无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
找因数教学设计五上北师大版篇一
教材分两段:
例1教学公倍数和最小公倍数的认识,例2教学求两个自然数的公倍数和最小公倍数;
例3教学公因数和最大公因数的认识,例4教学求两个自然数的公因数和最大公因数。
安排了实践与综合应用“数字与信息”。
1.借助操作活动,经历概念的形成过程。
以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。
这样安排有两点好处:
一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;
二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。
以公倍数为例,教学时应让学生经历下面几个环节:
第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。
第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。
第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。
第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是“既是……又是……”即“公有”。
第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。在此基础上,教材注意借助直观的集合图显示公倍数的意义。公因数的教学同样如此。
为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。
2.提倡思考方法多样化,找公倍数和公因数。
课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。
不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:
二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。以求8和12的公因数为例,学生可能会分别写出8和12的所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或着先找出12的因数,再从中找出8的因数。
在找出公倍数或公因数之后,还应引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的数表示的意义,体会初步的集合思想。
对于两个数有特殊关系时的最小公倍数和最大公因数,教材在练习中安排,引导学生探索简单的规律。由于教材不讲互质数,所以两个互质数的最小公倍数是它们的乘积,最大公因数是1这样的结论不要出现,只要求学生在具体的对象中感受。
为了拓宽学生对求最小公倍数和最大公因数方法的认识,教材在“你知道吗”栏目里介绍了“辗转相除法”求最大公因数和用短除法求最大公因数和最小公倍数,并介绍了两个数的最大公因数和最小公倍数的符号表示。教学时,可以让学生结合阅读进行思考。必要时,教师可以进行简单的讲解。
3.通过调查、交流和尝试,感受数在表达信息中的作用。
教学“数字与信息”这一实践与综合应用时,应注意引导学生通过调查和交流参与活动,感受数字在表达信息中的作用。
课前调查的内容有:
(1)110、112、114、120等特殊电话号码是什么号码;
(2)自己所在学校和家庭居住地的邮政编码;
(3)自己家庭成员的出生日期和身份证号码;
(4)生活中用常见的数字编码表达信息的例子;
(5)自己学籍卡上的学籍号。课后调查的内容有:
(1)去邮局调查有关邮政编码的其他信息;
(2)生活中还有哪些常见的数字编码。教学时,应引导学生充分开展交流活动:比如,为什么有些编号的开头是0?怎样从身份证中看出一个人出生的日期?身份证上的数字编码有哪些用处?等等。
在此基础上,教材在“做一做”中让学生结合实际问题,尝试用数字编码表达信息。比如,为某宾馆的两幢客房大楼的房间编号,为一年级新生编号,还安排了与方位和距离联系的问题,用编码表示家大约在学校的什么位置。
教学时,可以根据需要和时间情况,灵活安排教学时间。
找因数教学设计五上北师大版篇二
一、教学目标:
1、 结合具体的生活情景理解公因数和最大公因数的含义,并能正确地求出两个数的公因数和最大公因数。
2、 经历用多样化的方法找公因数的过程,提高解决问题的灵活性。
3、 能根据两个数的不同关系灵活的求两个数的最大公因数。
二、教学重点:掌握求公因数的方法
教学难点:结合实际理解公因数的含义。
四、教学过程:
(一)、复习引入
1、说说30的因数,是怎么求的
(二)、深入理解公因数的含义
可以选边长是多少的正方形呢? 怎么铺? 课件演示
2、还有哪些正方形呢? 我们来动手找一找吧
方老师给每个组准备了两个长18厘米,宽12厘米的长方形代表储藏室,同学们也准备了大小不同的正方形代表瓷砖,你可以用它铺一铺,也可以想其他的办法。
学生动手实践,然后交流
3、反馈 你们找出的结果是什么
边长时1分米,2分米,3分米。6分米的正方形可以刚好铺满.课件演示
边长是4分米的正方形可以密铺吗?为什么?
4、 所以你认为正方形的边长与长方形的长、宽有什么关系?
正方形的边长既是长的因数,又是宽的因数,是长和宽的公因数
5、我们经过寻找发现18和12的公因数有哪些?
6、如果要使铺的块数最少,应选哪一种?它是12和18的最大公因数
7、如果用几何圈表示,你会吗?
12的因数 18的因数
12和18的公因数
(三)、找两个数的公因数和最大公因数
1、现在换成27和18,你能找出它们的公因数和最大公因数吗?请试一试。先独立找,在到小组里进行交流。
2、反馈。先分别罗列出两个数的因数,在找共同的的因数
先列出一个数的因数,在从这个数的因数中找另一个数的因数。
3、你觉得哪种方法比较简便?
4、观察一下,它们的公因数和最大公因数之间有什么关系?
(四)、练习
1、填一填
(1)、8和16的公因数 ,最大公因数是
(2)、15和50的最大公因数是
(3)、5和7的最大公因数
做完后小结和揭题
2、介绍用分解质因数和短除法的方法求最大公因数
3、找出下列各数的公因数和最大公因数
4和8 16和32 1和7 8和9
你有什么发现?
4、做练习十五第4题和第8题
一、教学设计意图
公因数和最大公因数是本册教材的重要教学内容,学生的认知起点是对因数和倍数的认识,并学会找一个数的因数和倍数,为后续的通分和异分母分数加减法做基础。相对来说用罗列的方法来找公因数和最大公因数从学习技能上说比较简单,对学生来说难度不大,所以整节课的难点在于理解公因数和最大公因数的意义,特别是结合实际理解意义,很多学生单纯的找两个数的公因数和最大公因数没有问题,可是结合实际去求,或者根据分解质因数来求学生难度就有一定的难度,很多程度上是属于机械的技能训练,熟能生巧,从学生的思维上看发展是不利的。短除法和用分解质因数求公因数和最大公因数的方法作为介绍来出现。新课程在这节课的处理上与旧教材有很大的不同,其一是意义和求法在一节课完成,其二是降低了难度,教材只要求用罗列的方法来求公因数和最大公因数,分解质因数法作为一种方法进行介绍,如何在降低技能要求的前提下提高学生的思维水平是我在备课是思考的。所以整节课的教学设计我主要体现两点思路。一是从生活实际出发理解公因数和最大公因数的意义,并在此基础上通过实践活动或自己的认识基础探讨求出公因数和最大公因数的方法;二是重点定位在通过不同罗列方法寻找公因数和最大公因数,在此基础上介绍短除法和分解质因数法,培养学生思维的灵活性。
2、教学节奏快,教学容量大,比较扎实
3、学生学习习惯好
4、教学中的闪光点可以放得更大,给学生提供思维的空间,教师不要过快作评价,抓住课堂生成,让大家辩一辩,理解更深刻一点。
主要问题环节:3、找出下列各数的公因数和最大公因数
4和8 16和32 1和7 8和9
你有什么发现?
当学生说两数一奇一偶,那么这两数的公因数就是1时,老师没有给学生思考、辩论的空间,马上举了一个反例6和9进行反驳,对大部分学生来说理解是不透彻的,而且这也是学生的一个共性问题。
5、 还可以更大气一点,给学生思考的空间更大一点。主要例题环节,两个问题可以一起放下去:“可以剪成边长是多少分米的正方形?你是怎么想的?”动手操作的环节可以取消,让学生通过想象、思维分析来解决,课前的学号游戏也可以取消。 步子可以放得大一点。
三、课后反思:
宋老师的评课让我有柳暗花明更一村的感觉。要想班中的尖子生能跳出来,给孩子提供充分的思维空间非常重要,不要用教学上的小步子来限制学生的思维,对学生的错误要勇敢对待。给孩子充分的反思和辩论的空间,让孩子越变越明,让孩子评价在前,老师评价在后。
可以修改的环节:1、课前通过学号感知环节删去,和后面的例题有一定的 重复。
2、例题环节两个问题可以一起问,给孩子更大的思考空间。学习的过程是一个悟的过程,可以选择边长是几的正方形的呢?你是怎样想的?学生在得到结论的过程中,其思考的过程的就是对意义的感悟的过程,孩子能通过自己的思考方式得出结论,也就找到了求公因数和最大公因数的方法,那么下一个环节让学生直接求两个数的公因数和最大公因数也就没有难度了,而且学生中也能出项用不同的方法来求,方法不会那么单一。当然完全屏弃动手操作我还有我的想法,可以分不同的层次采取不同的方法,“可以选择边长是多少分米的正方形呢?你可以利用手中的学习工具解决这个问题,再想想找出来的边长和长方形的长和宽有什么关系。也可以不用学习工具,请说说你是怎么想的?”这样不同层度的孩子提供不同的学习方式,成一个互相补充、验证的过程。
找因数教学设计五上北师大版篇三
一、教学目标
(一)知识与技能
理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。
(二)过程与方法
通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。
(三)情感态度和价值观
在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。
二、教学重难点
教学重点:理解因数和倍数的含义。
教学难点:自主探索有序地找一个数的因数和倍数的方法。
三、教学准备
教学课件。
四、教学过程
(一)理解因数和倍数的意义
教学例1:
1.观察算式的特点,进行分类。
(1)仔细观察算式的特点,你能把这些算式分类吗?
(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)
第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。
2.明确因数和倍数的意义。
(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。
(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?
(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。
【设计意图】引导学生从“整数的除法算式”中认识因数和倍数的意义,简洁明了,同时为学习因数和倍数的依存关系进行有效铺垫。
3.理解因数和倍数的依存关系。
(1)独立完成教材第5页“做一做”。
(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?
【设计意图】引导学生在理解的基础上进行正确表述:因数和倍数是相互依存的,不是单独存在的。我们不能说4是因数,24是倍数,而应该说4是24的因数,24是4的倍数。
4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。
(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?
课件出示:
乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。
(2)今天学的“倍数”与以前的“倍”又有什么不同呢?
“倍数”是相对于“因数”而言的,只适用于整数;而“倍”适用于小数、分数、整数。
(3)交流汇报。
【设计意图】“一个数的因数和倍数”与学生已学过的乘法算式中的“因数”以及“倍”的概念既有联系又有区别,学生比较容易混淆,这也是学习一个数的“因数”和“倍数”意义的难点。通过观察、对比、交流,引导学生发现一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。
(二)找一个数的因数
教学例2:
1.探究找18的因数的方法。
(1)18的因数有哪些?你是怎么找的?
(2)交流方法。
预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。
因为18÷1=18,所以1和18是18的因数。
因为18÷2=9,所以2和9是18的因数。
因为18÷3=6,所以3和6是18的因数。
方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。
因为1×18=18,所以1和18是18的因数。
因为2×9=18,所以2和9是18的因数。
因为3×6=18,所以3和6是18的`因数。
2.明确18的因数的表示方法。
(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?
(2)交流方法。
预设:列举法,18的因数有:1,2,3,6,9,18。
图示法(如下图所示)。
3.练习找一个数的因数。
(1)你能找出30的因数有哪些吗?36的因数呢?
(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?
【设计意图】让学生通过自主探索、交流,获得找一个数的因数的不同方法,在练习中体会“一对一对”有序地找一个数的因数,避免遗漏或重复。初步感受一个数的因数的个数是有限的,以及“最大因数、最小因数”的特征。
(三)找一个数的倍数
教学例3:
1.探究找2的倍数的方法。
(1)2的倍数有哪些?你是怎么找的?
(2)交流方法。
预设:方法一:利用除法算式找2的倍数。
因为2÷2=1,所以2是2的倍数。
因为4÷2=2,所以4是2的倍数。
因为6÷2=3,所以6是2的倍数。……
方法二:利用乘法算式找2的倍数。
因为2×1=2,所以2是2的倍数。
因为2×2=4,所以4是2的倍数。
因为2×3=6,所以6是2的倍数。……
(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?
(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、图示法)
2.练习找一个数的倍数。
你能找出3的倍数有哪些吗?5的倍数呢?
【设计意图】在理解“倍数”的基础上,让学生进一步体会有序思考的必要性。初步感受一个数的倍数的个数是无限的,以及“最小倍数”的特征。
(四)一个数的因数与倍数的特征
1.从前面找因数和倍数的过程中,你有什么发现?
2.讨论交流。
3.归纳总结。
预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。
(五)巩固练习
1.课件出示教材第7页练习二第1题。
(1)想一想,怎样找不会遗漏、不会重复?
(2)哪些数既是36的因数,也是60的因数?
【设计意图】通过练习,让学生再次体会“1是所有非零自然数的因数”“一个数最大的因数是它本身”和“一个数的因数的个数是有限的”。同时,渗透两个数的“公因数”的意义。
2.课件出示教材第7页练习二第3题。
(1)学生独立完成,交流答案。
(2)思考:5的倍数有什么特征?
【设计意图】渗透5的倍数的特征。
3.课件出示教材第7页练习二第5题。
(1)学生独立完成,交流答案。
(2)你能改正错误的说法吗?
(六)全课总结,交流收获
这节课我们学了哪些知识?你有什么收获?
找因数教学设计五上北师大版篇四
教材分析:
这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。
了解学生:
学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。
教学目标:
1、知识技能:(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。
3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。
教学重点:学会求一个数的因数或倍数的方法。
教学难点:理解和掌握因数和倍数的概念。
教学准备:课件、作业纸。
教学过程:
一、创设情境——找朋友
1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)
2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)
学生完整叙述:“××是 李老师的朋友,李老师是××的朋友”。
3、引入新课:同学们说的很好,那能不能说老师是朋友,××是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)
二、探究新知
1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的乘法算式表示出排列的方法。
学生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
课件出示相应的图和算式。
2、揭示概念:以2×6=12为例。
边说边板书:( )是12的因数,( )是12的因数;
12是( )的倍数,12是( )的倍数。
学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)
突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)
3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。
学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)
找因数教学设计五上北师大版篇五
教学过程:
一、认识倍数和因数
生:1×12
师:猜猜看,他每排摆了几个,摆了几排?
生:12个,摆了一排。
生:三四十二
生齐:2×6
师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。
师板书:因数和倍数
师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行?
师:谁先来?
生说略
师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?
生:12是12的因数,12是12的倍数。
生:自然数
师:而且谁得除外。
生:0
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。
3、5、18、20、36
生说略。
二、探索找因数倍数的方法
生1:3、18
师:还有谁?
生2:36
师:3、18、36都是36的因数,只有这3个吗?
生1:1
生2:4
生3:6
师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。
学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为a、b、c师板书。
a:2、4、13、12、18、36
b:1、2、4、3、6、9、12、18、36
c:1、36、2、18、3、12、4、9、6
师:关于a这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。
生1:都对的
师:有没有道理?看来要找一个人的优点挺困难的。
生2:写全了
生大声说:没有!
生:没有写全,少了3、6、9。
生:36÷4,只写了4,没写9
师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?
生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。
师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。
师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。
生:大小没有排,b大小排完后从小到大很舒服。
师:你看你那个舒服吗?
生:舒服
师:正是因为你的质疑,他把方法说了出来。他用了什么?
生:乘法口诀
师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
生1:找到开始重复就不找了
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20
生齐:1、2、4、5、10、20
再试一个:15,写在练习纸上。学生汇报
师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。
生:21、300
师:你能把3的倍数全部写下来吗?
生:不能。太多太多了。
师:那怎么办?写不完可以用省略号表示。试试看。
学生练习纸上完成,汇报。
师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?
生1:3×1、3×2
找因数教学设计五上北师大版篇六
江苏省兴化市楚水小学 袁世斌 225700 【教学内容】
在学习本单元之前,学生已经较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。这节课将引领学生从一个新的角度(即倍数和因数的角度)来研究非零自然数的特征及其相互关系,为学生进一步学习数的分类、公倍数和公因数以及分数的约分、通分等奠定基础。
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
理解倍数和因数的意义 【教学难点】
掌握找一个数的倍数和因数的方法 【设计理念】
1、从学生熟悉的生活入手。首先和学生交流生活中人与人的关系,自然过渡到自然数中数与数之间的关系。并由猜老师的年龄,引入倍数的概念以及找一个数倍数的方法。
2、从学生的操作入手。由浅入深,由无序到有序,通过让学生用不同个数的正方形拼成长方形,引入因数的概念,引导学生将数和形有机结合起来,从而有序地找出一个数的所有因数。
一、课前谈话
1、话家常,拉“关系”
是的,在我们生活中人与人之间总会存在着这样那样的关系,而在数字的世界里,数和数之间也会存在各种各样的关系。今天这节课,我们就和大家一起研究两个非零自然数之间的关系。
二、学习倍数的意义
1、猜岁数,引“倍数”
你们为什么异口同声地说我36岁呢?难道只有36是9的倍数吗?
2、按顺序,找倍数
9的倍数除了36还有什么数吗? 能写完吗?为什么?
指出:1倍、2倍往下写,通常只要写出5个,然后用“„„”表示。你能直接写出2的倍数和5的倍数吗? 学生独立书写。
指名回答,板书:2的倍数有2、4、6、8、10、12„„
5的倍数有5、10、15、20、25、30„„ 提问:观察上面的三个例子,你有什么发现?在小组内讨论。
指名汇报,相机出示以下结论:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
三、学习因数的意义
1、初摆图形,感知“因数” 屏幕出示12个同样大小的正方形
根据3х4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。
同学们一起来读一读,感受一下。
请你从1х12=12;2х6=12这两道算式中任选一题,用上面的话说一说。
2、再摆图形,感受“顺序”
学生独立练习后,组织汇报。
根据学生的回答,投影出示相应的拼法,并相机板书:16÷1=16
16÷2=8 16÷4=4
你能结合这道算式,说说谁是谁的倍数,谁是谁的因数吗?
你能连起来说说16的因数有哪些吗?相机板书:16的因数有:1、16、2、8、4 3是不是16的因数,为什么?5呢?明确因倍关系的依据。
3、数形结合,掌握方法
将你找出的36的因数写在练习纸上。
展示学生的作品。36的因数有:1、36、2、18、3、12、4、9、6.将方法优化:根据数形结合的思想,运用除法算式一对一对地找一个数的因数更为简便,并且能够做到不重复、不遗漏。
4、观察思考,发现规律
引导学生观察12的因数、16的因数和36的因数。
提问:观察上面的三个例子,你又有什么发现?在小组内讨论。
明确:1是所有非零自然数的因数。
既然1是所有非零自然数的因数,那么换句话说,也就是所有非零自然数都是1的?(让学生接上说倍数)
四、综合练习,加深理解
2、你猜、我猜、大家猜
1)、茶杯每只4元,我去超市买了一些茶杯,猜猜我可能用了多少元? 让学生尽可能说出不同答案,师适时追问:可能吗?如有错误,要求学生说出错在哪里,明确用去的钱数是4的倍数。
2)、出示边长3厘米的正方形。
a、长24cm、宽8cm
b、长36cm、宽4cm
根据12的因数的个数比16的因数的个数多,引导学生得出并不是数字越大,因数的个数就越多。然后然学学生找出60的所有因数。
五、总结延伸
找因数教学设计五上北师大版篇七
教学目标:
1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。
2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。
教学重点:
求两个数的公因数和最大公因数。
教学难点:
理解求公因数和最大公因数的方法。
教学准备:
小黑板
教学过程:
一、铺垫准备
1.直观演示,作好铺垫。
出示边长6厘米和边长5厘米的两个正方形。
提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?
2.引入新课。
谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。
二、学习新知
1.认识公因数。
(1)出示例9,了解题意。
启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。
交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?
结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3184=4......2)
(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。
找因数教学设计五上北师大版篇八
教学内容:
青岛版数学四年级下册第七单元分数加减法信息窗一
教学目标:
1、在合作探究活动中了解公因数和最大公因数的意义,能用列举法和短除法找出100以内两个数的公因数和最大公因数。
2、会在集合图中表示两个数的因数和它们的公因数,体会数形结合的数学思想。
3、在探索公因数和最大公因数意义的过程中,经历列举、观察、归纳等数学活动,进一步发展初步的推理能力。感受数学思考的条理性,体验学习的乐趣。
教学重点:
理解公因数和最大公因数的意义,掌握求两个数公因数和最大公因数的方法。
教学难点:
理解用短除法求最大公因数的算理。
评价任务设计:
1、教师对学生能够利用列举法、短除法找公因数和最大公因数学习情况的评价。
2、教师对学生在学习活动中体会数形结合思想的评价。
3、教师对学生参与学习活动的评价,及时评价不同水平的学生参与学习活动的实际表现。
教学过程:
一、复习导入
师:昨天,老师布置了这样一项课前作业。
师:谁能拿着你的作业到前面来说一说你是怎样分的?(指名答)
师:这个同学把自己的想法表达的非常清楚,我们再来看看他是怎么分的。(课件演示)
问:还有不同分法吗?(生答师演示)
师:其他同学还有不同意见吗?
同位互相看一看各自是怎样分的,交流一下自己的想法!
二、认识公因数和最大公因数
1、教学公因数和最大公因数的意义,总结列举法
师:这些小正方形的边长1、2、3、6与长方形的长24和宽18之间有什么关系啊?
生:1、2、3、6是18的因数也是24的因数。
师:我们把18和24的因数都找出来,对比着看一看吧!
师:谁能快速找出18的因数?24的因数又有哪些呢?(指名说)
师:对比观察18和24的因数,你有什么发现?
生:它们的因数中都有1、2、3、6、
师:看来,这和我们刚才的想法是一样的,1、2、3、6既是18的因数,也是24的因数,我们就把1、2、3、6叫做18和24的公因数。
师:公因数中哪个最大啊?生:6最大
师:我们就把6叫做18和24的最大公因数。
师:其实在前面的课前作业中,小正方形的边长就是长方形长与宽的公因数。今天这节课,我们就来研究公因数和最大公因数。
2、教学集合圈
师:为了让大家更直观的看出它们的关系,我们还可以用集合圈的形式表示出来。
24的因数
18的因数
【课件出示】
123612346
91881224
师:左边的集合圈表示的是18的因数,右边的集合圈表示的是24的因数、因为它们有公因数1、2、3、6,所以我们就把两个集合圈合在一起。
问1:现在你知道左边这一部分表示的什么吗?(指名答)
师:下面请同位互相说一说集合圈中每一部分表示什么。
师小结。
师:现在给你一个集合圈你会填了吗?
师:看到这道题你能不能直接填呢?那应该先怎么办?
生:先找到16和28的因数和公因数,再填集合圈。
师:请同学们先在作业纸上列举出16和28的因数,再填集合圈。
(生独立完成,师巡视)
展示与评价
师:谁来说一说你是怎么填的?(指名汇报)
给大家说说你先填的什么?又填的什么?
指名说一说,及时评价。
师:我们再来看看这位同学的作业。
师:同位互相检查一下,不对的改正过来。
三、认识短除法
1、讲解短除法
师:请大家先把18和24分解质因数。
师:谁来说说你分解质因数的结果?
师:请同学们仔细观察这两个式子,你有什么发现?
生:我发现它们都有质因数2和3、
师:根据这个发现我们就可以把两个短除式合并在一起,用短除法来求18和24的最大公因数。
师边板书边讲解……
师:最后把所有的除数连乘起来,就能得到18和24的最大公因数了。
问:现在谁能说说我们是怎样用短除法求18和24的最大公因数呢?(指名学生说一说)
2、练一练
师:下面请你用这种方法求下面每组数的最大公因数,快速的完成在你的作业纸上!
师:谁来说说你是怎么做的?(指名学生展示汇报)
问:你认为他做的怎么样?
四、练习与应用
1、练一练(苏教版p27t1)
师:接下来你能用今天所学的知识解决下面这个问题吗?(课件出示)把它完成在你的作业纸上!
展示汇报
师:我们在找两个数的公因数和最大公因数的时候,除了列举法和短除法以外,我们还可以用这种方法(课件演示、介绍)
2、扎花束
师:同学们!春季运动会马上就要到了,学校花束队买来了两种颜色的花准备来扎花束。(课件出示,师读题目要求)
问:同学们想一想这道题其实在求什么?
师:选择自己喜欢的方法把它完成在练习本上。
问:大家一起告诉我最多能扎多少束?这样每一束花里面有几朵红花?几朵黄花呢?
2、数学知识
师:同学们!早在很久以前,我国古代的数学家就已经在研究我们今天所学的知识了!
五、课堂总结:通过这节课的学习你有哪些收获?
找因数教学设计五上北师大版篇九
1、理解和掌握因数和倍数的概念,认识他们之间的联系和区别。
2、学会求一个数的因数或倍数的方法,能够熟练的求出一个数的因数或倍数。
3、知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
掌握找一个数的因数和倍数的方法。
理解和掌握因数和倍数的概念。
课件
师:我和你们的关系是
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。是啊,人与人之间的关系是相互的。再比如:我们班的曹雪飞与贺正博之间是同桌关系,他们之间的关系是相互依存的,不能单独存在,我们可以说曹雪飞是贺正博的同桌,或者说贺正博是曹雪飞的同桌,而不能说曹雪飞是同桌!在数学王国里,在整数乘法中也存在着这样相互依存的关系,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
(设计意图:先让学生体会关系,再通过同桌关系让学生体会相互依存,不能独立存在,进而为因数与倍数的相互依存关系打下基础。)
(一)1、出示主题图,仔细观察,你得到了哪些数学信息?
学生说:图上有两行飞机,每行六架,一共有12架。(注意培养学生提取数学信息的能力和语言表达能力,即:数学语言要求简练严谨)
教师:你们能够用乘法算式表示出来吗?
学生说出算式,教师板书:2×6=12
2.出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
(注:由乘法算式理解因数和倍数相互依存,不能独立存在。)
3.教师出示图2:师:根据图上的内容,可以写出怎样的算式?
3×4=12
从这道算式中,你知道谁是谁的因数?谁是谁的倍数吗?(让学生自己说一说,进而加深因数倍数关系的认识。)
教师小结:因数和倍数是相互依存的,为了方便,我们在研究因数与倍数时,我们所说的数是整数,一般不包括0.
4、师:谁来说一道乘法算式考考大家。
(指名生说一说)
5、让其他学生来说一说谁是谁的因数谁是谁的倍数。
(注:可以让几位学生互相说一说。)
6、看来都难不住你们,那老师来考考你们:18÷3=6在这道算式中,谁来说说谁是谁的因数谁是谁的倍数。
(设计意图:18÷3=6是为了培养学生思维的逆向性)
(二)找因数:
出示例1:18的因数有哪几个?
注意:请同学们四人以小组讨论,在找18的因数中如何做到不重复,不遗漏。
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
师:18和36的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
请同学们观察一个数的因数有什么特点。
在教师引导下,学生总结出:任何一个数的因数,最小的一定是(),而最大的一定是(),因数的个数是有限的。
(设计意图:培养学生探索、归纳、总结、概括的能力。)
3、其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数
1、2、3、6、9、18
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(三)找倍数:
1、我们学会找一个数的因数了,那如何找一个数的倍数呢?2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的?
(生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?最大的你能找到吗?
2、再找3和5的倍数。
3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?让学生观察2、3、5的倍数,说一说一个数的倍数有什么特点。
学生试着总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
通过今天这节课的学习,你有什么收获?
学生汇报这节课的学习所得。
2、教材第15页练习二第1题。组织学生独立完成,然后在小组中互相交流检查。
找因数教学设计五上北师大版篇十
教学内容:青岛版教材小学数学五年级上册88—91页。
教学目标:
1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。
2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。
教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。
教学难点:探索求一个数因数或倍数的方法。
教具准备:多媒体课件、学生练习题
教学过程:
一、谈话导入。
师:同学们看这是什么?
生:小正方形。
师:想不想知道王老师给大家带来了多少个这样的小正方形?
生:想。
师:多少个?
生:12个。
师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?
生:能。
【设计意图】:以学生熟悉情景引入,激发学生的好奇心。
二、教学因数和倍数的意义
师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?
生:好!
学生汇报:
生1:1×12=12
师:他是怎么摆的?
生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。
课件出示摆法。
师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)
生2:2×6=12
师:猜一猜他是在怎么摆的?
生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。
师:这两种情况,我们也算一种。
生3:3×4=12
师:他又是怎么摆的?
生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。
师:还有其他摆法吗?
生:没有了。
师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)
2.教学“因数和倍数”的意义。
师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。
学生汇报:任选一道回答。
生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。
师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。
师:还有一道算式,谁来说一说?
生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。
师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。
师:通过刚才的练习,你有没有发现12的因数一共有哪些?(生边说老师边有序的用课件出示12的所有的因数。)
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。
3、5、18、20、36
【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。
三、教学寻找因数的方法。
1、找一个数的因数。
师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?
生:有。
师:老师提个要求:
1)、可以独立完成,也可以同桌交流。
2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。
2、探索交流找一个数的因数的方法。
找一名有代表性的作业板书在黑板上。
师:他找对了吗?
生:没有,漏下了一对。
师:为什么会漏掉?仅仅是因为粗心吗?
生:不是,他没有按照一定的顺序找!
师:那么要找到36所有的因数关键是什么?
生:有序。
师生共同边说边有序的把36的所有的因数板书出来。师:还有问题吗?
生:没有了。
生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?
生:再接着找就重复了。
师:那么找到什么时候就不找了?
生:找到重复了,就不在往下找了。
师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。
师:有失误的学生对自己的错误进行调整。
3、巩固练习。
找出下面各数的因数。
4、寻找一个数的因数的特点。
【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。
四、教学寻找倍数的方法。
1、找一个数的倍数。
生:能!
师:试试看,找个小的可以吗?
生:行!
师:找一下3的倍数。30秒时间,把答案写在练习纸上。??
师:有什么问题吗?
生:老师,写不完。
师:为什么写不完?
生:有很多个!
师:那怎么才能全都表示出来呢?
生:可以加省略号。
师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?
师:谁能总结一下你是怎样找到的?
生:从小到大依次乘自然数。
师:你真会思考!
课件出示3的倍数。
2、找5、7的倍数。
师:我们再来练习找一下5的倍数。
生:5的倍数有:5、10、15、20、25??
生:7的倍数有:7、14、21、28、35??
师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?
生:能!
学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。
四、知识拓展
认识“完美数”。
师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。
小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。
【设计意图】丰富学生的知识,陶冶学生的情操。
教学反思:
找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。
找因数教学设计五上北师大版篇十一
( )是( )的因数; ()是( )的倍数,
( )是( )的倍数; ( )是( )的因数;
( )是( )的倍数。 ()是( )的倍数;
(评价:哪个组的同学都做对了,真是好样的!)
4、明确范围:打开书12页明确因数倍数的范围。
学生齐读:为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。
师板书:整数、不包括“0”。
三、找一个数的因数
1、师:通过这些乘法算式,我们找到了12的一些因数,谁能说一说12的因数有哪些?
学生说出,12的因数有6,2,4,3,1,12。
2、师:找完了吗?怎样就能不重复、不遗漏,找到所有的因数?
学生可能说出:依据乘法算式,有序的找。(评价:有序的思考是我们数学中一种很重要的思维方式,这位同学很了不起,你们学会了吗?谁还能再说一说这种方法)
找因数教学设计五上北师大版篇十二
反思本课教学,我认为教师做的比较成功的地方有以下几个方面:
一、复习和新知的传授能够联系学生的学习、生活实际。
首先教师让每个学生把自己的学号别在胸前,本节课的教学围绕学号展开,也就是借助学号这个载体,让学生复习质数和合数的概念,同时在教学最大公因数概念的时候,也是借助学号完成的,这样的设计联系了学生实际,借助学生最熟悉的学号这个载体,完成了从旧知到新知的过渡,符合学生的`认知规律,同时也有助于学生对新知的理解。
二、教师注重创设情境、激起学生的认知冲突来揭示新知。在这个环节中,教师让12的所有因数和18的所有因数同时到前面来站好,当学生找不到位置的时候,教师引导全体同学作裁判,这些同学应该站在什么位置?从而来揭示出公因数和最大公因数。这种情境的创设符合学生的认知规律,调整了学习节奏和精神状态,对学生探索、构建新知起着积极的推动作用。同时可以激发矛盾,突出知识的生长点,唤起学生思考和解决问题的激情。在这个前提下“公因数”和“最大因约数”的概念就水到渠成了。
三、课堂教学中体现了精讲多练。
本节课,教师从复习导入到新知结束,只用了不足15分钟。余下的时间学生做练习,学生自主练习的时间比较长。学生在练习的过程中不断探索、不断发现规律。练习的设计主要是体现分层次教学,让学生在分层次的练习活动中探索并掌握求两个数最大公因数的方法,掌握这些规律,有助于学生今后求最大公因数的速度和正确率。练习容量比较大,有助于学生更好的达到本节课的教学目标。

一键复制