总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总结了。那关于总结格式是怎样的呢?而个人总结又该怎么写呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。
高中生物基因工程知识点归纳总结篇一
细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞
2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)
→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜
3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核
①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻
②真核细胞:有核膜,有染色体,如酵母菌,各种动物
注:病毒无细胞结构,但有dna或rna4、蓝藻是原核生物,自养生物
5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质
7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同
8、组成细胞的元素
①大量无素:c、h、o、n、p、s、k、ca、mg
②微量无素:fe、mn、b、zn、mo、cu
③主要元素:c、h、o、n、p、s
④基本元素:c
⑤细胞干重中,含量最多元素为c,鲜重中含最最多元素为o9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的化合物为蛋白质。
10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹iii染成橘黄色(或被苏丹iv染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。
(2)还原糖鉴定材料不能选用甘蔗
(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加a液,再加b液)
11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为nh2—c—cooh,各种氨基酸的区别在于r基的不同。
12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—nh—co—)叫肽键。
13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数—肽链条数
14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。
15、每种氨基酸分子至少都含有一个氨基(—nh2)和一个羧基(—cooh),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因。
16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称dna;一类是核糖核酸,简称rna,核酸基本组成单位核苷酸。
17、蛋白质功能:
①结构蛋白,如肌肉、羽毛、头发、蛛丝
②催化作用,如绝大多数酶
③运输载体,如血红蛋白
④传递信息,如胰岛素
⑤免疫功能,如抗体
hohhh
r1hr2r1ohr219、dna、rna
全称:脱氧核糖核酸、核糖核酸
分布:细胞核、线粒体、叶绿体、细胞质
染色剂:甲基绿、吡罗红
链数:双链、单链
碱基:atcg、aucg
五碳糖:脱氧核糖、核糖
组成单位:脱氧核苷酸、核糖核苷酸
代表生物:原核生物、真核生物、噬菌体、hiv、sars病毒
20、主要能源物质:糖类
细胞内良好储能物质:脂肪
人和动物细胞储能物:糖原
直接能源物质:atp21、糖类:
①单糖:葡萄糖、果糖、核糖、脱氧核糖
②二糖:麦芽糖、蔗糖、乳糖
③多糖:淀粉和纤维素(植物细胞)、糖原(动物细胞)
④脂肪:储能;保温;缓冲;减压
22、脂质:磷脂(生物膜重要成分)
胆固醇、固醇(性激素:促进人和动物生殖器官的发育及生殖细胞形成)
维生素d:(促进人和动物肠道对ca和p的吸收)
23、多糖,蛋白质,核酸等都是生物大分子,组成单位依次为:单糖、氨基酸、核苷酸。
生物大分子以碳链为基本骨架,所以碳是生命的核心元素。
24、水存在形式营养物质及代谢废物
结合水(4.5%)
25、无机盐绝大多数以离子形式存在。哺乳动物血液中ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。
27、细胞膜的功能控制物质进出细胞进行细胞间信息交流
28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。
29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。
30、叶绿体:光合作用的细胞器;双层膜
线粒体:有氧呼吸主要场所;双层膜
核糖体:生产蛋白质的细胞器;无膜
中心体:与动物细胞有丝分裂有关;无膜
液泡:调节植物细胞内的渗透压,内有细胞液
内质网:对蛋白质加工
高尔基体:对蛋白质加工,分泌
31、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。
32、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。
核膜:双层膜,其上有核孔,可供mrna通过结构核仁
功能:是遗传信息库,是细胞代谢和遗传的控制中心
34、植物细胞内的液体环境,主要是指液泡中的细胞液。
原生质层指细胞膜,液泡膜及两层膜之间的细胞质
35、细胞膜和其他生物膜都是选择透过性膜
自由扩散:高浓度→低浓度,如h2o,o2,co2,甘油,乙醇、苯
协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞
37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。
特性专一性:每种酶只能催化一种成一类化学反应
全称:三磷酸腺苷
39、atp与adp相互转化:a—p~p~pa—p~p+pi+能量
功能:细胞内直接能源物质
41、有氧呼吸与无氧呼吸比较:有氧呼吸、无氧呼吸
场所:细胞质基质、线粒体(主要)、细胞质基质
产物:co2,h2o,能量
co2,酒精(或乳酸)、能量
反应式:c6h12o6+6o26co2+6h2o+能量
c6h12o62c3h6o3+能量
c6h12o62c2h5oh+2co2+能量
第三阶段:[h]和o2结合生成水,大量能量,线粒体内膜
无氧呼吸
第一阶段:同有氧呼吸
42、细胞呼吸应用:包扎伤口,选用透气消毒纱布,抑制细菌有氧呼吸
花盆经常松土:促进根部有氧呼吸,吸收无机盐等
稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡
提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸
破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸
高中生物基因工程知识点归纳总结篇二
应激性
生长、发育、生殖
遗传和变异
生物体都能适应一定的环境和影响环境生物体的基本组成物质中都有蛋白质和核酸。
蛋白质是生命活动的主要承担者。
核酸是遗传信息的携带者。
细胞是生物体的结构和功能的基本单位。
新陈代谢是活细中全部有序的化学变化的总称。
新陈代谢是生物体进行一切生命活动的基础。
生物学发展三阶段:
《物种起源》——推动现代生物学的发展方面起了巨大作用;
孟德尔;dna双螺旋结构;
抗虫棉;石油草;超级菌
生命的物质基础
化学元素在不同的生物体内,各种化学元素的含量相差很大。
分类:大量元素、微量元素
化合物是生物体生命活动的物质基础。
化学元素能够影响生物体的生命活动。
生物界和非生物界具有统一性和差异性
化合物水、无机盐、糖类、脂类、蛋白质、核酸。
水——自由水、结合水
无机盐的离子对于维持生物体的生命活动有重要作用。
糖类——单糖、二糖、多糖。
脂质——脂肪、类脂、固醇
自由水是细胞内的良好溶剂,可以把营养物质运送到各个细胞。
维持细胞的渗透压和酸碱平衡,细胞形态、功能。
糖类是构成生物体的重要成分,也是细胞的主要能源物质。
脂肪是生物体内储存能量的物质;减少身体热量散失,维持体温恒定,减少内脏摩擦,缓冲外界压力。
磷脂是构成细胞膜的重要成分。
固醇——胆固醇、维生素d、性激素;维持正常新陈代谢和生殖过程。
蛋白质与核酸蛋白质和核酸都是高分子物质。
蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。
核酸是遗传信息的载体。
蛋白质结构:氨基酸的种类、数目、排列和肽链的空间结构。
蛋白质功能:催化、运输、调节、免疫、识别
染色体是遗传物质的主要载体。
生命的基本单位——细胞
细胞是生物体的结构和功能的基本单位。
细胞结构与功能细胞分类:真核生物、原核生物
细胞具有非常精细的结构和复杂的自控功能。细胞只有保持完整性,才能够正常地完成各项生命活动。
细胞膜结构:流动镶嵌模型——磷脂、蛋白质。
基本骨架:磷脂双分子层
糖被的结构:蛋白质+多糖。
细胞壁:纤维素、果胶功能:流动性、选择透过性
选择透过性:自由扩散(苯)、主动运输
主动运输:能保证活细胞按照生命活动的需要,选择吸收所需要的营养物质,排除新陈代谢产生的废物和有害物质。
糖被功能:保护和润滑、识别
细胞质基质——营养物质
细胞质基质是活细胞进行新陈代谢的主要场所。
各种细胞器是完成其功能的结构基础和单位。
线粒体是活细胞进行有氧呼吸的主要场所。
叶绿体是细胞光合作用的场所。
内质网——光面:脂类、糖类合成与运输
粗面:糖蛋白的加工合成
核糖体
高尔基体
液泡对细胞的内环境起着调节作用,可以使细胞保持一定的渗透压和膨胀状态。
细胞核结构:核膜、核仁、染色质
核膜——是选择透过性膜,但不是半透膜
染色质——dna+蛋白质
染色质和染色体是细胞中同一种物质和不同时期的两种形态功能:
核孔——核质之间进行物质交换的孔道。
细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
细胞核在生命活动中起着决定作用。
原核细胞主要特点是没有由核膜包围的典型细胞核。
其细胞壁不含纤维素,而主要是糖类和蛋白质。
没有复杂的细胞器,但有分散的核糖体。
拟核裸露dna
细胞相对较小
细胞增殖方式:有丝分裂、无丝分裂,减数分裂。细胞增殖是生物体生长、发育、繁殖、遗传的基础。
有丝分裂
细胞周期有丝分裂是真核生物进行细胞分裂的主要方式。
体细胞进行有丝分裂是有周期性的,也就有细胞周期
动物与植物有丝分裂区别:前期、末期不同种类的细胞,一个细胞周期的时间不同。
分裂间期最大特点:完成dna分子复制和有关蛋白质的合成。
意义:保持了遗传性状的稳定性。
细胞分化仅有细胞的增殖,而没有细胞分化,生物体不能进行正常的生长发育。
细胞分化是一种持久性的变化,发生在生物体的整个生命进程中,胚胎时期达最大限度。
高中生物基因工程知识点归纳总结篇三
1、分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
2、自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
3、两条遗传基本规律的精髓是:遗传的不是性状的本身,而是控制性状的遗传因子。
4、孟德尔成功的原因:正确的选用实验材料;现研究一对相对性状的遗传,再研究两对或多对性状的遗传;应用统计学方法对实验结果进行分析;基于对大量数据的分析而提出假说,再设计新的实验来验证。
5、孟德尔对分离现象的原因提出如下假说:生物的性状是由遗传因子决定的;体细胞中遗传因子是成对存在的;生物体再形成生殖细胞—配子时,成对的遗传因子彼此分离,分别进入不同的配子中;受精时,雌雄配子的结合是随机的。
6、萨顿的假说:基因和染色体行为存在明显的平行关系。(通过类比推理提出)
基因在杂交过程中保持完整性和独立性;在体细胞中基因成对存在,染色体也是成对的;体细胞中成对的基因一个来自父方,一个来自母方,同源染色体也是如此;非等位基因在形成配子时自由组合,非同源染色体在减数第一次分裂后期也是自由组合的。
萨顿由此推论:基因是由染色体携带着从秦代传递给下一代的。即基因就在染色体上。
7、减数分裂是进行有性生殖的生物,在产生成熟的生殖细胞时进行的染色体数目减半的细胞分裂。在减数分裂的过程中,染色体只复制一次,而细胞分裂两次。减数分裂的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。
8、配对的两条染色体,形状大小一般相同,一条来自父方,一条来自母方,叫做同源染色体。同源染色体两两配对的现象叫做联会。联会后的每对同源染色体含有四条染色单体,叫做四分体。
9、减数分裂过程中染色体数目减半发生在减数第一次分裂。
10、受精卵中的染色体数目又恢复到体细胞中的数目,其中有一半的染色体来自(父方),另一半来自卵细胞(母方)。
11、基因分离的实质是:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随着同源染色体的分开而分离,分别进入两个配子中,独立的随着配子遗传给后代。
12、基因的自由组合定律的实质是:位于非同源染色体上的非等位基因的分离和自由组合是互不干扰的;在减数分裂过程中,在同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
13、红绿色盲、抗维生素d佝偻病等,它们的基因位于性染色体上,所以遗传上总是和性别相关联,这种现象叫做伴性遗传。
14、因为绝大多数生物的遗传物质是dna,只有少数生物(如hiv病毒)的遗传物质是rna,所以说dna是主要的遗传物质。
15、dna分子双螺旋结构的主要特点:dna分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构;dna分子中的脱氧核苷酸和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧;两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律。
16、碱基之间的这种一一对应的关系,叫做碱基互补配对原则。
17、dna分子的复制是一个边解旋边复制的过程,复制需要模板、原料、能量和酶等基本条件。dna分子独特的双螺旋结构,为复制提供了精确的模板,通过碱基互补配对,保证了复制能够准确地进行。
18、遗传信息蕴藏在4种碱基的排列顺序之中,碱基排列顺序的千变万化,构成了dna分子的多样性,而碱基的特定的排列顺序,又构成了每一个dna分子的特异性。
19、基因是有遗传效应的dna分子片断。
20、rna是在细胞核中,以dna的一条链为模板合成的,这一过程称为转录。
21、游离在细胞质中的各种氨基酸,就以mrna为模板合成具有一定氨基酸顺序的蛋白质,这一过程叫做翻译。
22、基因通过控制酶的合成来控制代谢过程,进而控制生物的性状。
23、基因还能通过控制蛋白质的结构直接控制生物体的性状。
24、基因与基因、基因与基因产物、基因与环境之间存在着复杂的相互作用,这种相互作用形成了一个错综复杂的网络,精细的调控着生物体的性状。
25、中心法则描述了遗传信息的流动方向,主要内容是:遗传信息可以从dna流向dna,即dna的自我复制,也可以从dna流向rna,进而流向蛋白质,即遗传信息的转录和翻译。但是,遗传信息不能从蛋白质传递到蛋白质,也不能从蛋白质流向dna或rna。
26、修改后的中心法则增加了遗传信息从rna流向rna,从rna流向dna这两条途径。
27、基因与性状之间并不是简单的一一对应关系。有些性状是由多个基因共同决定的,有的基因可以决定或影响多种性状。一般来说,性状是基因与环境共同作用的结果。
28、dna分子发生碱基对的替换、增添、缺失,进而引起的基因结构的改变,叫做基因突变。
29、由于自然界诱发基因突变的因素很多,基因突变还可以自发产生,因此,基因突变在生物界中是普遍存在的。
30、基因突变是随机发生的、不定向的。
31、在自然状态下,基因突变的频率是很低的。
32、基因突变可能破坏生物体与现有环境的协调关系,而对生物有害,也可能使生物产生新的性状,适应改变的环境,获得新的生存空间,还有些基因突变既无害也无益。
33、基因突变的意义:是新基因产生的途径;是生物变异的根本来源;是生物进化的原始材料。
34、基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。
35、染色体结构的改变,都会使排列在染色体上的基因的数目或排列顺序发生改变,从而导致性状的变异。
36、染色体数目变异可以分两类:一类是细胞内个别染色体增加或减少。另一类是细胞内染色体数目以染色体组的形式成倍的增加或减少。
注意三种可遗传变异的区别:基因突变重在产生了新基因,基因重组是兄弟姐妹有差异的最主要原因,染色体变异是唯一可以在显微镜底下观察到的变异。
37、染色体组:细胞中的一组非同源染色体,在形态和功能上各有不同,携带着控制生物生长发育的全部遗传信息,这样的一组染色体叫一个染色体组。
38、单倍体:体细胞中含有本物种配子染色体数目的个体叫单倍体(例:雄蜂)。
39、二倍体和多倍体:由受精卵发育而成的个体,体细胞中含有几个染色体组就是几倍体。
40、人工诱导多倍体的方法:低温处理等。目前最常用最有效的方法是用秋水仙素处理萌发的种子或幼苗。
41、单倍体植株长得弱小,而且高度不育,但是单倍体育种能明显缩短育种年限。常用花药(花粉)离体培养的方法获得单倍体植株。
42、人类遗传病通常是指由于遗传物质改变而引起的人类疾病,主要可以分为单基因遗传病、多基因遗传病和染色体异常遗传病。
43、遗传病监测(如:遗传咨询、产前诊断等)在一定程度上能有效预防遗传病产生和发展。
44、杂交育种是将两个或多个品种的优良性状通过交配集中在一起,在经过选择和培育,获得新品种的方法。
45、诱变育种就是利用物理因素(如x射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙酯)来处理生物,使生物发生基因突变。用这种方法的优点:提高突变率,在较短的时间内获得更多的优良变异类型,大幅度改良某些性状。缺点:盲目性。
46、基因工程,又叫做基因拼接技术或dna重组技术。通俗的说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放在另一种生物的细胞里,定向地改造生物的遗传性状。
47、历史上第一个提出比较完整的进化学说的是法国博物学家—拉马克。他提出:地球上的所有生物都不是神创造的,而是由更古老的生物进化而来的;生物是由低等到高等逐渐进化的;生物各种适应性特征的形成都是由于用进废退和获得性遗传。这些因用进废退而获得的性状是可以遗传给后代的,这是生物不断进化的主要原因(历史局限性)。
48、达尔文的自然选择学说:过度繁殖(前提)、生存斗争(手段或动力)、遗传变异(基础)、适者生存(结果)。
49、进化理论的发展:从性状水平到基因水平;从以生物个体为单位到以种群为单位。
50、现代进化理论的主要内容:种群是生物进化的基本单位(也是繁殖的基本单位);突变(基因突变和染色体变异的统称)和基因重组产生进化的原材料;自然选择使种群的基因频率定向改变并决定生物进化的方向;隔离是新物种形成的必要条件;生物进化的过程实际上是生物与生物、生物与无机环境共同进化的过程,进化导致生物的多样性。
51、生活在一定区域的同种生物的全部个体叫做种群。
52、一个种群全部个体所含有全部基因,叫做种群的基因库。
53、基因突变产生新的等位基因,这就可能使种群的基因频率发生变化。
54、在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。
55、能够在自然状态下相互交配并且产生可育后代的一群生物称为一个物种。
56、不同物种之间,生物与无机环境之间在相互影响中不断进化和发展,这就是共同进化。
57、注意遗传系谱图的中显隐性的判断方法:无中生有是隐性,有中生无是显性。
58、如果是隐性病,而有父正女病,则可判断此病为常染色体隐性遗传。如果是显性病,而有父病女正,则可判断此病为常染色体遗传。
59、可遗传变异是指遗传物质发生了变化而造成的变异,不一定能够遗传给下代(注意和遗传给下一代的变异相区别)
60、三代以内的近亲是指从自己算起,向上推三代和向下推三代的同源而生的亲属。其中直系亲属是指自己和父母、祖父母、外祖父母、子女、孙子女、外孙子女,其他的为旁系,注意亲兄弟姐妹也为旁系。
高中生物基因工程知识点归纳总结篇四
1、原生质:指细胞内有生命的物质,包括细胞质、细胞核和细胞膜三部分。不包括细胞壁,其主要成分为核酸和蛋白质。如:一个植物细胞就不是一团原生质。
2、结合水:与细胞内其它物质相结合,是细胞结构的组成成分。
7、自由水:可以自由流动,是细胞内的良好溶剂,参与生化反应,运送营养物质和新陈代谢的废物。
8、无机盐:多数以离子状态存在,细胞中某些复杂化合物的重要组成成分(如铁是血红蛋白的主要成分),维持生物体的生命活动(如动物缺钙会抽搐),维持酸碱平衡,调节渗透压。
9、糖类有单糖、二糖和多糖之分。a、单糖:是不能水解的糖。动、植物细胞中有葡萄糖、果糖、核糖、脱氧核糖。b、二糖:是水解后能生成两分子单糖的糖。植物细胞中有蔗糖、麦芽糖,动物细胞中有乳糖。c、多糖:是水解后能生成许多单糖的糖。植物细胞中有淀粉和纤维素(纤维素是植物细胞壁的主要成分)和动物细胞中有糖元(包括肝糖元和肌糖元)。
10、可溶性还原性糖:葡萄糖、果糖、麦芽糖等。
11、脂类包括:a、脂肪(由甘油和脂肪酸组成,生物体内主要储存能量的物质,维持体温恒定。)b、类脂(构成细胞膜、线立体膜、叶绿体膜等膜结构的重要成分)c、固醇(包括胆固醇、性激素、维生素d等,具有维持正常新陈代谢和生殖过程的作用。)
12、脱水缩合:一个氨基酸分子的氨基(-nh2)与另一个氨基酸分子的羧基(-cooh)相连接,同时失去一分子水。
13、肽键:肽链中连接两个氨基酸分子的键(-nh-co-)。
14、二肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。
15、多肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。有几个氨基酸叫几肽。
16、肽链:多肽通常呈链状结构,叫肽链。
17、氨基酸:蛋白质的基本组成单位,组成蛋白质的氨基酸约有20种,决定20种氨基酸的密码子有61种。氨基酸在结构上的特点:每种氨基酸分子至少含有一个氨基(-nh2)和一个羧基(-cooh),并且都有一个氨基和一个羧基连接在同一个碳原子上(如:有-nh2和-cooh但不是连在同一个碳原子上不叫氨基酸)。r基的不同氨基酸的种类不同。
18、核酸:最初是从细胞核中提取出来的,呈酸性,因此叫做核酸。核酸最遗传信息的载体,核酸是一切生物体(包括病毒)的遗传物质,对于生物体的遗传变异和蛋白质的生物合成有极其重要的作用。
19、脱氧核糖核酸(dna):它是核酸一类,主要存在于细胞核内,是细胞核内的遗传物质,此外,在细胞质中的线粒体和叶绿体也有少量dna。
20、核糖核酸:另一类是含有核糖的,叫做核糖核酸,简称rna。
高中生物基因工程知识点归纳总结篇五
第一步:目的基因的获取
1.目的基因是指:编码蛋白质的结构基因。
2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。
技术扩增目的基因
(1)原理:dna双链复制
(2)过程:第一步:加热至90~95℃dna解链;第二步:冷却到55~60℃,引物结合到互补dna链;第三步:加热至70~75℃,热稳定dna聚合酶从引物起始互补链的合成。
第二步:基因表达载体的构建
1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。
2.组成:目的基因+启动子+终止子+标记基因
(1)启动子:是一段有特殊结构的dna的片段,位于基因的首端,是rna聚合酶识别和结合的部位,能驱动基因转录出mrna,最终获得所需的蛋白质。
(2)终止子:也是一段有特殊结构的dna的片段,位于基因的尾端。
(3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。
第三步:将目的基因导入受体细胞_
1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。
2.常用的转化方法:
将目的基因导入植物细胞:采用最多的方法是 农杆菌转化法,其次还有 基因枪法和 花粉管通道法等。
将目的基因导入动物细胞:最常用的方法是 显微注射技术。此方法的受体细胞多是 受精卵。
将目的基因导入微生物细胞:原核生物作为受体细胞的原因是 繁殖快、多为单细胞、遗传物质相对较少 ,最常用的原核细胞是 大肠杆菌 ,其转化方法是:先用 ca2+ 处理细胞,使其成为 感受态细胞 ,再将 重组表达载体dna分子 溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收dna分子,完成转化过程。
3.重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是标记基因是否表达。
第四步:目的基因的检测和表达
1.首先要检测 转基因生物的染色体dna上是否插入了目的基因,方法是采用 dna分子杂交技术。
2.其次还要检测 目的基因是否转录出了mrna,方法是采用 用标记的目的基因作探针与 mrna杂交。
3.最后检测 目的基因是否翻译成蛋白质,方法是从转基因生物中提取 蛋白质,用相应的. 抗体进行抗原-抗体杂交。
4.有时还需进行 个体生物学水平的鉴定。如 转基因抗虫植物是否出现抗虫性状。
高中生物基因工程知识点归纳总结篇六
一、生物科学是研究生命现象和生命活动规律的科学。
二、生物的基本特征
(一)具有共同的物质基础和结构基础。共同的物质组成:蛋白质和核酸结构基础:细胞结构(除病毒外)
(二)都有新陈代谢。
生物体与外界环境之间要发生物质和能量交换。一切生命活动的基础,生物区别于非生物最本质的特征。
(三)都有应激性。
(四)都有生长、发育和生殖。生长的原因:同化作用大于异化作用
(五)都有遗传和变异的特性。
变异:“一猪生九仔,连母十个样”有利于生物的进化
(六)都能适应和影响一定的环境(如:地衣)。
三、生物科学的发展
(一)描述性生物学阶段:
1.19世纪30年代,德国植物学家施莱登、动物学家施旺提出细胞学说。
2.1859年,英国生物学家达尔文出版《物种起源》。
(二)实验生物学阶段:
1900年,孟德尔遗传规律重新提出标志着实验生物学阶段的开始
(三)分子生物学阶段:
1.1944年,美国生物学家艾弗里首次证明dna是遗传物质。
微观方向:从细胞学水平发展到分子水平
宏观方向:生态学的发展解决全球性的环境和资源问题
第一章生命的物质基础构成生物体的化学元素和化合物
1.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。
2.组成生物体的化学元素,在生物体内和在无机自然界中的含量相差很大,这个事实说明生物界与非生物界还具有差异性。
3.构成生物体的基本元素:c、h、o、n,最基本元素是c
4.大量元素:c、h、o、n、p、s、k、ca、mg
5.微量元素:fe、mn、cu、zn、mo、b,fe为半微量元素。
7.植物“花而不实”是由于缺少硼元素。
8.各种生物体内含量最多的化合物是水,其存在形式有:自由水和结合水。
9.人缺钙会出现抽搐,这说明无机盐离子能够维持生物体的生命活动。
10.糖类是生物体进行生命活动的主要能源物质,葡萄糖是生命活动的重要能源物质。
11.植物细胞内储存能量的物质是淀粉,动物细胞内的储存能量物质是糖元,生物体的储存能量的主要物质是脂肪。
12.脂类包括脂肪、类脂(磷脂构成细胞膜)和固醇(胆固醇、性激素、维生素d)。
13.蛋白质是生命活动的体现者,其结构单位是氨基酸结构通式为__________________________。
氨基酸经过脱水缩合形成肽键,通过肽键连接成多肽。
14.蛋白质的多样性取决于氨基酸的种类、数目、排列顺序以及蛋白质的空间结构。
16.细胞膜以磷脂双分子层为基本骨架,其结构特点是一定的流动性。细胞膜的功能是物质交换和保护,功能特性是选择透过性。主动运输的进行需要载体和atp。
17.细胞壁的化学成分是纤维素和果胶,对植物细胞起支持和保护作用。
18.细胞质基质是活细胞进行新陈代谢的主要场所,为新陈代谢的进行,提供所需要的物质(酶、atp等)和一定的环境条件。
19.线粒体是活细胞进行有氧呼吸的主要场所。叶绿体是绿色植物进行光合作用的场所。
20.内质网与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道,增大细胞内的膜面积。
21.核糖体是细胞内合成蛋白质的场所。原核细胞只有核糖体一种细胞器。
22.细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。
23.中心体是动物和低等植物细胞所特有的细胞器。在有丝分裂过程中,发出星射线,形成纺锤体。
24.染色质和染色体是细胞中同一种物质在不同时期的两种形态。
25.细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
26.细胞只有保持完整性,才能够正常地完成各项生命活动。
27.细胞以分裂是方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。
28.细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。
29.细胞分化是一种持久性的变化,它发生在生物体的整个生命进程中,但在胚胎时期达到最大限度。
30.高度分化的植物细胞仍然具有发育成完整植株的潜能,也就是保持着细胞全能性。
第三章生物的新陈代谢
31.新陈代谢是生物最基本的特征,是生物与非生物的最本质的区别。
32.酶是活细胞产生的一类具有生物催化作用的有机物,其中绝大多数酶是蛋白质,少数酶是rna。
33.酶的催化作用具有高效性和专一性;并且需要适宜的温度和ph值等条件。
34.atp(三磷酸腺苷)是新陈代谢所需能量的直接来源。结构简式:ap~p~p35.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧的过程。光合作用释放的氧全部来自水。
36.渗透作用的产生必须具备两个条件:一是具有一层半透膜,二是这层半透膜两侧的溶液具有浓度差。当成熟的植物细胞处于30%的蔗糖溶液中,成熟的植物细胞会发生渗透失水,表现出质壁分离的现象。吸收水分和运输水分的动力是蒸腾作用,植物所吸收的水分95%以上蒸腾作用散失,少量用于生命活动。
37.植物根的.成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。吸收矿质元素的方式是主动运输。呼吸作用为矿质元素吸收提供动力,运输矿质元素的动力是蒸腾作用。
高中生物基因工程知识点归纳总结篇七
细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞
2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)
→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜
3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核
①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻
②真核细胞:有核膜,有染色体,如酵母菌,各种动物
注:病毒无细胞结构,但有dna或rna
4、蓝藻是原核生物,自养生物
5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质
8、组成细胞的元素
①大量无素:c、h、o、n、p、s、k、ca、mg
②微量无素:fe、mn、b、zn、mo、cu
③主要元素:c、h、o、n、p、s
④基本元素:c
⑤细胞干重中,含量最多元素为c,鲜重中含最最多元素为o
化合物为蛋白质。
10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹iii染成橘黄色(或被苏丹iv染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。
(2)还原糖鉴定材料不能选用甘蔗
(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加a液,再加b液)
11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为nh2—c—cooh,各种氨基酸的区别在于r基的不同。
12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—nh—co—)叫肽键。
14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。
15、每种氨基酸分子至少都含有一个氨基(—nh2)和一个羧基(—cooh),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因。
16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称dna;一类是核糖核酸,简称rna,核酸基本组成单位核苷酸。
17、蛋白质功能:
①结构蛋白,如肌肉、羽毛、头发、蛛丝
②催化作用,如绝大多数酶
③运输载体,如血红蛋白
④传递信息,如胰岛素
⑤免疫功能,如抗体
hohhh
r1hr2r1ohr2
19、dna、rna
全称:脱氧核糖核酸、核糖核酸
分布:细胞核、线粒体、叶绿体、细胞质
染色剂:甲基绿、吡罗红
链数:双链、单链
碱基:atcg、aucg
五碳糖:脱氧核糖、核糖
组成单位:脱氧核苷酸、核糖核苷酸
代表生物:原核生物、真核生物、噬菌体、hiv、sars病毒
20、主要能源物质:糖类
细胞内良好储能物质:脂肪
人和动物细胞储能物:糖原
直接能源物质:atp
21、糖类:
①单糖:葡萄糖、果糖、核糖、脱氧核糖
②二糖:麦芽糖、蔗糖、乳糖
③多糖:淀粉和纤维素(植物细胞)、糖原(动物细胞)
④脂肪:储能;保温;缓冲;减压
22、脂质:磷脂(生物膜重要成分)
胆固醇、固醇(性激素:促进人和动物生殖器官的发育及生殖细胞形成)
维生素d:(促进人和动物肠道对ca和p的吸收)
23、多糖,蛋白质,核酸等都是生物大分子,
组成单位依次为:单糖、氨基酸、核苷酸。
生物大分子以碳链为基本骨架,所以碳是生命的核心元素。
24、水存在形式营养物质及代谢废物
结合水(4.5%)
25、无机盐绝大多数以离子形式存在。哺乳动物血液中ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。
27、细胞膜的功能控制物质进出细胞进行细胞间信息交流
28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。
29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。
30、叶绿体:光合作用的细胞器;双层膜
线粒体:有氧呼吸主要场所;双层膜
核糖体:生产蛋白质的细胞器;无膜
中心体:与动物细胞有丝分裂有关;无膜
液泡:调节植物细胞内的渗透压,内有细胞液
内质网:对蛋白质加工
高尔基体:对蛋白质加工,分泌
31、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。
32、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。
核膜:双层膜,其上有核孔,可供mrna通过结构核仁
功能:是遗传信息库,是细胞代谢和遗传的控制中心
34、植物细胞内的液体环境,主要是指液泡中的细胞液。
原生质层指细胞膜,液泡膜及两层膜之间的细胞质
35、细胞膜和其他生物膜都是选择透过性膜
协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞
37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。
特性专一性:每种酶只能催化一种成一类化学反应
全称:三磷酸腺苷
功能:细胞内直接能源物质
41、有氧呼吸与无氧呼吸比较:有氧呼吸、无氧呼吸
场所:细胞质基质、线粒体(主要)、细胞质基质
产物:co2,h2o,能量
co2,酒精(或乳酸)、能量
反应式:c6h12o6+6o26co2+6h2o+能量
c6h12o62c3h6o3+能量
c6h12o62c2h5oh+2co2+能量
第三阶段:[h]和o2结合生成水,大量能量,线粒体内膜
无氧呼吸
第一阶段:同有氧呼吸
花盆经常松土:促进根部有氧呼吸,吸收无机盐等
稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡
提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸
破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸

一键复制