人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
用加减法解二元一次方程组例题篇一
在人教版教材的七至九年级的数学教材中,对方程进行知识性重点学的地方先后出现3次:七年级上册第二章(一元一次方程),七年级下册第八章(二元一次方程组),九年级上册第二十二章(一元二次方程)。所以二元一次方程组这章正处在对前面学习过的一元一次方程的有关知识起着检查巩固的,又为以后方程的学习进一步打下基础 的作用。
二元一次方程组的知识对学生以后学习一次函数,将来对有关线性方程的学习和研究都是一个中重要的入门基础。方程组是解决含有多个未知数问题的重要的数学工具,很多实际问题的解决都是用方程(组)这种数学模型来解决的,通过二元一次方程组的学习培养学生数学建模的数学思想和数学方法,为将来他们从事现实问题的线性分析和研究有着启蒙和激发效果。
1、 知识技能:能根据实际问题列出二元一次方程(组),了解二元一次方程(组)的含义,理解二元一次方程(组)的解的含义,会求待定条件下的二元一次方程(组)的解,并会检验给定的一对未知数的值是否是二元一次方程(组)的解。
2、 数学思考:在根据实际情况列二元一次方程(组)解决实际问题的过程中体会到数学建模的思想,培养学生分析问题的数学意识。
3、解决问题:能根据问题中的未知数的个数列出相应的二元一次方程(组)
高学习数学的兴趣。
②在探讨解决问题的过程中,敢于发表自己的见解,理解他人的看法并与
他人交流。
方程(组)及它们解的含义。
求。
(1)启发式教学
(老师耐心引导、分析、讲解和设置启发式提问,引导学生对本节知识的理解和掌握)
(2)学案式教学
(让学生自己阅读,自主讨论,探索研究获得知识,得出结论)
出问题,解决问题,能师生互动、生生互动,提高学生的合作意识,共同来完成教学目标。
(一)复述回顾:以二人小组完成学案上的3个问题;
(二)创设情境――引入课题
鸡兔同笼
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?
4x+2(35-x)=94(设兔x只)............②
题--二元一次方程组 。
(三)设问导读与自我检测
同学们自己阅读课本,并完成设问导读与自我检测的问题,完成之后,小
生对新知识的探究。
1.对鸡兔同笼问题列方程,设鸡x只,兔y只,
x+y=35........③
2x+4y=94......④
先引导学生观察方程③、④有什么特点。这样的方程叫什么方程?(试着让
程,马上做自我检测第一题,发现问题解决问题。
学生说出定义,做自我检测第三题,说明第四个也是二元一次方程组。
用加减法解二元一次方程组例题篇二
下午好!今天我说课的内容是人教版初中数学七年级下册第八章第二节二元一次方程组的解法第二课时加减消元法。我主要从教材分析、学情分析、教法学法、教学环境及资源准备、教学过程、评价与反思六个方面向大家汇报我对这节课的认识和理解。
(一)知识与技能目标:
2、理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:
通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:
通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
难点: 灵活运用加减消元法的技巧,把二元转化为一元
七年级学生在自学中,通常能掌握表面知识,如具体的一个问题的解题过程,但学生在数学解题能力,运算能力,思维能力等各方面参差不齐,这也导至在学习中,特别是在自学中有的动力不够,有的更是缺乏探索精神,而在总结归纳中又缺乏合作的学习态度。在自学中能说出是什么怎么样,但又还探索不出为什么有什么联系 。
教法:利用导学提纲自主互动学习,根据学情教师适时点拨、归纳、升华。
学法:本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣, 引导学生在自主探究、合作交流、小组积分相结合的学习方式下获得成功的体验。
教学环境:多媒体教室
资源准备:导学提纲 ,多媒体课件制作。
用加减法解二元一次方程组例题篇三
1.教材分析
(1)知识结构
(2)重点、难点分析
2.教法建议
设计示例
(第一课时)
一、素质目标
(一)知识点
1.使学生掌握的步骤.
2.能运.
(二)能力训练点
1.培养学生分析问题、解决问题的能力.
2.训练学生的运算技巧.
(三)德育渗透点
消元,化未知为已知的转化思想.
(四)美育渗透点
渗透化归的数学美.
二、学法引导
三、重点、难点、疑点及解决办法
(-)重点
使学生学会.
(二)难点
灵活运用加减消元法的技巧.
(三)疑点
如何“消元”,把“二元”转化为“一元”.
(四)解决办法
四、课时安排
一课时.
五、教具学具准备
投影仪、胶片.
六、师生互动活动设计
七、步骤
(-)明确目标
(二)整体感知
(三)过程
1.创设情境,复习导入
(1)用代入法解二元一次方程组的基本思想是什么?
(2)用代入法解下列方程组,并检验所得结果是否正确.
2.探索新知,讲授新课
解:①+②,得
把 代入①,得
∴
∴
学生活动:比较用这种方法得到的 、 值是否与用代入法得到的相同.(相同)
上面方程组的两个方程中,因为 的系数互为相反数,所以我们把两个方程相加,就消去了 .观察一下, 的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去 ?(相减)
学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同.(相同)
提问:①比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)
②在什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)
③什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)
例1 解方程组
哪个未知数的系数有特点?( 的系数相等)把这两个方程怎样变化可以消去 ?(相减)
学生活动:回答问题后,独立完成例1,一个学生板演.
解:①-②,得
∴
把 代入②,得
∴
∴
∴
(1)检验一下,所得结果是否正确?
(2)用②-①可以消掉 吗?(可以)是用①-②,还是用②-①计算比较简单?(①-②简单)
(3)把 代入①, 的值是多少?( ),是代入①计算简单还是代入②计算简单?(代入系数较简单的方程)
小结:的条件是某个未知数的系数绝对值相等.
例2 解方程组
(1)上面的方程组是否符合用加减法消元的条件?(不符合)
(2)如何转化可使某个未知数系数的绝对值相等?(①×2或②×3)
学生活动:独立解题,并把一名学生解题过程在投影仪上显示.
学生活动:总结的步骤.
①变形,使某个未知数的系数绝对值相等.
②加减消元.
③解一元一次方程.
④代入得另一个未知数的值,从而得方程组的解.
3.尝试反馈,巩固知识
练习:p23 1.(4)(5).
4.变式训练,培养能力
(1)选择:二元一次方程组 的解是( )
a. b. c. d.
(2)已知 ,求 、 的值.
学生活动:第(1)题口答,第(2)题在练习本上完成.
(四)总结、扩展
1.的思想:
2.的条件:某一未知数系数绝对值相等.
3.的步骤:
八、布置作业
(一)必做题:p24 1.
(二)选做题:p25 b组1.
(三)预习:下节课内容.
参考答案
(一)(1) (2) (3) (4)
(二)1.(1)与(4) (2)与(3)
用加减法解二元一次方程组例题篇四
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一 次方程组和对应的两条直线之间的 关系;
(2)二元一次方程组和对应的两条直线的关系.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
内容:
1.方程x+y=5的解有多少个? 是这个方程的解吗?
由此得到本节课的第一个知识点:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程 .
内容:
1.解方程组
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
探究方程与函数的相互转化
内容:
例2 如图,直线 与 的交点坐标是 .
内容:
1.已知一次函数 与 的图像的交点为 ,则 .
(a)4 (b)5 (c)6 (d)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上 的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交 点坐标是对应的方程组的解;
(1)代入消元法;
(2)加减消元法;
用加减法解二元一次方程组例题篇五
大家好!
今天我说课的内容是人教版义务教育课程标准实验教科书初中数学七年级下册第八章《二元一次方程组》第一节内容。我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识与理解。
1、教材的地位
二元一次方程组是最简单的多元(未知数的个数不止一个)方程组,通过对它的学习,可以了解的多元一次方程组的概念和解法的基本思路。一元一次方程的知识是学习二元一次方程组的基础。本节课是在七年级上册已有的“一元一次方程”的基础上进一步讨论方程(组),为学生初中阶段学好必备的代数,几何的基础与基本技能,解决实际问题打下基础,同时提高学生能力,培养他们对数学的兴趣,以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2、教学目标
使学生掌握二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。
3、重点、难点
重点:是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。掌握检验一对数是否是某个二元一次方程的解的书写格式。
启发诱导学生自主探究、充分发挥学生的主体地位、借助多媒体增加课堂容量。
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
1、教与学互动设计:通过“篮球比赛积分问题”让学生感受到用二元一次方程组能够很好的刻画问题中的数量关系,为二元一次方程和二元一次方程组做准备。通过小组讨论的方法,来调动学生学习的积极性。
2、合作交流,解读探究:通过上述的两个方程对新的知识让学生进行讨论交流。呼应新课标理念中让学生“动”起来,教师引导、学生自主学习的理念,进行新课的学习。
3、课堂练习:用幻灯片展示的习题,学生通过习题巩固本节课知识,更加充分的理解二元一次方程组的相关内容。
4、课堂小结及布置作业:通过小结及做习题反馈学生对本节课的收获。
生命在活动中丰富,为孩子的一生幸福奠定基础,是活动教学的终极价值追求;课堂在活动中精彩,强调通过师生之间丰富多彩的主体活动“唤醒”沉睡的课堂,实现课堂教学的重建;学生在活动中发展,教师在活动中成长。由于我能力有限,还请各位领导、老师和同学批评指正。
8、1二元一次方程组
xy=222xy=40
用加减法解二元一次方程组例题篇六
让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题
寻找等量关系
看一看:课本99页探究2
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练
农作物品种每公顷需劳动力每公顷需投入奖金
水稻4人1万元
棉花8人1万元
蔬菜5人2万元
用加减法解二元一次方程组例题篇七
2.通过解决实际问题进一步体会方程建模的过程和作用.
教学重点抽象出数学模型,引导学生参与讨论和探究问题.
教学难点将实际问题转化成二元一次方程组的数学模型.
授课类型新授课课时
教具多媒体课件
教学活动
教学步骤师生活动设计意图
活动一:创设情境导入新课
活动二:实践探究交流新知
活动三:开放训练体现应用
活动四:课堂总结反思
活动四:课堂总结反思
【教学反思】

一键复制