18×516=9288,写作9288,读作九千二百八十八。表示18个516连加的和。
(2)5□4×6≈3000,□里可以填()。3□91÷5≈700,□里可以填()。
(3)从197月1日中国gcd诞生,到1949年10月1日中华人民共和国成立,经过了( )个月。
【解析】1921年还有6个月,1922-1948年有27年,有27×12=324个月,1949年有9个月,所以一个经过了6+324+9=339个月。
(4)新华书店上午9∶00开始营业,下午5∶30停止营业,全天营业时间是()小时( )分。
【解析】从上午9:00到下午的5:00有8小时,从下午5:00到5:30还有30分钟,所以全天营业时间是8小时30分。
(5)小冬买了20米长的铁丝,20米指的是铁丝的()。一块三合板2平方米,2平方米指的是三合板的( )。
【解析】长度、面积
(6)一个正方形和一个长方形的周长相等,( )的面积大。
【解析】正方形的面积大
(7)□×△=36,□÷△=4,□=( ),△=( )。
(8)某年的9月有5个星期日,这一年的9月1日不是星期日,它是星期()。
【解析】星期六
(9)如果每人的步行速度相同,3个人一起从甲地走到乙地,要2小时,那么,6个人一起从甲地走到乙地要( )小时。
【解析】2小时
来得( )分,乙队得( )分。
三年级奥数数字游戏篇三
分类枚举,就是依据一定的标准把题目的答案分为几种类型,一一列举出来。分类枚举的方法主要用来解决一些排列组合的问题,列举时要有序分类,保证答案既不遗漏又不重复,其中分类标准的确定是解题的关键,同一题因标准不同可能有不同的分类方法,好的分类方法会使解题过程变得更加简单。学会分类枚举,不仅可以解决本讲的问题,遇到更复杂问题时,我们也可以用列举的方法找出部分答案,然后在已有答案中发现规律,从而进一步寻求解题方案。
【题目】:
【解析】:
这里笼子都是同样的,因此3只笼子是无序的。
一、鸽子最少的那个笼子里有1只鸽子,共有4种放法:①1只、1只、8只;②1只、2只、7只;③1只、3只、6只;④1只、4只、5只。
二、鸽子最少的那个笼子里有2只鸽子,共有3种放法:①2只、2只、6只;②2只、3只、5只;③2只、4只、4只。
三、鸽子最少的那个笼子里有3只鸽子,共有1种放法:①3只、3只、4只。
所以共有放法:4+3+1=8(只)。
【题目】:
【解析】:
这一题要在孩子学习了三上第三单元,认识了常见的称和质量单位后,再学习比较合适。如果超前完成,需要对孩子介绍一下天平的用法。
①天平左边:物体 右边:1克砝码 能称出1克重的物体;
③天平左边:物体 右边:3克砝码 能称出3克重的物体;
⑥天平左边:物体 右边:6克砝码 能称出6克重的物体;
⑩天平左边:物体 右边:6克砝码+3克砝码+1克砝码 能称出10克重的物体。
在列举的过程中可以让孩子慢慢的领悟规律:有1克和3克的砝码,不仅可以称出1克和3克重的物体,还可以称出重量是1克和3克的和或差的物体,依此类推。
所以这架天平最多能称出10种不同重量的物体。
【题目】:
【解析】:
一、百位上数字是7,有1个:1799;
二、百位上数字是8,有2个:1889、1898;
三、百位上数字是9,有3个:1979、1988、1997;(千位和百位上的数字确定后,十位上数字再按从小到大枚举出所有情况。)
所以符合条件的数共有6个,除了1997外,还有5个。
三年级奥数数字游戏篇四
解题思路:画线段图可以看出,因为10年后小芳的年龄是小英年龄的2倍,所以两人当时的年龄差为小英当时的年龄,即5+10+小英5年前的年龄。因为5年前小芳的年龄是小英年龄的7倍,两人的年龄差为小英当时年龄的6倍。所以15相当于小英5年前年龄的5倍,可求出小英5年前的年龄。
解:(10+5)÷(7-1-1)=3(岁)
小英年龄 3+5=8(岁)
小芳年龄3×7+5=26(岁)
解题思路:6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁)。6年前母子年龄和是66-6×2=54(岁)。又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄。
解母子今年年龄和:78-6×2=66(岁)
母子6年前年龄和:66-6×2=54(岁)
母亲6年前的年龄:54÷(5+1)×5=45(岁)
母亲今年的年龄:45+6=51(岁)
答:母亲今年是51岁。

一键复制