总结是对自己的一种鞭策,让我们不断追求更好的自己。参考相关范文可以帮助我们更好地理解总结的结构和写作风格。请大家积极思考和借鉴,根据自己的实际情况进行灵活运用。
初二物理力与运动知识点模板篇一
杠杆是中学学习的一种简单机械,在学习中要了解杠杆的定义,理解杠杆的五要素(支点、动力、阻力、动力臂、阻力臂),并能够在图中表示出他们,可以画出实际的杠杆简图。运用杠杆的平衡条件(动力×动力臂=阻力×阻力臂,即:f1l1=f2l2)解决实际问题,可以分析天平、杆秤等工具来理解。知道杠杆的几种类别,并能列举实例说明。
省力杠杆:撬杠;费力杠杆:门把手;等臂杠杆:托盘天平。
常见考法。
本知识点的考查形式多变,常见的有选择题、填空题、画图题等,考查的知识点多在:杠杆的要素、杠杆平衡的条件以及杠杆的分类。
误区提醒。
1、杠杆的平衡条件:动力×动力臂=阻力×阻力臂,即:f1l1=f2l2。
2、杠杆的分类:
(1)省力杠杆:l1l2,f12。动力臂越长越省力(费距离)。
(2)费力杠杆:l12,f1f2。动力臂越短越费力(省距离)。
(3)等臂杠杆:l1=l2,f1=f2。不省力也不费力。
【典型例题】。
例析:
如图所示,杠杆oa在重物g和f1力的作用下,处于水平位置且保持平衡。如果用力f2代替f1,使杠杆仍然在图中所示位置保持平衡,下面各力关系正确的是(b为oa的中点)()。
解析:当杠杆oa受两个作用力f1(或f2)和右端绳子拉力f而处于平衡状态时,只要比较f1、f2二力关于对支点的力臂的长短,即可找到二力的大小关系。
答案:正确选项为d。
一、参照物。
(1)定义:为研究物体的运动假定不动的物体叫做参照物。
(2)任何物体都可做参照物,通常选择参照物以研究问题的方便而定。如研究地面上的物体的运动,常选地面或固定于地面上的物体为参照物,在这种情况下参照物可以不提。
(3)选择不同的参照物来观察同一个物体结论可能不同。同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的相对性。
(4)不能选择所研究的对象本身作为参照物那样研究对象总是静止的。
初二物理力与运动知识点模板篇二
(二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则)。
(三)曲线运动的分类:合力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动)。
(四)匀速圆周运动。
1受力分析,所受合力的特点:向心力大小、方向。
2向心加速度、线速度、角速度的定义(文字、定义式)。
3向心力的公式(多角度的:线速度、角速度、周期、频率、转)。
(五)平抛运动。
1受力分析,只受重力。
2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式。
3速度与水平方向的夹角、位移与水平方向的夹角。
(五)离心运动的定义、条件。
二、考察内容、要求及方式。
初二物理力与运动知识点模板篇三
1.知识与技能:
(1)理解质点的概念.能明确物体在什么情况下可以看作质点.
(2)知道参考系的概念.知道选取参考系时,要考虑到使运动的描述尽可能简单.
(3)知道坐标系的概念.能够用坐标系描述物体的位置和位置的变化.
2.过程与方法:
(1)领悟质点概念的提出和分析、建立的过程。
(2)了解物理学研究中物理模型的特点,初步掌握科学抽象这种研究方法。
(3)通过数形结合的学习,认识数学工具在物理学中的作用。
3.情感态度与价值观:
二、教学重点、难点。
1.教学重点及其教学策略:
重点:质点概念的理解、参考系的选取、坐标系的建立。
教学策略:通过观察、思考、讨论和实例分析来加深理解。
2.教学难点及其教学策略:
难点:理想化模型——质点的建立,及相应的思想方法。
教学策略:通过问题的讨论,在原有认知水平上进一步深化拓宽,达到认知的螺旋上升,攻克难点。
三、教学过程。
在地球绕太阳转动的图片中,地球在绕太阳公转,注意地球同时又在自转,所以地球的各部分离太阳的远近在不断变化,可见要准确地描述物体的运动,并不是一件容易的事。
分析:当我们讨论地球的公转时怎么看待地球?有什么巧妙的方法。
地球是一个庞然大物,直径约为12800km,与太阳相距1.5×108km,也就是说地球直径约是它与太阳距离的万分之一。
学生:因此,研究地球公转时,由于地球的大小而引起的地球各个部分的差异很小,可以忽略不计,也就是说可以忽略地球的大小,把它视为一个点。
忽略地球的大小和形状把地球看作一个点时,能够忽略地球质量吗?(质量是物体的固有属性)。
刚才,同学们其实已经做了一件伟大的事,什么伟大的事呢,在研究某一问题时,对结果影响非常小的因素把它忽略掉,突出研究对象的主要方面,这是一种科学抽象,物理学中称之为物理模型。例如,刚才研究地球公转时把地球本身的大小、形状忽略不计,突出地球具有质量,而把地球简化为一个有质量的点就是建立了物理模型,物理学中称这种不考虑物体的大小和形状,而突出物体具有质量的点,称为质点。于是,对实际物体运动的描述就转化为对质点运动的描述。
那么,如果研究地球自转,考查地球上各点的运动,还可以把地球看作质点吗?为什么?不能,因为地球上各点的运动情况不一样。
那么什么情况下可以把物体看作质点,质点又有哪些特征?
1.一个物体能否被看作质点,取决于它的大小和形状在所研究问题中是否可以忽略不计,而跟自身体积的大小、质量的多少和运动速度的大小无关。
2.一个物体能否被看作质点,取决于所研究问题的性质,即使是同一个物体,在研究的问题不同时,有的情况下可以看作质点,而有的情况可能不可以看作质点。
3.质点是没有大小,没有形状,具有物体全部质量的点。
4.质点是一种科学抽象,是一种理想化的模型。
二、参考系。
请同学们设想一下,你和一位同伴正坐在这辆火车上,铁路边的人看到火车中的乘客是什么情景,而同伴认为你是怎样的。
地面上的人观察跳伞运动员运动是怎样的下落情况,而飞机驾驶员看跳伞运动员是怎样下落的。
地球在绕太阳转动,而我们却没感觉到这又是为什么。
虽然说物体的运动是永恒的,但在描述某一物体的位置随时间的变化,却又总是相对于其它物体而言的,这便是运动的相对性。看来,要描述一个物体的运动即位置随时间的变化,首先要选定“某个其它物体”做参考,然后再观察研究对象相对于这个选定物体的位置是否随时间变化以及怎样变化。象以上分析的,用来做参考的物体称为参考系。
三、坐标系。
如果一个可以看作质点的物体沿直线运动,怎样定量描述物体的位置变化呢?
为了定量地描述物体的位置及位置的变化需要在参考系上建立适当的坐标系,如果物体在一维空间运动,即沿一条直线运动,只需建立直线坐标系,就能准确表达物体的位置;如果物体在二维空间运动,即在同一平面运动,就需要建立平面直角坐标系来描述物体的位置;当物体在三维空间运动时,则需要建立三维坐标系。
其三要素是:原点、正方向和单位长度。
对质点的直线运动,一般选质点运动轨迹为坐标轴,质点运动的方向为坐标轴正方向,选取质点经过坐标轴原点的时刻为时间的起点。
初二物理力与运动知识点模板篇四
本节课主要讲授了两部分内容,即分子运动论的初步知识和扩散现象。
本节课的重点是分子运动论的基本内容。
1、知道什么是扩散现象。
2、知道分子运动论的初步知识,并且能用分子运动论的知识解释简单的现象。
3、学习分子运论论的初步知识,解释简单的现象。
分子运动论的基本内容是,物质是由分子组成,分子永不停息地做无规则的运动,分子间同时存在着相互的作用力。扩散现象表明分子在不停地作无规则运动,也表明分子之间存在着空隙。铁丝不易被拉断,两粒较小的水银靠近时,它们会聚成一粒较大的水银,表明分子之间存在着引力;固体、液体不易被压缩,又表明分子之间存在着斥力。
首先,不同的物质一定要互相接触时才能发生扩散.如果两种不同物质彼此不接触,是不能发生扩散的.扩散不是单向的一种物质的分子进入另一种物质中去,而是彼此同时进入对方的.如硫酸铜溶液和清水接触后,扩散现象在两种液体的界面上开始发生,在硫酸铜分子向清水中扩散的同时,水分子也向硫酸铜溶液中扩散,使明显的界面模糊起来.
其次,扩散现象并不局限于处于同一状态的不同物质之间,在气体和液体、气体和固体、液体和固体之间都可能发生扩散,如在教室里打开一瓶香水,不一会全教室的同学都可以闻到香水的气味,这是液体和气体间的扩散现象.在热水里放入一些糖,过一会水就会变甜了,这是固体和液体间的扩散现象,这说明处于不同状态的不同物体之间,只要相互接触都发生扩散.
第三,扩散现象表明分子在不停地运动着,就大量的分子来说,扩散可能朝某一个方向进行,但是对某一分子来说,它的运动是无规则的.
(1)分子间的引力和斥力是同时存在的
(2)分子间引力和斥力的大小跟分子间的距离有关
当分子间距离小于10-10m 时,斥力起主要作用,分子间总的作用力表现为斥力;当分子间的距离大于10-10m时,引力起主要作用,分子间点的作用力表现为引力;当分子的距离大于分子直径的10倍时(即等于10-9m 时),分子间的作用力可以忽略不计.
(3)分子间的引力和斥力都随分子间距离的增大而减小,随分子间距的减小而增大,但两者的变化情况不同:当分子间距r1o-10m时,随着分子间距的减小,斥力比引力增加得快;当分子间距r1o-10 m时,随着分子间距的增大,斥力比引力减小得快.
必须注意:当分子间斥力起主要作用时,并不能认为引力已消失;当分子间引力起主要作用时,也不能认为斥力已消失。
初二物理力与运动知识点模板篇五
一、机械运动:一物体相对其它物体的位置变化,叫机械运动。
1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止)。
2、质点:只考虑物体的质量、不考虑其大小、形状的物体。
(1)质点是一理想化模型。
(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时。
如:研究地球绕太阳运动,火车从北京到上海。
3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段。
如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔。
4、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线。
(1)位移为零、路程不一定为零;路程为零,位移一定为零。
(2)只有当质点作单向直线运动时,质点的位移才等于路程。
(3)位移的国际单位是米,用m表示。
5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移。
(1)匀速直线运动的位移图像是一条与横轴平行的直线。
(2)匀变速直线运动的位移图像是一条倾斜直线。
(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大。
6、速度是表示质点运动快慢的物理量。
(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度。
(2)速率只表示速度的大小,是标量。
7、加速度:是描述物体速度变化快慢的物理量。
(1)加速度的定义式:a=vt-v0/t。
(2)加速度的大小与物体速度大小无关。
(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零。
(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关。
(5)加速度是矢量,加速度的方向和速度变化方向相同。
(6)加速度的国际单位是m/s2。
二、匀变速直线运动的规律:
1、速度:匀变速直线运动中速度和时间的关系:vt=v0+at。
注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值。
(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均。
(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均。
2、位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at。
注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值。
3、推论:2as=vt2-v02。
4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=at2。
5、初速度为零的匀加速直线运动:前1秒,前2秒,„„位移和时间的关系是:位移之比等于时间的平方比;。
第1。
秒、第2秒„„的位移与时间的关系是:位移之比等于奇数比。
三、
自由落体运动:只在重力作用下从高处静止下落的物体所作的运动。
1、位移公式:h=1/2gt2。
2、速度公式:vt=gt。
3、推论:2gh=vt2。
初二物理力与运动知识点模板篇六
(二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则)
(三)曲线运动的分类:合力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动)
(四)匀速圆周运动
1受力分析,所受合力的特点:向心力大小、方向
2向心加速度、线速度、角速度的定义(文字、定义式)
3向心力的公式(多角度的:线速度、角速度、周期、频率、转)
(五)平抛运动
1受力分析,只受重力
2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的'表达式
3速度与水平方向的夹角、位移与水平方向的夹角
(五)离心运动的定义、条件
1曲线运动性质的判断:明确曲线运动的条件、牛二定律(选择题)
2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(选择、填空)
3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表示方式、合力提供向心力(计算题)
3运动的合成与分解:分运动与和运动的等时性、等效性(选择、填空)
4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算)
5离心运动:临界条件、最大静摩擦力、匀速圆周运动相关计算(选择、计算)
初二物理力与运动知识点模板篇七
速度:描述物体运动的快慢,速度等于运动物体在单位时间通过的路程。
公式:
速度的单位是:m/s;km/h。
匀速直线运动:快慢不变、沿着直线的运动。这是最简单的机械运动。
变速运动:物体运动速度是变化的运动。
平均速度:在变速运动中,用总路程除以所用的时间可得物体在这段路程中的快慢程度,这就是平均速度。
初二物理力与运动知识点模板篇八
(2)运动过程中只受重力作用。
物体以某一初速度沿竖直方向抛出(不考虑空气阻力),物体只在重力作用下所做的运动,叫做竖直上抛运动。
(以vo方向为正方向):
(1)速度公式:v=vo-gt。
(2)位移公式:h(s)=vot-1/2gt^2。
(3)上升的最大高度:h=vo^2/2g。
(4)速度位移关系式:vt^2-v0^2=-2gh。
(5)竖直上抛物体达到最大高度所需时间:t=vo/g。
可由速度公式和条件v=0得到。
(6)如果h0,h0,则h+h0。
注:等高点v等大方向相反。
由此公式可推出上抛的位移和末速度,方便计算。竖直上抛运动可以和自由落体运动相比较来学习。
一般,g取9.8在特指情况下取10。
竖直上抛运动是物体具有竖直向上的初速度,加速度始终为重力加速度g的匀变速运动,可分为上抛时的匀减速运动和下落时的自由落体运动的两过程。它是初速度为vo(vo不等于0)的匀减速直线运动与自由落体运动的合运动,运动过程中上升和下落两过程所用的时间相等,只受重力作用且受力方向与初速度方向相同。
竖直上抛运动的上升阶段和下降各阶段具有严格的对称性。
(1)速度对称:物体在上升过程和下降过程中经过同一位置时速度大小相等,方向相反。
(2)时间对称:物体在上升过程和下降过程中经过同一段高度所用的时间相等。
(3)能量对称:物体在上升过程和下降过程中经过同一段高度重力势能变化量的大小相等,均为mgh。
初二物理力与运动知识点模板篇九
竖直上抛运动的.实质是物体是初速度不为零的匀变速直线运动,他具有竖直向上的初速度v0(v0不等于0),运动过程中上升和下落两过程所用的时间相等,只受重力作用且受力方向与初速度方向相反,因此加速度始终为重力加速度g。

一键复制