知识是人类进步的基石,我们应该不断地学习和充实自己。然后,我们应该思考以下是小编为大家整理的一些运动训练计划和健身建议,供大家参考和实践。
辽宁初中数学中考考点篇一
1、三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。
三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。
只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。
其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。因此在初中数学学习中也是一个重点。
四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。
2、圆,中考中占总分的10%左右。
包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。
其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。
辽宁初中数学中考考点篇二
求解不等式组;。
分式、多项式化简(整体代入方法求值);。
方程组求解;。
几何图形中证明三角形边相等;。
一次函数与二次函数;。
四边形边长、周长、面积求解;。
圆相关问题(切割线、圆周角、圆心角);。
统计图;。
在数轴中求三角形面积;。
二次函数(解析式、直线方程);。
圆与直线关系;。
三角形角度相关计算;。
单项式和多项式统称为整式。
1.单项式:
1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:
1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的.次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:
1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.整式的加减:有括号的先算括号里面的,然后再合并同类项。
4.幂的运算:
5.整式的乘法:
1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6.整式的除法。
1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解——把一个多项式化成几个整式的积的形式。
1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2)公式法:a.平方差公式;b.完全平方公式。
辽宁初中数学中考考点篇三
一元一次不等式组的概念及解法。
(二)内容解析。
二、目标及目标解析(一)目标。
达到目标(1)的标志是:学生能说出一元一次不等式组的特征.。
四、教学过程设计。
(一)提出问题形成概念。
(二)解法探讨步骤归纳例1解下列不等式组。
学生尝试独立解不等式组,老师强调规范格式。
设计意图:初步感受解一元一次不等式组的方法和步骤.。
(三)应用提高深化认知。
例2x取那些整数值时,不等式5x+23(x-1)与。
都成立?
设问1:不等式都成立表示什么意思?小组讨论。
(四)归纳总结反思提高。
(3)一元一次不等式组解集的一般规律是什么?
设计意图:通过问题归纳总结本节课所学的主要内容.。
(五)布置作业课外反馈教科书习题9.3第1,2,3题。
辽宁初中数学中考考点篇四
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。有一定难度。
如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2、整式、分式、二次根式的化简运算。
整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。
3、应用题,中考中占总分的30%左右。
包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。
一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。
现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。
辽宁初中数学中考考点篇五
总体:我们把所要考察的对象的全体叫做总体;。
个体:把组成总体的每一个考察对象叫做个体;。
样本:从总体中取出的一部分个体叫做这个总体的一个样本;。
样本容量:一个样本包含的个体的数量叫做这个样本的容量。
我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量。
辽宁初中数学中考考点篇六
(三)。使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点。
一元一次方程解简单的应用题的方法和步骤。
主要为习题处理,由浅入深,使学生把所学知识系统化。
主要由学生完成,老师引导。
习题3。1中,1。2。3都是基础知识题,让学生到黑板上做几道有代表意义的题,然后老师对错的给与纠正,让学生对基础知识题的正确把握。
主要针对学生比较难懂的应用题来讲解;
分析:设获得一等奖的学生有x人,由已知条件得:
x×200+(22—x)×50=1400。
本题要让学生理解这种设未知数建立方程的思想,设获得一等奖的学生有x人,那么二等奖的人数就是22—x。
分析:两种方法种树苗,等式就是总树苗相等,设有x人种树,
那么:10x+6=12x—6。
所以找到等式就是列出方程的重要一步。
12000+800x=20800。
总之,找出他们之间存在的相等关系就是解决问题的关键。
通过系统的学习,让学生的综合运用能力提高,对拓广探索中的题目老师要细心讲解,因为学生对这些题的理解有困难。
四、课堂总结。
通过大量的练习,及时巩固所学知识,使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题。
五、作业布置。
习题3。1第7、8题。
辽宁初中数学中考考点篇七
全面调查就是对需要调查的对象进行逐个调查。这种方法所得资料较为全面可靠,但调查花费的人力、物力、财力较多,且调查时间较长,不适合一般企业的要求。全面调查只在产品销售范围很窄或用户很少的情况下可以采用。对品种多、产量大、销售范围广的产品,就不适用全面调查,而可以采用抽样调查。
抽样调查是从需要调查对象的总体中,抽取若干个个体即样本进行调查,并根据调查的情况推断总体的特征的一种调查方法。抽样调查可以把调查对象集中在少数样本上,并获得与全面调查相近的结果。这是一种较经济的调查方法,因而被广泛采用。抽样调查是从研究对象的总体中抽取一部分个体作为样本进行调查,据此推断有关总体的数字特征。
全面调查和抽样调查的特性。
调查好处与特点:。
1.全面调查:对需要调查的对象进行逐个调查。
好处:所得资料较为全面可靠。
特点:调查花费的人力、物力、财力较多,且调查时间较长,全面调查只在样本很少的情况下适合采用。
2.抽样调查:是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
好处:耗费的人力,物力,财力少,大量节约调查时间。
特点:
1、按随机原则抽选样本。
2、总体中每一个单位都有一定的概率被抽中。
3、可以用一定的概率来保证将误差控制在规定的范围之内。
4、适合样本数量较多的情况下采用。
全面调查和抽样调查的知识对比。
全面调查和抽样调查关系:。
全面调查和抽样调查是按调查对象范围不同划分的调查方式。
全面调查是对调查对象中的所有单位全部加以调查,通过基层单位按照一定的报表填报要求进行逐一登记、逐级上报、层层汇总,最后取得调查结果的一种调查方式,如人口普查、经济普查等。
抽样调查是一种非全面调查,它是从研究的总体中按随机原则抽取部分样本单位进行调查,并根据样本单位的调查结果来推断总体,以达到认识总体的一种统计调查方式。
抽样调查用样本指标代表总体指标不可避免会产生误差,抽样推断虽然会有抽样误差(不包括登记误差和系统性误差),但只要严格遵守随机原则,所选的样本结构与总体结构相同,或者两者分布一致,就可以运用数学公式计算抽样误差。随机抽样产生的误差,只要确定其具体的数量界限,可以通过抽样程序设计加以控制。因此抽样调查的结果是有可靠的科学依据的。
抽样调查与全面调查有着相辅相成的关系。在实际运用中,没有必要进行全面调查和不可能进行全面调查时宜采用抽样调查。
抽样调查的优点:。
二是可以及时取得调查资料,提高数据的时效性;。
第四,调查方法灵活,如实际工作中使用较多的问卷调查、入户调查、电话调查等,适应面广,特别适于对点多面广的总体作调查。
辽宁初中数学中考考点篇八
一、相似三角形(7个考点)。
考点1。
相似三角形的概念、相似比的意义、画图形的放大和缩小。
考核要求。
(1)理解相似形的概念;。
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2。
平行线分线段成比例定理、三角形一边的平行线的有关定理。
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3。
相似三角形的概念。
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4。
相似三角形的判定和性质及其应用。
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5。
三角形的重心。
考核要求:知道重心的定义并初步应用。
考点6。
向量的有关概念。
考点7。
向量的加法、减法、实数与向量相乘、向量的线性运算。
考核要求:掌握实数与向量相乘、向量的线性运算。
二、锐角三角比(2个考点)。
考点8:
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9:
解直角三角形及其应用。
考核要求:
(1)理解解直角三角形的意义;。
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
三、二次函数(4个考点)。
考点10。
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;。
(2)知道常值函数;。
(3)知道函数的表示方法,知道符号的意义。
考点11。
用待定系数法求二次函数的解析式。
考核要求:
(1)掌握求函数解析式的方法;。
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12。
画二次函数的图像。
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像。
(2)理解二次函数的图像,体会数形结合思想;。
(3)会画二次函数的大致图像。
考点13。
二次函数的图像及其基本性质。
考核要求:
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;。
(2)二次函数的平移要化成顶点式。
四、圆的相关概念(6个考点)。
考点14。
圆心角、弦、弦心距的概念。
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15。
圆心角、弧、弦、弦心距之间的关系。
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16。
垂径定理及其推论。
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17。
直线与圆、圆与圆的位置关系及其相应的数量关系。
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18。
正多边形的有关概念和基本性质。
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19。
画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
五、数据整理和概率统计(9个考点)。
考点20。
确定事件和随机事件。
考核要求:
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21。
事件发生的可能性大小,事件的概率。
考核要求:
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22。
等可能试验中事件的概率问题及概率计算。
考核要求。
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;。
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23。
数据整理与统计图表。
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;。
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24。
统计的含义。
考核要求:
(1)知道统计的意义和一般研究过程;。
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25。
平均数、加权平均数的概念和计算。
考核要求:
(1)理解平均数、加权平均数的概念;。
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26。
中位数、众数、方差、标准差的概念和计算。
考核要求:
(1)知道中位数、众数、方差、标准差的概念;。
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;。
(2)求中位数之前必须先将数据排序。
考点27。
频数、频率的意义,画频数分布直方图和频率分布直方图。
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;。
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。
考点28。
中位数、众数、方差、标准差、频数、频率的应用。
考核要求:
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;。
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题。
辽宁初中数学中考考点篇九
每一小组的频数与数据总数的比值叫做这一小组的频率;即:
在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。因此,各个小长方形的面积的和等于1。
频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。
用一件事件发生的频率来估计这一件事件发生的概率。
可用列表的方法求出概率,但此方法不太适用较复杂情况。
要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x条鱼,则可依照估算出鱼的条数。(注意估算出来的数据不是确切的,所以应谓之“约是_”)。
生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。
概率的求法:
(2)、列表法。
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(3)树状图法。
通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。)。
辽宁初中数学中考考点篇十
易错点1:各个待定系数表示的的意义。
易错点2:熟练掌握各种函数解析式的求法,一般情况下有几个的待定系数就要几个点的坐标代入。
易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点5:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点6:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
二、圆。
易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。
易错点4:与圆有关的位置关系把握好d与r之间的关系求解。
易错点5:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角,90度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
易错点6:圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
三、旋转与相似。
易错点1:对于常见旋转模型不熟悉,不能通过题目判断出旋转特征。
易错点2:相似对应关系不明确时注意分类讨论。
易错点3:线段乘积转比例时,注意比例的顺序。
易错点4:常见几何条件运用要熟练、比如中点、角平分线、垂直平分线、等腰直角三角形、等边三角形、线段的和差,角度的二倍关系、平行等条件,要熟记相应的辅助线。
易错点5:过于依赖图形,从图中看着像的结论揪住不放,但实际是错误的。
易错点6:旋转方向要看清楚,分清顺时针和逆时针。
四、锐角三角函数。
易错点1:应用三角函数定义时,要保证直角三角形这个前提.
易错点2:在求解直角三角形的有关问题时,要画出图形,以利于分析解决问题.
易错点3:选择关系式时,要尽量利用原始数据,以防止"累积误差".
易错点4:遇到不是直角三角形的图形时,要添加适当的辅助线,将其转化为直角三角形求解。
辽宁初中数学中考考点篇十一
2.过一点有且只有一条直线和已知直线垂直。
3.过两点有且只有一条直线。
4.两点之间线段最短。
5.同角或等角的补角相等。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都和第三条直线平行,这两条直线也互相平行。
角
9.同位角相等,两直线平行。
10.内错角相等,两直线平行。
11.同旁内角互补,两直线平行。
12.两直线平行,同位角相等。
13.两直线平行,内错角相等。
14.两直线平行,同旁内角互补。
三角形。
15.定理三角形两边的和大于第三边。
16.推论三角形两边的差小于第三边。
17.三角形内角和定理三角形三个内角的和等于180°。
18.推论1直角三角形的两个锐角互余。
19.推论2三角形的一个外角等于和它不相邻的两个内角的和。
20.推论3三角形的一个外角大于任何一个和它不相邻的内角。
21.全等三角形的对应边、对应角相等。
22.边角边公理有两边和它们的夹角对应相等的两个三角形全等。
23.角边角公理有两角和它们的夹边对应相等的两个三角形全等。
24.推论有两角和其中一角的对边对应相等的两个三角形全等。
25.边边边公理有三边对应相等的两个三角形全等。
辽宁初中数学中考考点篇十二
定理2:到一个角的两边的距离相同的点,在这个角的平分线上。
角的平分线是到角的两边距离相等的所有点的集合。
等腰三角形性质。
等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
对称定理。
定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
定理1:关于某条直线对称的两个图形是全等形。
定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
直角三角形定理。
定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
判定定理:直角三角形斜边上的中线等于斜边上的一半。

一键复制