当下社会竞争激烈,我们需要不断总结经验。总结应该针对性地提出问题并给出解决方案,具备实际操作性。以下是一些经典的总结范文,读后会对我们的总结写作产生很大的启发和帮助。
2,5的倍数的特征说课人教版篇一
《3的倍数的特征》的教学是在第一次教学之后,学校组织县级教学能手选拨赛时候第二次上,可以说是“一课两上”。我在第二次备课时完全从另一个角度来处理教材,收获颇丰。下面我就本节课前后两次上课反思如下:
第一次上课我是让学生圈出100以内3的倍数,去观察3的倍数的特征,由此总结出3的倍数的特征,然后实际应用,巩固练习。效果一般。而第二次上课时我是这样做的:使学生在原有认知的基础上产生认知冲突,在学习2、5倍数特征的基础上,让学生猜测是不是3的倍数的特征也要去看数的个位呢,进而产生新的.探索欲望,让后在百数表中圈出3的倍数的特征,接着借助学生熟悉的计数器进行两个实验,实验一:验证3的倍数的特诊,实验二:验证不是3的倍数的的数的特征。最后实践应用,课堂检测。
整个教学过程突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。这就要求我们教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。
反思这节课的不足我觉得在每个环节的过渡上要做的更加自然、一气呵成会更好。由于本节课按照赛教要求只有30分钟,时间的把握做的还不够恰到好处。总之,教无定法,学海无涯,需要我不断的学习和实践,不断提高自身素质和专业水平,大力提高教学质量。
2,5的倍数的特征说课人教版篇二
1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。
2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。
教学重难点。
判断一个数是不是3的倍数。
课前准备。
小黑板、学具卡片。
教学活动。
一、引入新课,激发兴趣。
教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)。
教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。
学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。
谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)。
二、自主探索。合作学习。
1.先让学生猜一猜:3的倍数有什么特征?举例说明。
2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?
如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。
4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?
每个数所用算珠的颗数都是3的倍数。
5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。
一个数是3的倍数,这个数各位上的数的和一定是3的倍数。
6.进一步验证。
(1)同桌之间互相报数,验证刚才的结论是否正确。
(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。
7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?
在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
三、运用结论。巩固拓展。
1.做“想想做做”第1题。
指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?
2.做“想想做做”第2题。
提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。
3.做“想想做做”第3题。
让学生独立填写,再在小组里交流:你能找到几种不同的填法?
4.做“想想做做”第4题。
学生涂完后,指名回答:9的倍数都是3的倍数吗?
5.做“想想做做”第5题。
各自组数,并把组成的数记下来。
指名报答案,全班学生评议。
6.补充题。
提问:你今年几岁?再过几年你的岁数是3的倍数?
2,5的倍数的特征说课人教版篇三
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学过程:
一、提出课题,寻找3的特征。
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l3、l6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)。
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的'数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做。
四、课堂小结:
这节课你有什么收获。
2,5的倍数的特征说课人教版篇四
教学过程:
一、创设情景,激发求知欲。
师:以前都是我考同学们,今天我也给你们一个机会,让你们来考考我。同学们可以随便说出一个数,我马上就能判断出这个数是不是2或5的倍数。如果同学们有疑问,还可以用计算器进行验证。不信就请你们任意说出一个数来考考老师。师:你们想知道其中的奥秘吗?今天我们一起来研究“2、5倍数的特征”
二、引导探究新知学习。
师:我们先来探索2的倍数有什么特征。课件出示1-100数。
学生讨论回答。
(1)多媒体出示1-100的数。
师:请同学们在这100个数字当中,找出2的倍数。
生观察主题图后发言阐述自己的想法。
师:生报号,师板书。
师:这些数还可以怎么说?(也可以说是2的倍数)。
(2)课件出示。观察:表格里的2的倍数有什么特点?(个位上是0,2,4,6,8。)。
学生口答后,老师板书:个位上是0,2,4,6,8的数都是2的倍数。
师小结:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
生互相讨论判断。
师:由于2的倍数的个数是无限的,我们通过验证有限个数,结果是符合上面的结论的。所以今后我们在判断一个数是不是2的倍数,只要看这个数的个位上是不是0、2、4、6、8,只要符合这个特征,这个数就是2的倍数。
(1)分组探索。
师:2的倍数的特征同学们都很清楚了,那么5的倍数又有什么特征呢?我们再来研究一下。
(2)汇报交流。(出示1-100的数)。
师:让学生观察图表说出5的倍数。
生:5、10,15,20.....
师:观察涂色的数,你们发现5的倍数有什么特征?
请你们小组合作,共同探讨,然后大家交流。
师:谁能再说说你发现了什么?
生:个位上是0或者5的数都是5的倍数(教师评价)。
师根据汇报板书:个位上是0或5的数是5的倍数。
2,5的倍数的特征说课人教版篇五
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。
2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。
教学过程:
一、提出课题,寻找3的特征。
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如13、16、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)。
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)。
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)。
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
同学同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
同学先自身写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做。
四、课堂小结:
这节课你有什么收获。
2,5的倍数的特征说课人教版篇六
1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。
2、发展分析、比较、猜测、验证的能力。
[教学重、难点]发展分析、比较、猜测、验证的能力。
[教学过程]。
我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。
让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。
引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。
试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。
三、练一练:
第2题:
让学生准备几张卡片:3、0、4、5边摆边想,再交流讨论思考的过程。
(1)30、45、54(2)30、54(3)30、45(4)30。
四、实践活动:
让学生运用研究3的倍数的特征的方法去研究9的倍数。让学生经历涂、画、想等过程,使学生获得真实的体验。
[板书设计]。
2,5的倍数的特征说课人教版篇七
2,引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗今天我们一起来研究3的倍数的特征.(揭示课题:3的倍数的特征)。
二,排列中感受奇妙。
1,谈话:我们班有50个同学,现在每个同学手中都有一张写有自己学号的卡片,请大家判断一下,自己的学号数是3的倍数吗(稍停,让学生完成判断)请学号数是3的倍数的同学把卡片贴在黑板的左边,不是3的倍数的,卡片贴在黑板的右边.
3,抽取黑板左边3的倍数12和21.
(1)谈话:比较这两个数,你能发现什么有趣的现象(数字相同,数字排列的顺序不同)。
(2)提问:在左边3的倍数中,再找几个数,把他的数字顺序改变一下,看看还是不是3的倍数你有什么发现(一个3的倍数,改变数字的顺序后,仍然是一个3的倍数.)。
(3)在右边不是3的倍数的数中,也有这样的数,你能把他们一组一组地排列起来吗(13,31;14,41;23,32;25,52;34,43;)这里又说明什么呢(一个不是3的倍数,改变数字的顺序后,仍然不是3的倍数)。
三,操作中发现规律。
1,活动:每个同学手中都有一些小棒和一张数位表,我们在数位表上分别来摆几个3的倍数,看看分别用了几根小棒,现在请你在3的倍数中任意选几个来摆一摆,开始.
2,学生在小组中完成并记录,然后汇报,教师板书如:12:1+2=3;。
3,提问:对于小棒的根数你有什么发现(都是3的倍数)。
4,下面我们反过来试试看,请你数出3的倍数根小棒,摆成一个两位数或三位数,看看这个数是不是3的倍数.(学生操作后汇报结果)。
5,提问:摆每个数所用的小棒根数就是这个数的什么现在你觉得什么样的数一定是3的倍数(3的倍数,它的各位数的和一定是3的倍数)。
6,教学试一试:如果一个数不是3的倍数,这个数各数位上数字之和会是3的倍数吗请你找几个不是3的倍数算一算看.你得到什么结论(各数位上数字的和不是3的倍数,这个数就不是3的倍数)。
7,你能把刚才发现的结论和现在这个结论连起来说一说吗。
四,练习中提升认识。
1,完成“想想做做”第1题。
学生独立完成判断,并把题中3的倍数圈出来.
组织交流:哪些数是3的倍数你是怎样判断的。
明确方法:判断一个数是不是3的倍数,可以先把这个数各位上的数相加,看得到的和是不是3的倍数.
2,完成“想想做做”第2题。
学生各自做出判断,在组织交流.
3,完成“想想做做”第3题。
填什么数字能使这个两位数是3的倍数你为什么填这个数你是怎么想的还可以填哪些数。
4,完成“想想做做”第4题。
先让学生按要求操作,交流:你是怎么找9的倍数的9的倍数都是3的倍数吗反过来,3的倍数都是9的倍数吗请举例说明.
5,完成“想想做做”第5题。
提问:每次要选几张卡片要使组成的三位数是3的倍数,这三张卡片上的数要满足什么要求。
学生动手选一选,并把每次组成的三位数记下来.
五,全课总结。
3的倍数有什么特征判断一个数是不是3的倍数,你会怎么判断。
教学目标:。
2,使学生在探索3的倍数的特征的过程中,进一步培养观察,比较,分析,归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣.
教学准备:有学号的卡片;学生准备小棒若干.
2,5的倍数的特征说课人教版篇八
教学目标:
1、在探索活动中,观察发现3的倍数的特征。
2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。
教学过程;
活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?指名说。
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。
1、在书上第6页的表中,找出3的倍数,并做上记号。
2、观察3的倍数,你发现了什么?先独立完成,看谁找的快。
教师参与到讨论学习中。先独立思考,想己的想法,然后与四人小组的同学说说你的发现。
生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生二:十位上的数也没有什么规律。
生三:将每个数的各个数字加起来试试看。
3、你发现的规律对三位数成立吗?找几个数来检验一下。
活动三:试一试。
在下面数中圈出3的倍数。
284553873665。
活动四:练一练。
1、请将编号是3的倍数的气球涂上颜色。自己独立完成,在小组内说说自己的想法。
361754714548。
2、选出两个数字组成一个两位数,分别满足下面的条件。独立完成,说说你的窍门和方法。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
活动五:实践活动。
在下表中找出9的倍数,并涂上颜色。可以在自主实践以后再交流。
板书设计:

一键复制