每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
平行线的性质平行线分线段成比例定理篇一
1、教材分析
(1)知识结构
(2)重点、难点分析
2、教法建议
(1)讲授新课
(2)综合应用
(3)适当总结
目标:
1.使学生理解,能初步运用进行有关计算.
方法:开放式
过程:
一、复习
3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。
如、“若a=b,则a2=b2”是正确的,但“若a2=b2,则a=b”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。
二、新课
上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“公理”,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。
2、现在我们来用这个性质公理,来证明另两句话的正确性。
已知:如图,直线a∥b
求证:(1)∠1=∠4;(2)∠1+∠2=180°
证明:∵a∥b(已知)
∴∠1=∠3(两直线平行,同位角相等)
又∵∠3=∠4(对顶角相等)
∴∠1=∠4
(2)∵a∥b(已知)
∴∠1=∠3(两直线平行,同位角相等)
又∵∠2+∠3=180°(邻补角的定义)
∴∠1+∠2=180°
思考:如何用(1)来证明(2)?
解:∵梯形上下底互相平行
∴∠a与∠b互补,∠d与∠c互补
∴∠b=180°-115°=65°
∠c-180°-100°=80°
答:梯形的另外两个角分别是65,80°
练习:p79 1、2、3
小结:平行性质与判定的区别
作业 :p87 9、10
平行线的性质平行线分线段成比例定理篇二
宝石二小:田小亮
各位评委老师大家上午好!
我是综合组第1组30号,我说课的题目是《平行线的性质》(板书课题),下面我将从课标、教材、学情、教学目标、教法学法、教具学具、教学过程和板书设计八个方面对本课进行阐述。
一、说课标
新课程标准对本课的要求是学生在教师的引导讲解下知道两直线平行同位角相等,进而自主探索平行线的其他性质。
在教学活动中,新课标要求应该注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;注重对平行线性质推导和探索本身的理解,而不是追求探索的数量和技巧。
二、说教材
《平行线的性质》是北师大版七年级数学下册第二章第三小节的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一性质进行验证,再通过课件的演示对学生进行讲解,使学生加深对这一知识点的理解。在这一性质的基础上经过简单的推理,得到平行线的另外两个性质。
三、说学情
我所在的学校是农村中学,这里的学生基础知识较差,语言表达能力不强,但学生有较强的求知欲望,对新的事物有很强的好奇心,对探索活动也有很高的激情。在前面的学习中学生对于平行线已经有了很深的了解,也学会了平行线的判定方法,所以本节课的内容对学生来说并不是非常难学。
四、说教学目标
知识目标:探索平行线的性质,会用平行线的性质进行简单的计算、证明;了解平行线的性质和判定的区别。
技能目标:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感目标:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
同时根据学生的认知特点和发展情况确定本节课的重难点如下:
重点:平行线的性质的推导及平行线的性质与判定的区别
难点:平行线的三个性质及运用。
五、说教法学法
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、新技术教学法:在空间与图形教学过程中充分利用多媒体教学技术,给学生以直观的感受,加深学生的印象。
3、鼓励和表扬法:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
在学法指导上,通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
六、说教具学具
结合本课特点和学生的认知条件我主要用多媒体课件对学生进行演示和讲解,给学生直观的感受,加深学生对本课知识的理解。
学生在学习探索的过程中主要用“三线八角”的木条学具来分析和掌握平行线的性质,学生通过经历“三线八角”木条学具的探索,更能容易的对平行线的性质加以运用。
七、说教学过程
1、创设情境引入
(1)我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。
通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
(2)通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.由此设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?由此引入新课。
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)通过讲解引导学生理解平行线的性质一。加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
3、知识运用
(1)解决引入时提出的问题
(2)让学生利用所学的知识独立完成p50做一做,后全班评价。
(3)练习
通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?
通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、作业设计
p51习题2.5第2、3题
八、说板书设计
1.平行线的性质:
性质1:
性质2:
性质3:
2.平行线的性质与判定的区别
这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
以上是我对本课的一些见解,我的说课完毕,谢谢大家!
平行线的性质平行线分线段成比例定理篇三
一、目标分析
1、知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
2、过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
3、情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
二、教学重点、难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
三、教学过程
1、创设情境引入
(1)、我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.2、探索新知(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
3、知识运用
(1)解决引入时提出的问题
【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、作业设计 p175 第5题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
四、说板书设计平行线的性质
1.平行线的性质:
性质1: 例题: 练习: 性质2: 性质3:
2.平行线的性质与 判定的区别
【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
五、自我评价
平行线的性质平行线分线段成比例定理篇四
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
一、引导学生逆向思维
二、实践探究
度数
2.补充:如图,bcd是一条直线,∠a=75°,∠1=53°,∠2=75°,求∠b的度数.本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路.一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.()2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.()3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.()
二、填空题.1.如图(1),若ad∥bc,则∠______=∠_______,∠_______=∠_______,∠abc+∠_______=180°;若dc∥ab,则∠______=∠_______,∠________=∠__________,∠abc+∠_________=180°.(1)(2)(3)
c.向右拐85°,再向右拐85°;d.向右拐85°,再向左拐95°
四、解答题
一、1.× 2.∨ 3.×
三、1.d 2.a
一、复习引入
二、进行新课
问题学生不难回答,教师归纳: 两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断.(2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画ab∥cd”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.(3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论。
三、巩固练习
1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么? 2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.解答:1.是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”.2.第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类:第一类是命题题设不足于确定命题结正确,如“同位角相等”,这里条件不够;第二类命题是在命题的题设下,结论不正确。
c.若a∥b,b⊥c,则a⊥c d.若a⊥b,b⊥c,则a⊥c
一、1.因为∠2+∠1=90° 又∠2+∠3=90°,所以∠1=∠3(同角的余角相等)
2.如果两个角是直角,那么这两个角相等
3.两个角是邻补角,这两个角的平分线互相垂直 4.40°,140°
二、1.d 2.b 3.d 4.d
三、1.平行
因为o′c∥bd
所以∠2=∠3(两直线平行,内错角相等)
又∠1=∠2,∠3=∠4
所以∠1=∠4
所以ac∥o′d(内错角相等,两直线平行)
2.(1)相等.因为∠1=∠2,所以bd∥ce(内错角相等,两直线平行)
所以∠abd=∠c(两直线平行,同位角相等)
(2)相等 因为∠abd= ∠c 又∠d=∠c
所以∠d=∠abd
所以df∥ac(内错角相等,两直线平行)
所以∠a=∠f(两直线平行,内错角相等)
3.∠b=∠c 因为ad∥bc
所以∠b=∠ead(两直线平行, 同位角相等), ∠c=∠cad(两直线平行,内错角相等)
又∠ead=∠cad(角平分线定义)所以∠b=∠
平行线的性质平行线分线段成比例定理篇五
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:ab平行于cd,写作ab∥cd
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:ab平行于cd,写作ab∥cd
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。

一键复制