心得体会是对所经历的事物的理解和领悟的一种表达方式,是对自身成长和发展的一种反思和总结。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面我给大家整理了一些心得体会范文,希望能够帮助到大家。
数学建模心得体会总结篇一
数学建模是一门综合运用数学知识和技巧来解决实际问题的学科。通过参加数学建模比赛,我深刻体会到了数学建模的魅力和挑战。在这个过程中,我获得了许多宝贵的心得体会。首先,数学建模需要全面的数学知识和技能,并且要灵活运用。其次,合理的建模思路和方法非常重要。此外,良好的团队合作能力和沟通能力也是数学建模过程中不可或缺的要素。最后,数学建模是一个不断学习和提升的过程,要持续保持兴趣和坚持努力。
数学建模的一个重要特点就是需要全面的数学知识和技能,尤其需要数学分析、计算数学和概率统计等多个学科的融汇贯通。在数学建模比赛中,我们经常需要利用微积分、线性代数以及离散数学等多个数学分支的知识来解决实际问题。同时,数学建模还需要数值计算和编程技能。比如,在解决优化问题时,我们需要编写程序实现算法的求解。因此,扎实的数学基础和灵活运用数学方法的能力是非常重要的。
数学建模的另一个关键是合理的建模思路和方法。在面对实际问题时,我们需要将问题进行抽象和建模,找出核心变量和关系,并根据问题的特点选择合适的建模方法。在建模过程中,我们需要做出一系列的假设和简化,以便于问题的求解。同时,我们还需要检验模型的有效性和可行性,对模型进行调整和改进。因此,良好的建模思路和方法是数学建模过程中取得成功的关键。
在数学建模中,团队合作能力和沟通能力也是非常重要的。数学建模比赛通常以小组形式进行,团队合作是必不可少的。在合作过程中,每个人需要根据自己的专长和兴趣来分工合作,同时要与其他成员保持良好的沟通和协调。由于每个人的思维和角度不同,团队成员之间的讨论和交流能够促进解题思路的完善和提高。此外,团队成员之间的互相支持和鼓励也能够增强团队的凝聚力和信心。
最后,数学建模是一个不断学习和提升的过程。在比赛中,我们需要面对各种不同类型的问题,需要学习和运用新的数学方法和技巧。同时,数学建模比赛的要求也在不断提高,要求参赛者具备更高的数学水平和更深入的数学思维。因此,持续保持兴趣和坚持努力是非常重要的。在这个过程中,我们会不断发现自己的不足和不完善之处,进一步提高自己的能力和素质。
总之,通过参加数学建模比赛,我深刻体会到了数学建模的魅力和挑战。数学建模需要全面的数学知识和技能,并且要灵活运用。合理的建模思路和方法非常重要。团队合作能力和沟通能力也是数学建模过程中不可或缺的要素。最后,数学建模是一个不断学习和提升的过程,要持续保持兴趣和坚持努力。通过这次经历,我获得了丰富的知识和宝贵的经验,也收获了成长和进步。
数学建模心得体会总结篇二
数学建模是利用数学方法解决实际问题的一种实践应用。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式来表达,建立起数学模型,然后运用先进的数学方法和计算机技术进行求解。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模是在上世纪六七十年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。经过30多年的发展,现在,绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。
大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。
全国大学生数学建模竞赛已成为全国高校规模最大的基础性学科竞赛,创办于1992年,每年一届,目前也是世界上规模最大的数学建模竞赛。20xx年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。
1.模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
2.模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
3.模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
4.模型求解:利用获取的数据资料,对模型的所有参数做出计算。
5.模型分析:对所得的结果进行数学上的分析。
6.模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
7.模型应用:应用方式因问题的性质和建模的目的而异。
数学建模心得体会总结篇三
数学建模是一种将数学问题与实际问题相结合的方法,通过建立数学模型来解决实际问题。在进行数学建模的过程中,我获取了丰富的数学知识和解题技巧,也体会到了数学建模的重要性和难度。在接下来的文章中,我将分享我的数学建模心得体会总结。
首先,数学建模需要坚实的数学基础。在进行数学建模前,我们需要具备扎实的数学基础知识,如函数、微积分、概率论等。只有掌握了这些基础知识,我们才能在实际问题中灵活运用,并构建出准确、可行的数学模型。因此,我在进行数学建模前,会不断补充和巩固数学知识,以保证能够灵活地处理各种实际问题。
其次,数学建模需要灵活的思维方式。在数学建模中,我们需要面对复杂多变的实际问题,并进行抽象化和简化。因此,我们需要具备灵活的思维方式,能够从问题中抓住关键信息,逐步建立数学模型,进行合理的假设和推理。在实际问题中,往往存在多个解决方法和方案,我们需要从不同角度出发,灵活运用数学知识和解题技巧,找到最优的解决方案。
第三,数学建模需要团队合作和沟通能力。数学建模是一个综合性的任务,需要团队成员之间的密切合作和有效沟通。在团队中,我负责的是建模过程中的数学分析和计算部分。我和其他团队成员进行了频繁的讨论和交流,通过互相学习和借鉴,不断改进和完善模型。在团队合作中,我体会到了集思广益的力量,也学会了与他人有效沟通合作的能力。
第四,数学建模需要耐心和毅力。数学建模是一个复杂而繁琐的过程,需要我们进行大量的计算和推导。在建模过程中,我们经常会遇到各种困难和挫折,需要耐心和毅力去解决。我在建模过程中遇到过很多问题,有时候花费了很长时间才找到解决方法。但是,通过不断坚持和努力,最终我都能够找到解决方案,并取得满意的结果。因此,耐心和毅力是进行数学建模必不可少的品质。
最后,数学建模需要不断学习和提升。数学建模是一个动态的过程,需要我们不断地学习和提升自己。在进行数学建模后,我发现自己的数学知识还有很多不足之处,需要不断地学习和探索。我会通过阅读相关文献和教材,参加数学建模的培训和竞赛等方式,来提高自己的数学建模能力和解题技巧。
综上所述,数学建模是一项重要而有挑战性的任务。通过参与数学建模,我不仅从中获取了丰富的数学知识和解题技巧,也锻炼了自己的思维能力和团队合作能力。在今后的学习和工作中,我会继续努力学习,提高自己的数学建模能力,并将数学建模的方法和思维运用到更多实际问题中,为解决现实问题做出贡献。
数学建模心得体会总结篇四
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
2.数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景,在数学模型的应用环节进行比较多的训练;然后逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题;再到独立地解决教师提供的数学应用问题和建模问题;最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。
3.由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。
数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。
数学建模心得体会总结篇五
数学建模是一门综合运用数学知识和计算机技能解决实际问题的学科。通过这门学科的学习和实践,我深切体会到了数学建模的重要性和挑战。在这里,我将总结我的心得体会,以供他人参考。
首先,数学建模需要综合运用各种数学知识。在解决实际问题时,我们需要运用到的数学知识远远超过了课本上所学的内容。我曾经遇到过一个关于城市交通拥堵问题的建模任务,其中涉及到了概率论、线性规划、图论等多个数学部分。在解决问题的过程中,我才发现数学知识是如此的广泛和深奥。因此,数学建模不仅需要我们熟练掌握数学基础知识,还需要我们能够在实际问题中理解并运用多个数学分支的专业知识。
其次,数学建模需要良好的逻辑思维和创造力。解决实际问题是一项复杂的任务,需要我们不断提出假设、分析数据、建立模型,并通过数学分析得出结论。在这个过程中,我们需要运用逻辑思维去理清关系、找到规律,同时还需要发挥创造力,提出新的想法和方法。我记得有一次,我们团队解决一个有关环境保护的问题,我提出了一个较为新颖的数学模型,并得到了良好的结果。这次经历让我明白,在数学建模中,创造力是非常重要的,它能够帮助我们发现问题的本质并得出更好的解决方案。
再次,数学建模需要团队合作和交流。在实际问题中,一个人很难完整地解决所有的细节和步骤。与团队成员共同合作,有助于把问题拆解、分配和解决。我的团队曾经遇到一个关于人口增长预测的任务,我们每个人负责不同的模型构建和数据分析。在合作的过程中,我们互相交流、讨论,结合各自的专业知识和经验,最终得出了准确的预测结果。团队合作不仅可以提高工作效率,还能够从不同角度和专业背景来解决问题,使得结果更加全面和准确。
最后,数学建模是一项需要不断学习和提升的技能。数学建模的知识和技巧都是可以学习和掌握的,但只有通过不断的实践和学习,才能真正掌握这门技能。在我的学习过程中,我参加了各种数学建模竞赛和项目,通过与其他优秀的选手交流和竞争,我不断发现自己的不足,并努力改进和提升自己。数学建模是一门实践性很强的学科,需要我们不断地学习新的技术和方法,并不断反思和总结自己的经验。
总之,数学建模是一门需要广博的数学知识、良好的逻辑思维和创造力的学科。通过团队合作和不断学习提升,我们能够更好地解决实际问题,并得出准确的结论。数学建模的学习经历让我深刻体会到了数学的魅力和广阔,我相信在今后的学习和工作中,数学建模将继续起到重要的作用。
数学建模心得体会总结篇六
本文目录- 数学建模心得体会
- 数学建模学习心得体会
- 数学建模心得体会
通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。
知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。
实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。
探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。
数学建模心得体会2篇 | 返回目录刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。
数学建模心得体会3篇 | 返回目录一年一度的全国数学建模大赛在今年的9 月21 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1. 团队精神:
团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2. 有影响力的leader:
在比赛中,leader 是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader 不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a 题,有人想做b 题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader 应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3. 合理的时间安排:
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4. 正确的论文格式:
论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6 要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5. 论文的写作:
我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)
以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质,也希望广大同学能够积极参与到这项活动当中来。
数学建模心得体会总结篇七
一年一度的全国数学建模大赛在今年的x月x日上午8点拉开战幕,各队将在3天72小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1.团队精神:团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2.有影响力的leader:在比赛中,leader是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a题,有人想做b题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3.合理的时间安排:做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4.正确的论文格式:论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5.论文的写作:我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)
(3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)
(4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
(5)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
(6)最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
(7)网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
(8)一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
(9)数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
(10)图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)

一键复制