范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
探索图形教学反思与评价探索图形教学反思篇一
1、给学生观察和思考的时间。所以我把探索图形中的问题,提前布置给大家,让学生在课前完成课本第44页的表格。
2、可以让学生借助一定的工具进行观察,例如借助常见的魔方(三阶魔方或者四阶魔方),直观地进行观察、探究。
3、给学生充分的自信。不要急于评判学生的答案对错,对于探究问题,我们最主要的是让学生体验探索过程,掌握解决问题的方法,孩子们不可能自己在家看看就会了,我们要引导学生进入学习,喜欢上探究问题,而不全是评判答案的对错。
4、温故而知新。在课程刚开始,对正方体的知识进行复习,明确顶点、棱、面的概念和特点,棱长为1的小正方体组成大正方体问题,为后面的探索过程提供思路。三面涂色的小正方体在大正方体的顶点处,两面涂色的小正方体在12条棱的中间,一面涂色的小正方体在6个面的中间,没有涂色的小正方体在大正方体的中间。
5、在探究过程中,让学生产生分类思考的思想,因为对于每一个图形来说,都要考虑三面、两面、一面、没有面涂色的问题,有点混乱,如果我们就3、4、5号图形同时分析三面涂色、两面涂色问题、一面涂色问题和没有面涂色问题,是不是就有可比性,也就有了规律可循。
6、注重学生的语言素养的培养,重点是语言组织能力的培养。在归纳总结三面涂色的小正方的位置时,不少学生脱口而出“三面涂色的小正方体在大正方体的四个角上。”“四个角”说明孩子们的思维还是停留在日常的经验层面,没有上升到数学的角度看问题,尤其是学会用相关的知识进行解释,在本题中应该从正方体的知识上进行解释,“角”用“顶点”描述更加准确,“四个角?”“四个顶点?”自然而然也就更正为“八个顶点”,叙述完整:三面涂色的小正方体在大正方体的八个顶点处,一共有八个。
7、运用微课,增加趣味性,也能通过视频将大正方体进行剖开,让学生直观地对没有面涂色等问题进行观察和探索,解决问题。
8、有点遗憾:一、时间把控上,因为是综合与实践课,需要探索和归纳总结,30分钟的时间不够充分,我在课堂把控上,没有较好的利用,有时会不自觉地重复一句话或是一个问题,希望在以后的.教学中,多自省,把课备好,更加熟练教学环节,努力做到不讲废话,让每一个问题问的有意义,让每一句话、指令学生都能听懂。二、没有问“有没有有四面、五面涂色的小正方体呢?当时直接进行的总结。
探索图形教学反思与评价探索图形教学反思篇二
1、给学生观察和思考的时间。所以我把探索图形中的问题,提前布置给大家,让学生在课前完成课本第44页的表格。
2、可以让学生借助一定的工具进行观察,例如借助常见的魔方(三阶魔方或者四阶魔方),直观地进行观察、探究。
3、给学生充分的自信。不要急于评判学生的答案对错,对于探究问题,我们最主要的是让学生体验探索过程,掌握解决问题的方法,孩子们不可能自己在家看看就会了,我们要引导学生进入学习,喜欢上探究问题,而不全是评判答案的对错。
4、温故而知新。在课程刚开始,对正方体的知识进行复习,明确顶点、棱、面的概念和特点,棱长为1的小正方体组成大正方体问题,为后面的探索过程提供思路。三面涂色的小正方体在大正方体的顶点处,两面涂色的小正方体在12条棱的中间,一面涂色的小正方体在6个面的中间,没有涂色的小正方体在大正方体的中间。
5、在探究过程中,让学生产生分类思考的思想,因为对于每一个图形来说,都要考虑三面、两面、一面、没有面涂色的问题,有点混乱,如果我们就3、4、5号图形同时分析三面涂色、两面涂色问题、一面涂色问题和没有面涂色问题,是不是就有可比性,也就有了规律可循。
6、注重学生的语言素养的培养,重点是语言组织能力的培养。在归纳总结三面涂色的小正方的位置时,不少学生脱口而出“三面涂色的小正方体在大正方体的四个角上。”“四个角”说明孩子们的思维还是停留在日常的经验层面,没有上升到数学的角度看问题,尤其是学会用相关的知识进行解释,在本题中应该从正方体的知识上进行解释,“角”用“顶点”描述更加准确,“四个角?”“四个顶点?”自然而然也就更正为“八个顶点”,叙述完整:三面涂色的小正方体在大正方体的八个顶点处,一共有八个。
7、运用微课,增加趣味性,也能通过视频将大正方体进行剖开,让学生直观地对没有面涂色等问题进行观察和探索,解决问题。
8、有点遗憾:一、时间把控上,因为是综合与实践课,需要探索和归纳总结,30分钟的时间不够充分,我在课堂把控上,没有较好的利用,有时会不自觉地重复一句话或是一个问题,希望在以后的教学中,多自省,把课备好,更加熟练教学环节,努力做到不讲废话,让每一个问题问的有意义,让每一句话、指令学生都能听懂。二、没有问“有没有有四面、五面涂色的小正方体呢?当时直接进行的总结。
探索图形教学反思与评价探索图形教学反思篇三
人教版小学数学五年级下册第三单元《长方体和正方体》综合与实践活动课,教材第44页:探索图形。
在认识长方体和正方体后,教材安排了“探索图形”的综合与实践活动。目的是让学生运用所学过的正方体的特征等知识,探索由小正方体拼成的大正方体中各种涂色小正方体的数量,发现其中蕴含的数量上的规律,以及每种涂色小正方体的位置特征,培养学生的空间想象力和推理能力、体会分类计数的思想。
原研究内容是这样呈现的:
让学生综合运用正方体的特征等相关知识,借助已有的学习经验,在观察、想象、推理、交流等活动中,把握问题的共性,从而发现三面涂色、两面涂色、一面涂色的小正方体的个数与大正方体顶点、棱、面之间的关系,使学生在探究规律的过程中,积累数学活动经验,发展空间观念。
正是由于各个小正方体在大正方体上的位置不同,所以它们涂颜色面的个数不同。研究小正方体涂色面的规律,要分类整理各种小正方体的原来位置,与刚刚教学的正方体知识有联系,对空间想象力提出了新的内容与要求,有益于学生空间观念的发展教材编排注重动手实践与自主探索,促进学生空间观念的发展。
学生在第一学段初步认识了立体图形,有一定的认识基础。同时也已经掌握了平面图形的知识,为学习立体图形作好了准备。本单元前面已经学习了长方体、正方体的特性以及两种立体图形的表面积、体积的计算。
由平面图形扩展到立体图形,是学生发展空间观念的一次飞跃,教学中应该注重学生的学习体验、动手操作、总结归纳,让学生在探索活动中掌握知识的内涵,转化为自身的能力。
教材以棱长为2、3、4的正方体入手研究规律,规律研究的最小数据棱长为2开始研究,从学生的实际反馈发现棱长为2的正方体对涂色图形的位置特征缺乏直观的感受,而棱长3、4的表格填写对规律的发现还有点薄弱。所以本课我在棱长为2教学时,切开让学生直观感受,里面的没有涂色。从棱长为3的正方体为切入点,通过观察魔方让学生初步感受不同涂色情况小正方体位置特征,再通过对棱长为4.5的正方体图形的涂色研究、数据填写,通过实验操作经历从具体到表象再到抽象的过程,丰满学生的规律发现探究之旅。
1、加深对正方体特征的认识和理解。
2、通过观察、列表、想象等方式探索、发现图形分类计数问题中的规律,体会化繁为简解决问题的策略,培养学生的空间想象力。
3、体会分类、数形结合、归纳、推理、模型等数学思想。
4、在相互交流中,学会倾听他人意见,及时自我修正,自我反思,增强学好数学的信心。
教学重点:学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:探索规律的归纳方法。
多媒体课件,三阶魔方、活动任务单。
(一)复习导入,提出问题
复习正方体知识
1、魔方大多数是正方体,正方体有哪些特征?
教师:这也就是拼成了棱为几的正方体。你们用到的小正方体的总块数是?
教师总结:我们用棱长为1厘米的小正方体,可以拼出棱长为2厘米的正方体,也可以拼出棱长为3厘米、4厘米、5厘米......的正方体。
引出问题
1、教师:这是棱长为几的正方体?它是由多少个小正方体组成的?
师总结:看来要想知道准确的答案并不是一件轻松的事情,我们不妨从一个简单的图形入手,一起来探索规律(板书课题,探索图形)。
[设计意图]:创设问题情境,在解决这个问题的过程中,让学生初步体会分类计数,深刻感受到原有的经验和方法解决问题有困难,产生认知冲突,促使学生积极主动地思考解决问题的方法,深刻体会化繁为简、探索规律解决问题的意义,积累解决问题的数学学习经验。同时,复习正方体的有关知识可以为后面的学习铺垫。
(二)活动研究,探索规律
1、探究棱长为2时,各种涂色小正方体的个数。
2、探究棱长为3时,各种涂色小正方体的个数。(利用正方体实物进行探究)
活动一:同桌两人合作,借助桌面上的三阶魔方进行观察,完成任务单活动(一)。
①在立体图形上找出三面涂色,两面涂色,一面涂色的小正方体的位置。
②数一数,算一算,每类小正方体各有多少个?
③汇报交流
教师:刚才你们观察到三面涂色的在的顶点处,两面涂色的在棱上,一面涂色的在面上。
四人一组,小组合作研究,验证猜想。
[设计意图]:探究大正方体棱长为3时不同涂色小正方体的个数,学生利用学具能比较容易地找到答案。但本环节的意图并不在此,而是以探究不同涂色小正方体的个数为主体,旨在让学生在探究过程中具体感受不同涂色的小正方体在大正方体上的位置,为找不同涂色小正方体的个数与大正方体棱的等分数的关系扫清障碍。
活动二:四人小组继续探究,当棱长为4,棱长为5时,每类小正方体的涂色情况,并快速填写任务单(二),看一看你能否发现规律。
学生汇报数据。
探究对应的`数据如何得来的,验证答案。
[设计意图]:这一环节在学生抛开学具的基础上探寻不同涂色小正方体的个数,表面上看仿佛是上一环节在量上的增加,其实也有质的变化。上一环节重在让学生感受不同小正方体所在的位置,至于答案是学生数出来的还是算出来的,不作要求;而这一环节,要引导学生在观察的基础上,用想象、推理加计算来找答案。由数出来到算出来,规律就在一步步的探究过程中悄悄萌芽。
(三)比较归纳,概括规律
教师:当小正方体的个数足够多时,我们再继续拼下去,这时棱长可以怎样表示呢?(用字母表示)
教师:回顾一下刚才的探究过程,你们觉得哪组数据最好找?
为什么三面涂色的小正方体最好找,你有什么发现?
再来回顾下两面涂色的小正方体,它们有什么相同的地方?
没有涂色的小正方体有什么规律呢?生汇报。
师:没有涂色的怎样找更快,还有更好的方法吗,他们都位于大正方体的什么位置?那就是需要我们揭开它表面的一层,一起揭开它神秘的面纱,我们一起来观察一下。(ppt播放)
[设计意图]:回顾总结,是本节课的一大亮点,不能简单理解为学生认识到什么就总结什么,而应该在学生认识的基础上顺势而为,作适当的延伸和提高,不仅使学生有机会感悟研究规律背后的数学思想,为以后的数学研究做好铺垫,也实现相关研究方法和数学思想由“外显”变为“内化”。
回到棱长为9。
师:现在你们能解决棱长为9时,每类小正方体的块数吗?生汇报数据。
(四)课堂小结,总结提升。
回顾刚才探索和发现的过程,说说你的体会。
其实刚才的探究方法,就是数学上解决问题,常用的方法叫做“化繁为简”,在以前的学习中,我们也用到了这种学习方法,让我们一起回顾下吧。(ppt播放)
在今后的学习中,这位老朋友还会陪伴我们解决更多的问题。
老师把爱因斯坦的这句名言送给大家,希望在今后的学习中,这句话能激励着你们不断探究。
探索图形教学反思与评价探索图形教学反思篇四
本节的教学时间较为充裕,这主要是考虑到要给学生时间去自主探索、动手实践,如果不能给这一过程以足够的时间,那么学生自己的探索和发现很可能流于形式,不利于学生全面地获得数学知识。
一、教学建议
二、教学反思
在教学中我紧密联系生活实际来设计教学过程,教学环节,整个过程我充分让学生动手,让学生自己发现问题,解决问题,让学生感受轴对称图形的美,让学生充分感知数学美,激发学生爱数学的情感。但课后,我想了又想:还是不应该一上来就把抽象的事物展现给学生,应把实际转化成抽象,这样更能让学生自然而然地接受。在让学生画图形的另一半,使成为轴对称图形时,不应该拘泥于一种形式,放开,让学生选任意一边为对称轴画另一半,这样的话,效果会更好,更能发展学生的思维。最后环节,应该让学生通过学的知识,画轴对称图形。既然学了,就应该让学生尝试运用学过的新知画轴对称图形,再一次把抽象回归到生活中。总的来说,这节课该放手还是不够放手,作为老师应该多相信学生,相信学生是能做到的。
探索图形教学反思与评价探索图形教学反思篇五
图形的旋转是在学生初步感知生活中的对称、平移和旋转现象基础上学习的内容。它属于“图形与几何”领域的一个内容,通过简单图形的变换操作,促进学生空间观念的进一步增强,同时也发展学生的空间观念和形象思维能力。
我认真解读了教材,发现图形的旋转是指图形上所有的点都绕着一个固定的中心点转动相等的角度。在初读教材后,发现图形旋转要有三个关键要素:一是旋转的中心,即绕着哪一个点旋转;二是旋转的方向,按顺时针还是逆时针方向旋转;三是旋转的角度。为了突破学生在方格纸上把简单图形按顺时针或逆时针旋转90°这个难点,我思考能否将静止的方格图形在学生手中活动起来,让学生看清楚它的完整旋转过程?再用“探究验证”法来检测自己的学习成果。在“操作——验证”这样的过程中逐步建构图形旋转的方法和关键点。基于以上思考,进行了以下探索与实践。
旋转现象在生活中是司空见惯的。借助“钟面上时针转动”、“风扇叶转动”、“地球的转动”、“风车转动”等生活现象让学生初步感知旋转及其基本特征。利用学生熟知的生活场景中蕴含的数学知识来打动学生,让学生感到数学好玩,以提高他们的兴趣水平,使之更持久、更强烈。为了让学生能初步体验图形旋转的三个关键要素:旋转中心、旋转方向、旋转角度。再次利用生活中收费站道口的转杆运动场景,让学生观察“打开”、“关闭”转杆的运动有什么相同点和不同点?学生在丰富的生活经验背景支撑下,进行了充分的比较和发现。
为了突破学生在方格纸上把简单图形按顺时针或逆时针方向旋转90°这个难点,我先让学生想像一下旋转后的三角形会在什么位置,再拿出三角形纸片转一转,摆一摆,验证一下自己的自己摆的位置和想象的位置是否一致,然后在画出旋转后的图形,为后面整个图形的旋转作好铺垫。课本中的旋转长方形,为学生准备了长方形模型作为学生学习的操作材料,让学生根据要求先尝试操作,再根据操作过程把图试着画出来。给学生留下了思维的空间,学生亲历了操作体验的过程。
教学图形的旋转画图以后,告诉学生图形的旋转在我们生活当中有着广泛的应用,一个简单的图形经过几次旋转后,会变成一幅优美的图案,进而启发学生运用知识自己设计一朵美丽的小花,拓展了学生的思维,开启了学生智慧的火花,本课结束在音乐声中展示了几幅优美的图案,充分感受了数学的应用价值。

一键复制