当前位置:网站首页 >> 文档 >> 2025年高等数学教学课件免费下载(七篇)
范文文档
2025年高等数学教学课件免费下载(七篇)
  • 时间:2025-04-24 06:17:50
  • 小编:毕上公考
  • 文件格式 DOC
下载文章
一键复制
猜你喜欢 网友关注 本周热点 精品推荐
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
总结是对过去的一种回顾,同时也是对未来的一种规划和指导。写总结时,还可以请教他人的意见和建议,从不同的角度和视角来审视和改进自己的总结作品。以下是小编为大家整理
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。认识小数评课
总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。怎样写总结才更能起到其作用呢?总结应该怎么写呢?以下我给大家整理了一
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?下面是我给大家整理的教案范文,欢迎大家阅读分享借
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么我们该如何写一篇较为完美的教案呢?下面我帮大家找寻并整理了一些优秀的教案范
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面
在工作生活中,总结是提高效率和提升能力的有效方式。总结是评估自己的机会,该如何抓住它呢?以下是小编为大家整理的一些优秀总结样本,希望能够对大家的写作有所帮助。评
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。计划怎么写才能发挥它最大的作用呢?下面是小编整理的个人今后的计划范文,欢迎阅读分享,
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
在当下社会,接触并使用报告的人越来越多,不同的报告内容同样也是不同的。报告对于我们的帮助很大,所以我们要好好写一篇报告。下面我给大家整理了一些优秀的报告范文,希
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下是小编为大家
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?那么下面我就给大家讲一讲教案怎么写才比较好,我们一
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来
教案应当符合教育教学的原则和教学计划的要求,既有可操作性又有可评价性。教案应该围绕教学目标展开,合理安排各个教学环节的时间和任务。在以下范文中,可以看到不同学科
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下是小编
通过演讲稿的准备,可以帮助演讲者更好地控制演讲的时间和节奏。写演讲稿时,可以通过讲述一些生动的故事、引用精彩的引言或提出挑战性问题来引发听众的思考和共鸣。如果你
演讲稿中的语言应该精确、简洁,并具备一定的感染力,能够打动听众的心。演讲稿要注意避免过分夸张和庸俗浮夸的言辞,保持真实和中肯。以下是一些富有情感的演讲稿,这些演
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看
时间是公平的,每个人都是一天24小时,如何安排好这段时间取决于个人的自制力和效率。情感表达是情感智能的重要组成部分,需要我们不断提高和培养。以下是我为大家收集的
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是我为大家
提高口头表达和写作能力,培养沟通交流技巧。总结是一个重要的环节,帮助我们更好地反思过去的经验。通过阅读总结范文,我们可以拓宽思路,丰富写作的内容和形式。《比的应
计划是指为了达到某种目标或完成某项任务而做出的详细安排和安排程序的活动,它可以使我们有条不紊地进行工作和生活。计划给我们提供了一定的目标方向和时间节点,让我们能
制定计划前,要分析研究工作现状,充分了解下一步工作是在什么基础上进行的,是依据什么来制定这个计划的。写计划的时候需要注意什么呢?有哪些格式需要注意呢?这里给大家
计划可以帮助我们更好地分配工作任务,给予每个人合适的责任和权力。制定计划时,我们需要考虑到可能遇到的挑战和困难,并制定解决方案。着眼于未来,做好长远规划,实现更
计划是一种对自己负责,对未来负责的态度,是我们追求精益求精的动力之一。在制定计划时,要先明确目标,再考虑如何达到目标,并制定相应的措施和时间表。计划的成功与否取
通过制定计划,我们可以更好地分配时间和资源,提高工作和学习效果。为了编制有效的计划,我们需要先明确自己的目标和需求。计划是一个组织思想、安排行动的过程,它可以帮
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。计划怎么写才能发挥它最大的作用呢?以下我给大家整理了一些
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。计划怎么写才能发挥它最大的作用呢?以下我给大家整理了一些
光阴的迅速,一眨眼就过去了,很快就要开展新的工作了,来为今后的学习制定一份计划。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?以下是小编为大家收集的计划范文
时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。写计划的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编整理的个人今后的计划范文,欢
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是我给大家整理的教案范文,
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编带来的优秀教案范文,希望大家能够喜
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。那么我们写心得体会要注意的内容有什么呢?以下是我帮大家整理的最新心得体
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。那么我们写心得体会要注意的内容有什么呢?以下是我帮大家整理的最新心得体
心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。那么你知道心得体会如何写吗?下面小编给大家带来关于学习心得体会范文,
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。等腰三
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。那么我们该如何写一篇较为完美的计划呢?那么下面我就给大家讲一讲计划书怎么写才比较好,
总结是在探索和进步中不可或缺的一环,它可以帮助我们在前进的道路上更好地调整方向。在总结中,我们可以用实例和案例来说明自己的观点和结论。下面是一些写作优秀的总结例
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。等腰三角形性
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面我帮大家找寻并整理了一些优秀
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下我给大家整理了一些优质的教案范文,希
写心得体会能够帮助我们发现自己的不足和需要改进的地方。写心得体会时要注重思考和分析,不仅要描述自己的经历,还要总结经验和提出建议。接下来是一些写心得体会的完整案
体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。我们想要好好写一篇心得体会,可是却无从下手吗?以下是我帮大家整理的最新
写心得体会能够让我们更加深入地理解和分析所学的内容,提升学习效果。写心得体会时,要注意突出重点和亮点,吸引读者的注意力。以下是小编为大家收集的一些优秀心得体会范
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是我为
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧职业道德模
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
比较是将两个或多个事物进行对照,从而找出它们的异同和相似之处,以更好地理解它们。总结需要遵循一定的逻辑结构和写作规范。阅读这些总结范文,我们可以对不同领域的总结
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。锐角钝角认识教学反
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了
了解别人是如何看待某个问题的,对于我们的判断和决策会有很大的启发。如何扩大环境保护的影响力,让更多人加入到环保事业中来?培养自己的思考能力和创新能力,提升综合素
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
历史是人类社会发展的见证,其研究可以帮助我们认识现在和展望未来。怎样写一篇精彩的演讲稿,让听众印象深刻?通过阅读下面的范文,你可以了解到一些实用的总结写作技巧和
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。那么我们该如何写一篇较为完美的教案呢?下面是我给大家整理的教案范文,欢迎大家阅读分
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下我给大家整理了一些优
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲教案怎么写才比较
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
光阴的迅速,一眨眼就过去了,很快就要开展新的工作了,来为今后的学习制定一份计划。计划怎么写才能发挥它最大的作用呢?下面是小编带来的优秀计划范文,希望大家能够喜欢
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧变化的量教学设计篇一中峰镇
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希

2025年高等数学教学课件免费下载(七篇)

格式:DOC 上传日期:2025-04-24 06:17:50
2025年高等数学教学课件免费下载(七篇)
    小编:毕上公考

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

高等数学教学课件免费下载篇一

高等数学课程在高职院校课程建设体系中占有特殊重要的地位,随着社会经济的不断发展,高等数学的应用已渗透到自然科学、工程技术、生命科学、社会科学、经济管理等众多领域,成为解决各种实际问题的工具,特别是在经贸领域的应用已日益广泛。

高职院校各专业主要培养高等技术应用型专业人才,高等数学课程是一门十分重要的公共基础课,对人才培养质量起着举足轻重的作用,已成为处理经济技术领域专业问题的关键。

二、课程性质、目的和任务

1.课程性质:高等数学是高等院校工科及经管本科各专业最重要的基础课之一,其内容历史悠久,在思想和方法上有显著的特点,具有向学生传授有关连续变量的数学知识、培养学生解决问题的能力及提高学生数学素质的重要作用,为学习后续课程做好准备。高等数学课程的作用是其它课程所不能替代的。

2.课程目的和任务:通过本课程的学习,使学生掌握有关一元函数和多元函数微积分、级数、常微分方程的概念、基本理论和基本方法,培养学生的抽象思维能力、逻辑思维能力、空间想象能力、计算能力、综合运用知识分析解决问题的能力以及新数学知识的自学能力。

三、课程教学内容及概况:针对高职学生的特点,以及各专业后续课程学习的需求,我们选择高等数学的教学内容为第一章 函数、极

限、连续;第二章 一元函数微分法;第三章 一元函数积分法;第四章 多元函数微分法;第五章 多元函数积分法;第六章 无穷级数;第七章 常微分方程。所用教材是2008年西南交通大学出版社出版的《高等数学》,连续在第一学年中的第一和第二学期开课,计划课时数为80节,学分为5个。

三、课程教学基本情况

1.课堂讲授:在讲授的时候,我们尽量采取小班教学;采用黑板加粉笔的课堂讲授与课件配合使用,使学生从中学到本课程的基本内容,并学会逻辑推理的方法。在课程实施方面,我们一直在摸索提高,从过去的重视单纯知识的传授,转变为学生能力的培养;从重视理论推导技能的强化,转变为实际应用训练数学思想的培养;从以教师的讲授为主,转变为学生学习主动性的培养。通过努力,成效明显,学生反映很好。

2.作业方面: 布置习题的目的有两点:一是加深同学对基本概念的理解;二是强化计算方法。习题数量基本上每次课(2学时)布置2~5个题。作业对象为教材课后的习题,从a组题中选择学生的必做题,b组题中选择学生的选做提高题。

3.考核方式及评价标准: 考试形式以笔试形式,题型有选择题、填空题、计算题和证明题。为了更全面地考核所教知识点,我们建立了完整的试题库。最终考核综合参考平时表现(平时到勤情况以及作业情况),加期末考试成绩来进行。平时成绩占总评的30%,期末卷面成绩占总评的70%。

四、课程建设规划

1、课程不足

(1)教学方法与手段不够多元化,“讲授法”占主导,学生“学习疲劳”现象较严重。

(2)课程资源建设滞后,课程内容选取的针对性、应用性不够,缺乏与专业的有机联系。

(3)课程教学设施严重缺乏,既无教学机房,又缺乏教具、学具。

2、课程建设目标

(1)1年内将高等数学建设成为院级精品课程;

(2)2年内将高等数学教学团队建设成为院级优秀教学团队(3)3年内建立1到2间数学实验室

(4)保持历年来参加数学建模竞赛的成绩,努力在获奖数量上提增。

3、建设措施

(1)深入学生及专业调研,准确把握课程标准;

(2)加强教学内容的选取突出基础性、针对性与应用性,逐渐实施以专业为限的分层教学;积极开展实践性教学,提高学生的学习兴趣。

(3)通过数学相关选修课,以及数学建模竞赛等第二课堂,扩展课程空间;

(4)通过开展教师相互听课、评课活动;组织教师业务学习等措施加强教师队伍建设。

高等数学教学课件免费下载篇二

我们要学会欣赏现实生活中的轴对称,体会轴对称在现实生活中的广泛应用和它的丰富文化价值.接下来小编为你带来轴对称数学教学课件,希望对你有帮助。

教学目的1.使学生们对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。

2.通过例题和练习,使学生们能较好地运用本章知识和技能解决有关问题。

重点、难点

判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。

教学过程

一、知识回顾

问题1:轴对称图形的定义是什么?

它是判断图形是否是轴对称图形的依据。

问题2:是否会画轴对称图形的对称轴?

找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。

问题3:轴对称图形对称点的连线与对称轴有什么关系?

轴对称图形对称点的连线被对称轴垂直平分。

问题4:线段垂直平分线、角平分线具有什么性质?

线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。

问题5:等腰三角形有什么性质?

等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。

问题6:如何判断三角形是等腰三角形?等边三角形?

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。

二、例题

1.下列图案是轴对称图形的有()

a.1个 d.2个 c.3个 d.4个

2.如右图所示,已知,oc平分aob,d是oc上一点,deoa,dfob,垂足为e、f点,那么

(1)def与dfe相等吗?为什么?

(2)oe与of相等吗?为什么?

三、巩固练习

如右图所示,已知ab=ac,de垂直平分ab交ac、ab于d、e两点,若ab=12cm,bc=l0cm,a=491454.求△bcd的周长和dbc度数。

四、课堂小结

通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题,

高等数学教学课件免费下载篇三

《高等数学ⅰ》教学大纲

一、课程说明

数学是研究客观世界数量关系和空间形式的科学。现代数学的内容更丰富、方法更综合、应用更广泛。数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一种科学,而且是一种文化。能否运用数学观念定量思维是衡量民族科学文化素质的一个重要标志。数学教育在培养我国社会主义现代化建设所需要的高质量专门人才中越来越显示出其独特的、不可替代的重要作用。

高等数学课程是高等学校各专业学生的一门必修的重要基础理论课。通过本课程的学习,要使得学生获得:一元函数微积分学;向量代数和空间解析几何;多元函数微积分学;无穷级数;常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力,逐步培养学生的探索精神和创新能力。

本大纲的用语,将基本要求分成由低到高的二个层次,对概念理论的要求分为“了解”、“理解”;对方法、运算的要求分为“会”或“了解”、“掌握”。

在教学时数安排上,本课程可安排二个学期,每周6个学时,实际教学时数约180学时。由于我校为三本,学生入学水平较低,教学时数比较紧张。

二、教学要求及教学要点 第一章 函数与极限

(一)教学基本要求: 1.理解函数的概念

2.了解函数奇偶性、单调性、周期性和有界性 3.理解复合函数的概念,了解反函数的概念 4.掌握基本初等函数的性质及图形 5.会建立简单实际问题中的函数关系

6.理解极限的概念(对极限的n、定义可在学习过程中逐步加深理解,对于给出求n或不作过高要求)7.掌握极限四则运算法则

8.了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限 9.了解无穷小无穷大,以及无穷小的阶的概念,会用等价无穷小求极限 10.理解函数在一点连续的概念

1 11.了解间断点的概念,并会判别间断点的类型

12.了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大值最小值定理)

(二)教学要点:

1.函数复习(函数的概念、单调性、周期性、奇偶性,基本初等函数的性质和图形),反函数及复合函数的概念,初等函数,简单实际问题中的函数关系

2.数列的极限,函数的极限,极限的四则运算,极限存在准则,两个重要极限,无穷小和无穷大

3.函数的连续性、间断点的概念,初等函数的连续性,闭区间上连续函数的性质

第二章 导数与微分

(一)教学基本要求:

1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性的关系,会用导数求有关函数的变化率问题

2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的求导公式,了解微分的四则运算法则和一阶微分形式不变性 3.了解高阶导数的概念

4.掌握初等函数一阶、二阶导数的求法

5.会求隐函数和参数方程所确定的函数的一阶、二阶导数,会求反函数的导数

(二)教学要点:

1.导数的概念、几何意义、可导与连续的关系

2.导数的基本公式,复合函数求导法则,反函数,隐函数,参数方程所确定的函数的导数,初等函数的导数,高阶导数

3.微分概念、求法、几何意义,一阶微分形式不变性,微分在近似计算和误差估计中的应用

第三章 中值定理和导数应用

(一)教学基本要求:

1.理解罗尔定理、拉格朗日定理,了解柯西定理和泰勒定理

2.理解函数的极值概念,并掌握用导数判断函数的单调性和求极值的方法

3.会用导数判断函数图形的凹凸性;会求拐点,会描绘函数的图形(包括水平和铅直渐近线)。会求解较简单的最大值和最小值的应用问题 4.会用洛必塔法则求未定式的极限

5.了解曲率和曲率半径的概念,并会计算曲率和曲率半径 6.了解 方程近似解的二分法和切线法

(二)教学要点:

1.罗尔定理、拉格朗日定理和柯西定理、洛必塔法则、泰勒定理 2.函数的增减性和极值,最大值和最小值 3.曲线的凹凸和拐点,函数图形的描绘 4.弧微分、曲率、曲率半径、方程的近似解

第四章 不定积分

(一)教学基本要求:

1.理解不定积分的概念和性质

2.掌握不定积分的基本公式,不定积分的换元法和分部积分法 3.会求简单有理函数的积分

(二)教学要点:

1.不定积分的概念、性质、基本积分表 2.不定积分的换元法和分部积分法

3.有理函数的积分(含三角函数有理式、简单无理函数),积分表的使用

第五章 定积分

(一)教学基本要求: 1.理解定积分的概念及性质

2.理解变上限的定积分作为其上限的函数及其求导定理,掌握牛顿—莱布尼茨公式 3.掌握定积分的换元法和分部积分法

4.了解广义积分的概念,了解定积分的近似计算法(梯形法和抛物线法)

(二)教学要点: 1.定积分的概念、性质 2.微积分基本公式

3.定积分的换元法和分部积分法 4.定积分的近似计算

5.广义积分(含函数的概念和性质)

第六章 定积分的应用

(一)教学基本要求:

掌握用定积分的元素法表达一些几何量与物理量(面积、体积、弧长、功、水压力和引力等)的方法

(二)教学要点:

3 1.定积分的元素法

2.平面图形的面积、体积、平面曲线的弧长 3.功、水压力和引力 4.函数的平均值

第七章 空间解析几何与向量代数

(一)教学基本要求:

1.理解向量的概念,掌握向量的运算(线性运算、点乘、叉乘运算),掌握两个向量夹角的求法与垂直、平行的条件

2.掌握单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法

3.掌握平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题

4.理解曲面方程的概念,了解常用二次曲面的方程及其图形,了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程

5.了解空间曲线的参数方程和一般方程,了解曲面的交线在坐标面上的投影

(二)教学要点:

1.空间直角坐标系,向量的坐标

2.向量的线性运算、向量的数量积、向量积 3.平面及其方程(点法式、一般式、两平面夹角)

4.空间直线及其方程(一般式、对称式、参数方程、直线与直线及直线与平面的夹角)5.曲面及其方程(旋转曲面、柱面)6.空间曲线及其方程 7.二次曲面

第八章 多元函数微分法及其应用

(一)教学基本要求:

1.理解多元函数的概念,了解二元函数的极限、连续性等概念以及有界闭区域上连续函数的性质

2.理解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件 3.了解方向导数和梯度的概念及其计算方法

4.掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数 5.会求隐函数(包括由两个方程组成的方程组的隐函数)的偏导数 6.了解曲线的切线和法平面及曲面的切平面与法线,并会求出它们的方程

4 7.理解多元函数极值和条件极值的概念,会求二元函数的极值。了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题

(二)教学要点:

1.多元函数的概念,二元函数的极限、连续 2.偏导数的概念及其计算法,高阶偏导数 3.全微分及其在近似计算中的应用

4.多元复合函数的求导法则,隐函数的求导法则 5.空间曲线的切线与法平面,曲面的切平面与法线 6.方向导数和梯度

7.多元函数的极值,条件极值和拉格朗日乘数法,最大值和最小值

第九章 重积分

(一)教学基本要求:

1.理解二重积分的概念,了解二重积分的性质 2.掌握二重积分的计算法(直角坐标、极坐标)3.理解三重积分的概念,了解三重积分的性质

4.了解三重积分的计算方法(直角坐标、柱坐标、球坐标)

5.会用重积分求一些几何量与物理量(体积、曲面面积、重心、转动惯量、引力等)

(二)教学要点:

1.二重积分的概念、性质

2.二重积分的计算(直角坐标、极坐标)3.三重积分的概念、性质

4.三重积分的计算(直角坐标、柱坐标、球坐标)

5.重积分在几何、物理上应用(体积、曲面面积、重心、转动惯量、引力等)

第十章 曲线积分与曲面积分

(一)教学基本要求:

1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系 2.会计算两类曲线积分

3.掌握格林公式,会运用平面曲线积分与路径无关的条件 4.了解两类曲面积分的概念及斯托克斯公式,掌握高斯公式 5.会计算两类曲面积分 6.了解散度,旋度的概念

7.会用曲线积分和曲面积分求一些几何量和物理量(曲面面积、弧长、质量、重心、5 转动惯量、功、流量等)

(二)教学要点:

1.两类曲线积分的概念、性质及两类曲线积分的关系 2.两类曲线积分的计算

3.格林公式,曲线积分与路径无关的条件 4.两类曲面积分的概念与性质 5.两类曲面积分的计算 6.高斯公式、通量与散度 7.斯托克斯公式,环流量与旋度

第十一章 无穷级数

(一)教学基本要求:

1.理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件 2.掌握几何级数和p级数的收敛性

3.了解正项级数的比较审敛法,掌握正项级数的比值审敛法 4.了解交错级数的莱布尼茨定理,会估计交错级数的截断误差

5.了解无穷级数绝对收敛和条件收敛的概念以及绝对收敛与条件收敛的关系 6.了解函数项级数的收敛域及和函数的概念

7.掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)8.了解幂级数在其收敛区间内的一些基本性质 9.了解函数展开为泰勒级数的充分必要条件

10.会利用e,sinx,cosx,ln(1x)和(1x)的麦克劳林展开式,将一些简单函数间接展开成幂级数

11.了解幂级数在近似计算上的简单应用

12.了解函数展开为傅立叶级数的狄里克利条件,会将定义在[,]和[l,l]上的函数展开为傅立叶级数,并会将定义在[0,l]上的函数展开为正弦或余弦级数

(二)教学要点:

1.常数项级数的概念、性质及收敛的必要条件 2.几何级数和p级数

3.正项级数的比较审敛法和比值审敛法 4.交错级数的莱布尼茨定理

5.任意项级数的绝对收敛和条件收敛以及它们的关系 6.函数项级数的收敛域及和函数的概念 7.幂级数的收敛区间及其求法 xn 6 8.幂级数在其收敛区间内的一些基本性质

9.函数展开成泰勒级数的充分必要条件,将函数展开成幂级数(间接法)10.幂级数在近似计算上的简单应用

11.傅立叶级数,正弦和余弦级数,周期为2l的周期函数的傅立叶级数

第十二章 常微分方程

(一)教学基本要求:

1.了解微分方程、解、通解、初始条件和特解等概念 2.掌握变量可分离的方程及一阶线性方程的解法

3.会解齐次方程和贝努利方程,并从中领会用变量代换求解方程的思想,会解全微分方程

4.会用降阶法解下列方程:y(n)f(x),yf(x,y)和yf(y,y)5.理解二阶线性微分方程解的结构

6.掌握二阶常系数齐次线性微分方程的解法,并了解高阶常系数齐次线性微分方程的解法

xx7.会求自由项形如:pm(x)e,e(acosxbsinx)的二阶常系数非齐次线性微分方程的特解

8.会用微分方程解一些简单的几何和物理问题

(二)教学要点: 1.微分方程的基本概念

2.可分离变量的微分方程、齐次方程,一阶线性微分方程,贝努利方程,全微分方程 3.可降阶的高阶微分方程 4.二阶线性微分方程解的结构 5.二阶常系数齐次线性微分方程 6.二阶常系数非齐次线性微分方程

三、课程教材及主要参考资料

教材:

同济大学数学教研室主编.《高等数学》.高等教育出版社.1996年12月第四版(本教材获1997年普通高等学校国家级教学成果一等奖)

主要参考资料: [1] 国家理科基地创名牌课程课题组组编,王丽燕,秦禹春编著.《高等数学全程学习指导》(配同济大学高等数学

四、五版).大连理工大学出版社.2000年11月第一版

[2] 同济大学基础数学教研室编.《高等数学解题方法与同步训练》(配同济四版).同济 7 大学出版社.2000年4月第二版

四、其他说明

1.本大纲是以全国高等学校工科数学课程教学指导委员会下发的“工科数学课程教学基本要求”为依据,在总结以往教学经验基础上制订的。

2.习题课是完成高等数学教学基本要求的一个重要环节,因此要加强习题课教学。 3.为掌握本课程内容,学生在一年内应该完成约900道练习题。

执笔人签名:

高等数学教学课件免费下载篇四

《高等数学》说课稿

一、课程分析

1、地位和作用

本课程是通信工程、应用电子工程专业学生专业基础课。根据学生学习的特点,循序渐进,深入浅出,注重工科所需数学知识点的方法的讲解和技能的传授,同时注重教材的实用性,力求适应当前本系工科学生。本教材主要内容包括常系数微分方程、级数、线性代数、概率论。本课程的任务为学生后继课程学习做铺垫,是专业课学习的工具,为培养高技能型人才打下良好的基础。

2、教学目标

(一)知识目标

通过本课程的学习,使学生掌握常微分方程、线性代数、概率统计的基础知识和运算。为学生从事相关工作打下必要的数学基础

(二)能力目标

从培养应用型人才的角度来更新教学内容和改革教学体系,高等数学课程不仅要教学生一些数学工具,它更是培养学生的数学思维,数学素质,使学生具有抽象概括能力,逻辑思维能力。

(三)素质目标

培养独立素质和团队协作的素质。

二、课程设计

1、课程设计理念

根据学生的基础和专业需要,我们将高等数学课程的内容进行

合理切割,并对学生的特点加以优化处理和整合,形成三个模块:基础模块,应用模块和提高模块。

2、重点难点

常微分方程:可分离变量的微分方程、常数变易法、二阶微分方程y=f(x,y),y=f(y,y)的求解、二阶常系数线性齐次微分方程的通解。

无穷级数:级数的概念和性质,数项级数收敛性的判定,幂级数 线性代数:行列式的计算、克莱姆法则、矩阵的运算、初等变换求矩阵的逆矩阵、nn线性方程组的唯一解、用矩阵变换解线性方程组、线性方程组解的判定、向量组的线性相关性、求线性方程组的解。

概率论:随机事件、随即变量及分布。

3、考核方法

书面考试(主要为基本理论和基本知识内容,理解和分析问题)为主。平时作业占课程成绩的30%,期末卷面考试占70%

三、高职高等数学教学理念

根据内容设计,我们选用了人中国计量出版社出版的《高等数学》和高等教育出版社出版的《使用工程数学》,其为高职高专技能紧缺人才培养规划较次,内容符合课程的设计与建设要求。

学情分析:学生参加高考,具备一定初等数学基础知识,但学生学高等数学的基础部扎实。

教学理念:淡化严格的数学论证,把学生从繁琐的数学推导和不

具一般性的数学技巧中解脱出来,根据专业需要调整教学内容,提高学生“用数学”的能力,数学知识以“必需,够用”为原则,才能符合“够用为度”的高职教学理念。

四、教学组织与实施

1、教学方法

“教、学、做、考合一”的教学方法

教师在讲完基本知识后,再进行实例详解,然后布置学生进行具体练习和操作,学生课堂上学与做,发现问题解决问题。实现对知识的理解和掌握,激发学习的积极性,充分发挥学生学习的主题作用。让学生在做中学,学中做,进一步激发了他们的学习兴趣,受到良好的效果。

2、教学手段

教法:数学课程对于高职学生,往往困难很大,教学时力求从学生已有知识和学生学习情况的实际出发引入新课,启发、诱导学生参与教学活动,提出问题、分析问题、解决问题,让学生掌握重点知识,举例练习加深理解知识,突破难点。(1)概念以实例引入,不用严格的定义形式出现,辅以各种背景材料,减少数学形式的抽象感。(2)基本定理,尽量在通俗易懂的叙述中渐入主题,冲淡抽象成分。(3)在讲运算规则和规律时,用一些简易的文字语言解读数学公式。

学法:激励学生积极参与课堂教学活动,狠抓基础,上课紧随讲过的知识点,让学生及时复习巩固,通过练习使学生学会相关知识。

3、学法指导

学生学习需要掌握一定的方法。针对本课特点,一方面,要教给学生认真观察、积极思考的方法和培养学生概括主要内容的能力,另一方面要教给学生分析问题的方法,同时培养学生独立分析问题和解决问题的能力,发展学生的思维和能力。在教学中,实现教法和学法的有机结合和高度统一。

五、课程发展方向

《高等数学》和《工程数学》课程,应以淡化理论、突出应用;打破传统、突出服务的知道思想,以“工学结合”为切入点,突出于专业知识的深度融合,坚持以必需、够用的教学原则,真正使学生能学以致用。

高等数学教学课件免费下载篇五

高等数学教学工作总结

本学期我担任本科金融专业的高等数学教学工作,一学期来,我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。作为任课教师,我能认真制定计划,注重教学理论,认真备课和教学,积极参加教研组活动和学校教研活动,上好每一节课,并能经常听各位优秀老师的课,从中吸取教学经验,取长补短,提高自己的教学的业务水平。还注意多方面、多角度去培养学生的分析能力。

现将本学期的教育教学工作总结如下:

(一)主要工作:

一、加强师德修养,提高道德素质 过去的一个学期中,我认真加强师德修养,提高道德素质。认真学习教育法律法规,严格按照有事业心、有责任心、有上进心、爱校、爱岗、爱生、团结协作、乐于奉献、勇于探索、积极进取的要求去规范自己的行为。对待学生做到:民主平等,公正合理,严格要求,耐心教导;对待同事做到:团结协作、互相尊重、友好相处;对待自己做到:严于律已、以身作则、为人师表。

二、加强教育教学理论学习

能积极投入到课改的实践探索中,认真学习,加快教育、教学方法的研究,更新教育观念,掌握教学改革的方式方法,提高了驾驭课程的能力。

三、教学工作

在教学中,我大胆探索适合于学生发展的教学方法。为了教学质量,我做了下面的工作:

1、认真备好课。

①认真学习钻研教材。了解教材的基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。多方参阅各种资料,力求深入理解教材,准确把握难重点。

②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的措施。

2、坚持坚持学生为主体,向50分钟课堂教学要质量。精心组织好课堂教学,关注全体学生,坚持学生为主体,注意信息反馈,调动学生的注意力,使其保持相对稳定性。同时,激发学生的情感,针对大一学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,注重讲练结合。在教学中注意抓住重点,突破难点。

3、认真批改作业。

在作业批改上,做到认真及时,重在订正,及时反馈。

(二)存在问题

由于我是一名年轻教师,对教材的熟悉程度以及在教学经验上还很欠缺。因此在教学过程中有时会出现一些问题。除此之外,现在注重考察的是学生应用知识的能力,但由于以前的教学模式,学生的这种能力培养还很弱,以后还需加强这方面的培养。

(三)今后努力的方向

1、加强学习,学习新的教学思想。

2、挖掘教材,进一步把握知识点和考点。

3、多听课,学习同科目教师先进的教学方法的教学理念。

4、加强转差培优力度。

5、让学生具有良好的数学思维。

一份耕耘,一份收获,教学工作苦乐相伴。在以后的教学工作中,我要不断总结经验,力求提高自己的教学水平,还要多下功夫加强对个别差生的辅导,相信一切问题都会迎刃而解,我也相信有耕耘总会有收获!

高等数学教学课件免费下载篇六

一、课程的性质、目的和任务

数学是研究客观世界数量关系和空间形式的科学。《高等数学》是医学院校各专业的一门重要的基础课程,为其它学科提供有效的工具及思维方法。其固有的特点就是高度的抽象性、严密的逻辑性和广泛的应用性。学习数学的过程就是思维训练的过程。通过各个教学环节的学习,逐步培养抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,同时,还培养具有综合运用所学知识去分析问题和解决问题的能力。

学习《高等数学》首先是理解概念。数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念;其次,掌握定理。除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢;第三,在每次新的内容学习后须独立地做适量的习题;第四,理清脉络。要对所学的知识有个整体的把握,及时总结知识体系。

通过本课程的学习,要使学生获得:1.函数与极限;2.一元函数微积分学;3.向量代数和空间解析几何;4.多元函数微积分学;5.无穷级数(包括傅立叶级数);6.常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

二、总学时与学分高等数学

本大纲适用于医学类七年制本科学生,教学总时数为144学时,全部为理论课,本课程安排分为高等数学(一)、(二)两学期授课。

三、课程教学的基本要求及基本内容

说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。

(二)

五、向量代数与空间解析几何

1.会计算二阶、三阶行列式。

2.理解空间直角坐标系。

3.理解向量的概念及其表示,掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直、平行的条件。

4.掌握单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。

5.掌握平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题。

6.理解曲面方程的概念,了解常用二次曲面的方程及其图形,了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

7.了解空间曲线的参数方程和一般方程。

8.了解曲面的交线在坐标平面上的投影。

六、多元函数微分学

1.理解多元函数的概念。

2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。

3.理解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,了解一阶全微分形式的不变性。

4.了解方向导数与梯度的概念及其计算方法。

5.掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。

6.会求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。

7.了解曲线的切线和法平面及曲面的切平面与法线,并会求它们的方程。

8.了解多元函数极值和条件极值的概念,会求二元函数的极值。了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。

七、多元函数积分学

1.理解二重积分、三重积分的概念,了解重积分的性质。

2.掌握二重积分的计算方法(直角坐标、极坐标),了解三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。

3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

4.会计算两类曲线积分。

5.掌握格林(green)公式,会使用平面曲线积分与路径无关的条件。

6.了解两类曲面积分的概念及高斯(gua)、斯托克斯(stokes)公式并会计算两类曲面积分。

7.了解散度、旋度的计算公式。

8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功等)。

八、无穷级数

1.理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。

2.掌握几何级数和p-级数的收敛性。

3.了解正项级数的比较审敛法,掌握正项级数的比值审敛法。

4.了解交错级数的莱布尼兹定理,会估计交错级数的截断误差。

5.了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。

6.了解函数项级数的收敛域及和函数的概念。

7.掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。

8.了解幂级数在其收敛区间内的一些基本性质。

9.了解函数展开为泰勒级数的充分必要条件。

10.会利用和的马克劳林(maclaurin)展开式将一些简单的函数间接展开成幂级数。

11.了解幂级数在近似计算上的简单应用。

12.了解函数展开为傅里叶(fourier)级数的狄利克雷(dirichlet)条件,会将定义在数,并会将定义在和上的函数展开为傅里叶级

上的函数展开为正弦或余弦级数。

高等数学教学课件免费下载篇七

高等数学教学大纲

高等数学a—物理计算机类专业

一、说明

(一)课程性质

高等数学a是非数学理工科本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。它内容丰富,学时较多,既要为理工类专业后继课程提供基本的数学工具,为学生进一步学好其它数学奠定基础;又具有培养学生应用数学知识解决本专业实际问题的意识与能力的任务,因此可以说《高等数学》是基础中的基础。

本大纲适应物理类、计算机类专业2006级学生,在大学一年级开设 开课单位:数理与信息科学学院数学系

(二)教学目的及要求

通过本课程的学习,要使学生获得:函数、极限、连续、一元函数微积分学及其应用,常微分方程,向量代数与空间解极几何,多元函数微积分学及其应用,无穷级数等方面的基本概念、基本理论和基本运算技能。

通过各个教学环节逐步培养学生以下几方面的能力:比较熟练的基本运算能力、综合运用所学知识分析和解决实际问题的能力、数学建模及使用计算机求解数学模型的能力、初步抽象概括问题的能力、自主学习的能力以及一定的逻辑推理能力。使学生在掌握数学知识的同时,尽量多地理解数学思想、明晰数学方法、建立数学思维。为学习后继课程和进一步获取数学知识奠定必要的数学基础。

(三)教学内容

1.函数与极限;2.一元函数微积分学;3.向量代数和空间解析几何;4.多元函数微积分学;5.无穷级数(包括傅立叶级数);6.常微分方程等方面的基本概念、基本理论和基本运算技能。

(四)教学时数及学分

总学时:180学时,分两学期授课,每学期各90学时;总学分:2×5学分=10学分

(五)教学方式

(1)用“案例教学法”引入数学概念

在微积分的教学过程中,对于极限、导数、微分、不定积分、定积分、微分方程、向量、偏导数、全微分、重积分、级数、极值与最值等重要数学概念都通过不同的实例引入,以增加学生的学习兴趣和学习动力,为学生利用所学知识解决类似的实际问题奠定基础。

(2)用“讨论法”展开习题课的教学

在高等数学习题课的教学过程中,提出问题,并引导大家讨论问题,不但可以达到释难解疑的目的,而且还能培养锻炼学生的表达能力,激发学生学习热情。(3)用“对比法”引入新的数学概念与运算

在高等数学课程的教学过程中,根据教学内容的需要,适时采用对比法引入新的数学概念与运算。这样,有利于学生消化吸收新的数学概念与运算,达到事半功倍的教学效果。(4)适时地利用直观性教学原则处理抽象的数学概念

在高等数学课程的教学过程中,适时地利用直观性教学原则处理抽象的数学概念是非常重要的.直观性教学法不但可以帮助学生理解抽象的数学概念,而且还可以帮助学生记忆,培养学生形象思维能力。

(5)《高等数学》教学内容的系统性和严谨性是必要的,但在教学上不能过分形式化。在讲授传统内容时,应注意运用现代数学的观点、概念、方法以及术语等符号,加强与其它不同分支之间的相互渗透,不同内容之间的相互联系。淡

化运算技巧训练。

二、本文

高等数学a(一)

函数、极限、连续(16学时)

教学要点:

集合的概念,函数的概念与运算性质、函数作图,几类特殊函数;函数的几何特性;极限的概念及其性质、计算;无穷小的比较;函数的连续与间断;初等函数的连续性,闭区间上连续函数的性质及其应用。

教学内容:

1)函数的概念及函数的奇偶性、单调性、周期性和有界性。

2)复合函数和反函数的概念。3)基本初等函数的性质及其图形。4)建立简单实际问题中的函数关系式。

5)极限的概念(对极限的-n、-定义可在学习过程中逐步加深理解,对于给出求n或不作过高的要求。),极限四则运算法则及换元法则。

6)极限存在的夹逼准则,了解单调有界准则,会用两个重要极限求极限。7)无穷小、无穷大以及无穷小的阶的概念。等价无穷小求极限。

8)函数在一点连续和在一个区间上连续的概念,间断点的概念,判别间断点的类型。9)初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理)。

二 一元函数微分学(28学时)

教学要点:

导数和微分的概念,导数的四则运算及其复合运算,初等函数的导数计算,一阶微分形式不变性;五个微分中值定理;洛必达(l’hospital)法则,用导数判断函数的单调性、极值与最值、凹凸性与拐点、曲率;函数作图。

教学内容:

1)导数和微分的概念,导数的几何意义及函数的可导性与连续性之间的关系。用导数描述一些物理量。2)导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。

3)高阶导数的概念与计算。4)初等函数一阶、二阶导数的求法。

5)隐函数和参数式所确定的函数的一阶、二阶导数;反函数的导数。

6)罗尔(rolle)定理和拉格朗日(lagrange)定理,柯西(cauchy)定理和泰勒(taylor)定理。7)洛必达(l’hospital)法则求不定式的极限。

8)函数的极值概念,用导数判断函数的单调性和求极值的方法。较简单的最大值和最小值的应用问题。9)用导数判断函数图形的凹凸性,拐点,函数的图形(包括水平和铅直渐进线)。10)有向弧与弧微分的概念。曲率和曲率半径的概念并会计算曲率和曲率半径。11)求方程近似解的二分法和切线法。

三 一元函数积分学(30学时)

教学要点:

原函数与不定积分的概念及性质,不定积分的基本公式、换元法和分部积分法。定积分的概念及性质,可积条件,牛顿(newton)-莱布尼兹(leibniz)公式与定积分的计算。定积分的物理应用与几何应用。

教学内容:

1)原函数与不定积分的概念及性质。不定积分的基本公式、换元法和分部积分法。

2)定积分的概念及性质,可积条件。有理函数的积分。

3)变上限的积分作为其上限的函数及其求导定理,牛顿(newton)-莱布尼兹(leibniz)公式。4)定积分的换元法和分部积分法。

5)广义积分的概念以及广义积分的换元法和分部积分法。6)定积分的近似计算法(矩形法、梯形法和抛物线法)。

7)用定积分表达一些几何量与物理量(如面积、体积、弧长、功、引力等)的方法。

四 向量代数与空间解析几何(16学时)教学要点:

向量的概念及其表,向量的运算;平面的方程和直线的方程及其求法,曲面方程。

教学内容:

1)空间直角坐标系。

2)向量的概念及其表示,向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。3)单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。4)平面的方程和直线的方程及其求法,利用平面、直线的相互关系解决有关问题。

5)曲面方程的概念,常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

6)空间曲线的参数方程和一般方程。7)曲面的交线在坐标平面上的投影。

高等数学a(二)五 多元函数微分学(18学时)教学要点:

多元函数的概念,极限与连续性的概念;偏导数和全微分的概念及其与连续的关系,计算;链式法则;高阶导数;隐函数的导数,微分法的几何应用;多云函数极值的概念及其计算。

教学内容:

1)多元函数的概念。

2)二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。

3)偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,了解一阶全微分形式的不变性。4)方向导数与梯度的概念及其计算方法。

5)复合函数一阶偏导数的求法,复合函数的二阶偏导数。6)隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。7)曲线的切线和法平面及曲面的切平面与法线 方程的求法。

8)多元函数极值和条件极值的概念,二元函数的极值。

条件极值的拉格朗日乘数法,一些较简单的最大值和最小值的应用问题。

多元函数积分学(32学时)

教学要点:

二重积分、三重积分的概念及其性质;二重积分、三重积分的计算;曲线积分与曲面积分的概念、性质与计算;格林(green)公式、高斯(gua)、斯托克斯(stokes)公式。各类积分的几何应用与物理应用。

教学内容:

1)二重积分、三重积分的概念,重积分的性质。

2)二重积分的计算方法(直角坐标、极坐标),三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。3)两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。4)会计算两类曲线积分。

5)格林(green)公式,平面曲线积分与路径无关的条件。

6)两类曲面积分的概念及高斯(gua)、斯托克斯(stokes)公式并会计算两类曲面积分。7)散度、旋度的计算公式。

8)重积分、曲线积分及曲面积分求一些几何量与物理量(如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功等)。

七 无穷级数(22学时)

教学要点:

无穷级数收敛、发散以及和的概念,无穷级数基本性质;正项级数的审敛法;条件收敛与绝对收敛的概念及其判别;幂级数的概念与性质、和函数的性质;初等函数的幂级数展开;近似计算;付利叶级数的概念、性质,函数的三角级数展开。

教学内容:

1)无穷级数收敛、发散以及和的概念,无穷级数基本性质及收敛的必要条件。

2)几何级数和p-级数的收敛性。

3)正项级数的比较审敛法,正项级数的比值审敛法。4)交错级数的莱布尼兹定理,交错级数的截断误差的估计。5)无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。6)函数项级数的收敛域及和函数的概念。

7)比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。8)幂级数在其收敛区间内的一些基本性质。9)函数展开为泰勒级数的充分必要条件。

10)e,sinx,cosx,ln(1x)和(1x)的马克劳林(maclaurin)展开式,一些简单函数的幂级数展开。11)幂级数在近似计算上的简单应用。

12)函数展开为傅里叶(fourier)级数的狄利克雷(dirichlet)条件,定义在(,)和(l,l)上函数的傅里叶级展开,x定义在(0,l)上函数展开为正弦或余弦级数。

八 常微分方程(18学时)

教学要点:

微分方程、解、阶、通解、初始条件和特解等概念,一阶微分方程的求解;二阶线性微分方程解的结构,二阶常系数齐次线性微分方程的通解与特解的求解。应用。

教学内容:

1)微分方程、解、阶、通解、初始条件和特解等概念。

2)变量可分离的方程及一阶线性方程的解法。齐次方程和伯努利(bernoulli)方程,用变量代换求方程的思想。3)解全微分方程。4)用降阶法解下列方程:y(n)f(x),yf(x,y)和yf(y,y)。

5)二阶线性微分方程解的结构。

6)二阶常系数齐次线性微分方程的解法,高阶常系数齐次线性微分方程的解法。

xxp(x)e7)自由项形如(n)、e(acosxbsinx)二阶常系数非齐次线性微分方程的特解。

8)微分方程解一些简单的几何和物理问题。

三、参考教材

1、《高等数学》(第五版)上、下册,同济大学应用数学系主编,高等教育出版社

2、《微积分》上、下册,同济大学应用数学系编,高等教育出版社

3、《工科数学分析基础》上、下册,马知恩

王绵森主编,高等教育出版社

4、《数学分析》上、下册,复旦大学陈传璋等编,高等教育出版社

5、《高等数学例题与习题》同济大学高等数学教研室编,同济大学出版社

线 性 代 数—物理计算机类专业

一、说明

(一)课程性质

线性代数在高等理工科类各专业的教学计划中是一门必修的基础理论课,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。

本大纲适应物理类、计算机类专业2006级学生,在大学一年级第一学期开设 开课单位:数理与信息科学学院数学系

(二)教学目的及要求

通过教学,使学生掌握该课程的理论与方法,培养解决实际问题的能力,并为学习相关课程及进一步扩大数学知识面奠定必要的数学基础。

(三)教学内容

1、行列式;

2、矩阵;

3、向量;

4、线性方程组;

5、矩阵的特征值与特征向量;

6、二次型.

(四)教学时数及学分 学时:54学时,学分:3分。

(五)教学方式

讲授与讨论相结合,同时注重基本理论和实际问题的密切结合.

二、本文

一 行列式(8学时)

教学要点:

二阶、三阶行列式的概念与计算,n阶行列式的概念与性质、展开定理,克来姆法则

教学内容:

1)行列式的概念,行列式的定义与性质。

2)应用行列式的性质和行列式的展开定理计算行列式。3)克来姆法则。

4)应用克来姆法则解

二、三元线性方程组。 重点:利用性质、展开法则计算行列式

难点:计算行列式

二 矩阵(8学时)

教学要点:

矩阵的概念、性质、运算,几种特殊的矩阵,逆矩阵,矩阵的秩,矩阵的初等变换

教学内容:

1)矩阵概念,单位矩阵、对角阵、对称阵等性质; 2)矩阵的线性运算、乘法、转置及其运算规律;

3)逆阵的概念,逆矩阵存在的条件与矩阵求逆的方法;

4)矩阵的初等变换,满秩矩阵定义和性质,矩阵秩的概念及其求法,分块矩阵及其运算。重点:矩阵与矩阵的乘法、逆矩阵存在的条件及其求法、矩阵的秩。

三 向量(10学时)

教学要点:

向量的概念及其相关运算;线性相关、线性无关,向量组的最大无关组和向量组的秩。n维向量空间、子空间、基底,维数与坐标等概念

教学内容:

1)n维向量的概念,向量组线性相关、线性无关的定义,向量组线性相关、线性无关的重要结论; 2)向量组的最大无关组与向量组秩的概念,3)n维向量空间、子空间、基底,维数与坐标等概念

重点:线性相关、线性无关,向量组的最大无关组和向量组的秩。难点:线性相关、线性无关,向量组的最大无关组和向量组的秩。

四 线性方程组(8学时)

教学要点:

线性方程组的概念、解的解构,基础解系、通解与特解。

教学内容:

1)齐次线性方程组有非零解的充要条件及齐次线性方程组有解的充要条件。2)齐次线性方程组的基础解系通解等概念及解的结构。3)用行初等变换求线性方程组通解的方法。

重点:掌握求解方程组解的方法、齐次线性方程组有非零解的充要条件及基础解系、非齐次线性方程组有解的充要条件。

五 矩阵的特征值与特征向量(10学时)

教学要点:

矩阵的特征值与特征向量的概念及其求法,矩阵对角化的充要条件,向量组正交化。

教学内容:

1)矩阵的特征值与特征向量的概念及其求法。

2)相似矩阵的概念和性质及矩阵对角化的充要条件,实对称矩阵的相似对角阵。3)线性无关的向量组正交规范化的方法。4)正交变换与正交矩阵的概念和性质。

重点:矩阵的特征值、特征向量及其求法,矩阵对角化及其求法。难点:矩阵对角化及其求法。

六 二次型(10学时)

教学要点:

二次型及矩阵表示;化二次型为标准形,二次型的正定性及其判别法。

教学内容:

1)二次型及矩阵表示,正交变换法化二次型为标准形;

2)惯性定理、二次型的秩和二次型的正定性及其判别法。

重点:利用正交变换把二次型化为标准型。

难点:利用正交变换把二次型化为标准型。

三、参考教材

《线性代数》同济大学数学教研室 《线性代数》(第三版)同济大学出版社

《线性代数》 金一明

中国物资出版社

《线性代数》同济大学数学教研室 《线性代数》(第四版)高等教育出版社

高等数学b—生化专业

一、说明

(一)课程性质

高等数学b是理工科本科对数学要求较低的专业(如生化专业)的一门必修的基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。它内容丰富,学时较多,既要为理工类专业后继课程提供基本的数学工具,为学生进一步学好其它数学奠定基础;又具有培养学生应用数学知识解决本专业实际问题的意识与能力的任务,因此可以说《高等数学》是基础中的基础。

本大纲适应生化学院各专业2006级学生,在大学一年级开设 开课单位:数理与信息科学学院数学系

(二)教学目的及要求

通过本课程的学习,要使学生获得:函数、极限、连续、一元函数微积分学及其应用,常微分方程,向量代数与空间解极几何,多元函数微积分学及其应用等方面的基本概念、基本理论和基本运算技能。

通过各个教学环节逐步培养学生以下几方面的能力:比较熟练的基本运算能力、综合运用所学知识分析和解决实际问题的能力、数学建模及使用计算机求解数学模型的能力、初步抽象概括问题的能力、自主学习的能力以及一定的逻辑推理能力。使学生在掌握数学知识的同时,尽量多地理解数学思想、明晰数学方法、建立数学思维。为学习后继课程和进一步获取数学知识奠定必要的数学基础。

(三)教学内容

1.函数与极限;2.一元函数微积分学;3.常微分方程4.向量代数和空间解析几何; 5.多元函数微积分学等方面的基本概念、基本理论和基本运算技能。

(四)教学时数及学分

总学时: 108学时,分两学期授课,总学分:6学分; 部分专业72学时在第一学期开设,总学分: 4学分。

(五)教学方式

以讲授为主。在微积分的教学过程中,对于极限、导数、微分、不定积分、定积分、微分方程、向量、偏导数、全微分、重积分、级数、极值与最值等重要数学概念都通过不同的实例引入,以增加学生的学习兴趣和学习动力,为学生利用所学知识解决类似的实际问题奠定基础。

《高等数学》教学内容的系统性和严谨性是必要的,但在教学上不能过分形式化。在讲授传统内容时,应注意运用现代数学的观点、概念、方法以及术语等符号,加强与其它不同分支之间的相互渗透,不同内容之间的相互联系。淡化运算技巧训练。

二、本文

函数、极限、连续(15学时)

教学要点:

集合的概念,函数的概念与运算性质、函数作图,几类特殊函数;函数的几何特性;极限的概念及其性质、计算;无穷小的比较;函数的连续与间断;初等函数的连续性,闭区间上连续函数的性质及其应用。

教学内容:

1)函数的概念及函数的奇偶性、单调性、周期性和有界性。

2)复合函数和反函数的概念。3)基本初等函数的性质及其图形。4)建立简单实际问题中的函数关系式。

5)极限的概念(对极限的-n、-定义可在学习过程中逐步加深理解,对于给出求n或不作过高的要求。),极限四则运算法则及换元法则。

6)极限存在的夹逼准则,了解单调有界准则,会用两个重要极限求极限。7)无穷小、无穷大以及无穷小的阶的概念。等价无穷小求极限。

8)函数在一点连续和在一个区间上连续的概念,间断点的概念,判别间断点的类型。9)初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理)。

二 一元函数微分学(21学时)

教学要点:

导数和微分的概念,导数的四则运算及其复合运算,初等函数的导数计算,一阶微分形式不变性;五个微分中值定理;洛必达(l’hospital)法则,用导数判断函数的单调性、极值与最值、凹凸性与拐点、曲率;函数作图。

教学内容:

1)导数和微分的概念,导数的几何意义及函数的可导性与连续性之间的关系。用导数描述一些物理量。2)导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。

3)高阶导数的概念与计算。4)初等函数一阶、二阶导数的求法。

5)隐函数和参数式所确定的函数的一阶、二阶导数;反函数的导数。

6)罗尔(rolle)定理和拉格朗日(lagrange)定理,柯西(cauchy)定理和泰勒(taylor)定理。7)洛必达(l’hospital)法则求不定式的极限。

8)函数的极值概念,用导数判断函数的单调性和求极值的方法。较简单的最大值和最小值的应用问题。9)用导数判断函数图形的凹凸性,会求拐点,函数图形的描绘(包括水平和铅直渐进线)。10)有向弧与弧微分的概念。曲率和曲率半径的概念,曲率和曲率半径。11)方程近似解的二分法和切线法。

三 一元函数积分学(24学时)

教学要点:

原函数与不定积分的概念及性质,不定积分的基本公式、换元法和分部积分法。定积分的概念及性质,可积条件,牛顿(newton)-莱布尼兹(leibniz)公式与定积分的计算。定积分的物理应用与几何应用。

教学内容:

1)原函数与不定积分的概念及性质。不定积分的基本公式、换元法和分部积分法。

2)定积分的概念及性质,了解可积条件。会求简单的有理函数的积分。

3)变上限的积分作为其上限的函数及其求导定理,牛顿(newton)-莱布尼兹(leibniz)公式。4)定积分的换元法和分部积分法。

5)广义积分的概念以及广义积分的换元法和分部积分法。

6)定积分的近似计算法(矩形法、梯形法和抛物线法)。

7)用定积分表达一些几何量与物理量(如面积、体积、弧长、功、引力等)的方法。

四 常微分方程(14学时)

教学要点:

微分方程、解、阶、通解、初始条件和特解等概念,一阶微分方程的求解;二阶线性微分方程解的结构,二阶常系数齐次线性微分方程的通解与特解的求解。应用。

教学内容:

1)微分方程、解、阶、通解、初始条件和特解等概念。

2)变量可分离的方程及一阶线性方程的解法。齐次方程和伯努利(bernoulli)方程,用变量代换求方程的思想。3)解全微分方程。4)用降阶法解下列方程:y(n)f(x),yf(x,y)和yf(y,y)。

5)二阶线性微分方程解的结构。

6)二阶常系数齐次线性微分方程的解法,高阶常系数齐次线性微分方程的解法。

xxp(x)e7)自由项形如(n)、e(acosxbsinx)二阶常系数非齐次线性微分方程的特解。

8)微分方程解一些简单的几何和物理问题。

五 向量代数与空间解析几何(12学时)教学要点:

向量的概念及其表,向量的运算;平面的方程和直线的方程及其求法,曲面方程。

教学内容:

1)空间直角坐标系。

2)向量的概念及其表示,向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。3)单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。4)平面的方程和直线的方程及其求法,利用平面、直线的相互关系解决有关问题。

5)曲面方程的概念,常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

6)空间曲线的参数方程和一般方程。7)曲面的交线在坐标平面上的投影。

六 多元函数微分学(12学时)教学要点:

多元函数的概念,极限与连续性的概念;偏导数和全微分的概念及其与连续的关系,计算;链式法则;高阶导数;隐函数的导数,微分法的几何应用;多云函数极值的概念及其计算。

教学内容:

1)多元函数的概念。

2)二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。

3)偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,了解一阶全微分形式的不变性。4)方向导数与梯度的概念及其计算方法。

5)复合函数一阶偏导数的求法,复合函数的二阶偏导数。6)隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。7)曲线的切线和法平面及曲面的切平面与法线 方程的求法。

8)多元函数极值和条件极值的概念,二元函数的极值。

条件极值的拉格朗日乘数法,一些较简单的最大值和最

小值的应用问题。

多元函数积分学(10学时)

教学要点:

二重积分、三重积分的概念及其性质;二重积分、三重积分的计算;重积分的几何应用与物理应用。

教学内容:

1)二重积分、三重积分的概念,重积分的性质。

三、参考教材

1.《高等数学(少学时类型)》上、下册,同济大学应用数学系编

高等教育出版社 2.《高等数学释疑解难》,工科数学课程教学指导委员会编

高教出版社 3.《高等数学例题与习题》,同济大学数学教研组主编

同济出版社

2)二重积分的计算方法(直角坐标、极坐标),三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。3)利用重积分求一些几何量与物理量(如体积、曲面面积、质量、重心、转动惯量、引力、功等)。

概率论与数理统计

一、说明

(一)课程性质

《概率论与数理统计》非数学专业理工类本科生开设的,制订大纲的原则是使具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习更深的理论打下基础。

(二)教学目的和要求

通过本课程的学习,使学生较好地掌握概率特有的分析概念,并在一定程度上掌握概率论认识问题、解决问题的方法,对数理统计基本概念和结果有一定的了解,并能运用其手法解决实际生产中的简单课题。

本大纲适用于本科专业的教学。概率论与数理统计是一门比较抽象的数学学科,在高等学校非数学理工科类各专业教学计划中是一门重要的基础理论课。通过本课程的教学,使学生掌握概率论与数理统计的基本概念,了解其基本理论和方法,从而使学生初步掌握基本思想和方法,培养学生运用概率论与数理统计方法分析和解决实际问题的能力。

(三)教学内容

本课程介绍概率论的基本概念.随机变量及其概率分布、二项分布、泊松分布及正态分布,随机向量及其分布,数理统计常用的几个分布,数理统计的基本概念,统计推断,应用简介等内容。

重点:详尽讲解基本概念和基本方法。

难点:概率论特有的思考方法是该课的难点,讲解时尽可能将主要概念的产生背景及概念之间的内在联系加以介绍(例如为什么要研究随机理论,数理统计在实际应用中的经济效益)并配合举一些说明问题的例子。

本课程涉及到微积分、代数、解析几何等知识,因而在开设本课程之前需为学生开设预备课程:数学分析、高等代数、解析几何。

(四)教学时数及学分

总学时:54学时 ;总学分:3学分。

(五)教学方式

以讲授为主,在条件允许的情况下,可辅助于实验教学。

在教学中应该注重对学科精神的领会;体现以‘人为本’的教育理念;采用引导式教学模式,即在在传授知识的同时,开阔学生的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的良好习惯,从而激

活学生的创新潜能、激发他们的创新欲望、增长他们的创新能力。

二、本文

一 概率论的基本概念(8学时)教学要点:

本部分介绍随机试验、事件、概率及一些简单性质,古典概型,条件概率,事件的独立性,贝叶斯公式,全概率公式。

教学内容:

1)概率论的研究对象。

2)概率、基本事件、独立性等定义。3)概率的主要性质及运算规则。

4)用贝叶斯公式、全概率公式进行证明与计算。

重点、难点:概率的概念及运算,全概率公式,贝叶斯公式。

随机变量及其分布(8学时)教学要点:

本部分介绍随机变量、离散分布、连续分布及分布函数等内容。

教学内容:

1)概率分布的类型(离散型、连续型)。2)随机变量的分布函数的定义、性质。3)随机变量函数的分布的求解。

重点、难点:学会对不同类型的随机变量用适当的概率方式描述。

多维随机变量及其分布(8学时)教学要点:

本部分介绍二维随机变量的联合分布、边缘分布、条件分布等概念,随机变量独立性概念,及两个随机变量函数的分布的求解。

教学内容:

1)二维随机变量的相关分布。

2)随机变量独立性概念。

3)解简单的两个随机变量函数的分布。

重点、难点:多维随机变量的描述方法、两个随机变量函数的分布的求解。

随机变量的数字特征(10学时)教学要点:

本部分介绍数学期望、方差、协方差、相关系数及矩的概念。

教学内容:

1)各种数字特征的定义及运算性质。

2)几种重要的随机变量的期望及方差。

重点、难点:各种数字特征的概念及算法。

大数定律及中心极限定理(2学时)

教学要点:

本部分介绍两个极限定理。

教学内容:

1)大数定律及中心极限定理的主要内容。

2)用中心极限定理近似计算。

重点、难点:理解依概率收敛的概念。

样本及抽样分布(2学时)教学要点:

本部分介绍数理统计的基本概念几个常用分布。

教学内容:

1)几个基本概念:总体、样本、样本特征及其数值计算。

2)х分布、t分布、f分布这三个常用分布。

3)几个常用的抽样分布。

重点、难点:抽样分布的概念。

2七 参数估计(8学时)教学要点:

本部分介绍估计量及其好坏标准,求估计量的方法,置信区间等内容。

教学内容:

1)参数估计的基本提法。

2)参数估计的两种方法:点估计法和区间估计法。

重点、难点:矩估计法、极大似然估计法、置信区间及单侧置信区间。

八 假设检验(8学时)教学要点:

本部分介绍假设检验的基本内容。

教学内容:

1)假设检验的原理:小概率事件原理。

2)最小二乘原理并会做一元线性回归。

重点、难点:方差分析及回归分析的原理及方法。

三、参考教材

1、《概率论与数理统计》浙江大学数学系盛骤等编著,高等教育出版社。 2.《概率论与数理统计》(第二版)华中科技大学数学系,高教出版社 3.《概率论与数理统计教程》周概容著,高等教育出版社。4.《概率论基础及其应用》王梓坤著,科学出版社。

5、《概率论与数理统计教程》(第四版)沈恒范编,高等教育出版社,2003.

6、《概率论与数理统计学习辅导与习题全解》华中科技大学数学系,高教出版社,2003.

7、《概率论与数理统计教程》茆诗松等编著,高等教育出版社,2004.

8、《概率论与数理统计》陈希孺编著,科学出版社,中国科学技术大学出版社,2000.

9、《概率论与数理统计教程》 魏宗舒编,概高等教育出版社,1983.10、《概率论基础及其应用》 王梓坤编,高等教育出版社,1996.微积分—经济类专业

一、说明

(一)课程性质

微积分是经济与现代科学管理科学中的一种基本分析工具,是经济类专业本科生的数学基础课,是必修的重要理论基础课程。

本大纲从经济系经济类各专业2004级本科生开始执行,在大学一年级开设。

开课单位:数理与信息科学学院数学系

(二)教学目标及要求

课程以极限理论为基础,研究微分和积分的理论和应用,也就是更深入地研究函数的连续性、可微性和可积性等问题。学习此课程的目的是获得微积分的基本概念、基本理论、基本方法和运算技能,培养学生抽象思维能力,提高学生数学思想和解决问题能力方面的基本素质,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的数学基础。数学课是大学生入学后分量较重的一门课,本课程还应有这样的作用,使他们尽快地适应大学阶段的学习特点。

(三)教学内容

微积分课程要用两个学期,要求学生学习一元函数微积分(导数,不定积分与定积分的概念、计算),多元函数微积分(空间解析几何简介,偏导数与多重积分计算),无穷级数(数项级数的概念和审敛法;函数项级数的概念、求和函数和函数展开成幂级数),常微分方程和差分方程。以及它们在经济函数中的应用。这些应涵盖考研数学三中的微积分部分所要求的内容。

(四)、课程总学时学分要求

总课时为136学时,总学分 7学分。在大学一年级分两学期开设。

微积分ⅰ:64学时,3学分;微积分ⅱ:72学时,4学分。

(五)教学方式

以讲授为主,在条件允许的情况下,可辅助于实验教学。

在教学中应该注重对学科精神的领会;体现以‘人为本’的教育理念;采用引导式教学模式,即在在传授知识的同时,开阔学生的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的良好习惯,从而激活学生的创新潜能、激发他们的创新欲望、增长他们的创新能力。

二、本文

微积分ⅰ

函数(6课时)

教学要点:

预备知识,函数概念,函数的几何特征,反函数,复合函数,初等函数,简单函数关系的建立。

教学内容:

1)实数与实数绝对值的概念,解简单绝对值不等式的方法。2)函数、函数的定义域和值域等概念,函数的表示法。3)函数的几何特性及其各几何特性的图形特征。

4)反函数的概念;函数与其反函数的图形关系;简单函数的反函数。

5)复合函数的概念;两个(或多个)函数能构成复合函数的条件;求简单函数复合运算的方法;将一个复合函数分解为较简单函数的方法。

6)基本初等函数及其定义域、值域等概念;基本初等函数的基本性质。7)初等函数的概念;分段函数的概念。

8)成本、收益、利润、需求、供给等经济函数及其性质;会建立简单应用问题的函数关系。

注:本章内容带有复习性质,凡中学已经学过的有关函数的知识,只需加以总结,不必再作详细讲解。

极限与连续(16学时)

教学要点:

数列极限;函数极限,函数极限的性质及运算法则,无穷大量与无穷小量;函数的连续性,闭区间上连续函数的性

教学内容:

1)数列、数列的收敛和发散、数列极限等概念;数列极限的四则运算性质和夹逼定理;单调数列、有界数列的概念;

n收敛数列的简单性质和数列{(11的极限。(数列极限的分析定义以及与之相关的性质证明不作要求)n)}2)函数的极限过程概念;函数在某一过程下的收敛、发散、极限等概念;单侧极限的概念;利用函数的图形认识函数极限;利用函数值的变化趋势认识函数极限。

3)函数极限的局部有界性和保号性;函数极限的夹逼定理、四则运算法则和复合函数的极限;利用四则运算和变量替换求极限的方法。(函数极限的分析定义以及与之相关的性质证明不作要求)

4)无穷小量和无穷大量的概念和基本性质;无穷小量阶的比较以及常见的等价无穷小量;无穷小量与无穷大量之间的关系;等价无穷小量在求极限中的应用。

5)函数连续、左连续、右连续以及函数间断的概念;函数间断点的分类。

6)函数在连续点的局部性质、四则运算性质;复合函数的连续性,初等函数在其定义区间内必连续的结论;函数的连续性在求函数极限中的应用。

7)函数的零点概念;闭区间上连续函数的性质及其应用。(闭区间上连续函数的性质不作证明,只介绍其应用)

导数与微分(12学时)

教学要点:

导数概念,导数运算与导数公式,复合函数求导法则,微分及其计算,高阶导数与高阶微分,导数与微分在经济学中的简单应用

教学内容:

1)导数的概念;导数的几何意义与经济意义;函数在可导点的局部性质。2)基本初等函数的导数公式。3)导数的四则运算公式。

4)反函数的导数公式(反函数求导公式的证明不作要求)。5)复合函数导数的链式法则(证明不作要求)。6)对数求导法与隐函数求导法。

7)微分的概念;可导与可微的关系;求函数微分的方法和运算法则;微分在近似计算中的应用和一次微分的形式不变性。

8)高阶导数的概念和记号;求二阶、三阶导数及某些简单函数的n阶导数的方法;高阶微分的概念和记号。9)边际与弹性的概念;边际收益和需求价格弹性之间的关系。

中值定理与导数的应用(18学时)

教学要点:

微分中值定理;泰勒公式,洛必达法则;函数的单调性与凹凸性,函数的极值与最大(小)值,函数作图

教学内容:

1)函数极值的定义;费马定理、罗尔定理、拉格朗日定理和柯西定理及其证明;这些定理的应用以及它们之间的关系

2)泰勒定理及其在求函数极限中的应用。

3)洛必达法则和各种未定式的定值方法。(只证明

0型不等式的洛必达法则,型未定式的洛必达法则的证明不0作要求)

4)函数单调性和凹凸性的判别方法;曲线拐点;函数单调性和凹凸性的应用。

5)函数的极值与最值;函数极值与最值的关系与区别;某些简单经济应用问题中的极值。6)简单函数的渐近线;函数作图的基本步骤和方法;某些简单函数的图形。

不定积分(12学时)

教学要点:

原函数与不定积分的概念;基本积分公式;换元积分法;分部积分法。

教学内容:

1)原函数与不定积分的概念,不定积分的基本性质。2)基本积分表。

3)计算不定积分的二种换元积分法和分部积分法。

4)三种简单的分式的不定积分:

aamxn2dx,dxxa(xa)mx2pxqdx(p-4q0)。

微积分ⅱ

定积分(16学时)

教学要点:

定积分的概念与性质;微积分基本定理;定积分的换元积分法和分部积分法;定积分的应用 ;反常积分初步。

教学内容:

1)定积分的概念和基本性质,积分中值定理。2)牛顿-莱布尼兹公式;变限积分的导数。3)定积分的换元积分法和分部积分法。

4)求总量的微元法;利用定积分计算平面图形的面积和旋转体的体积;利用定积分求解一些简单的经济应用问题。5)反常积分收敛与发散的概念;计算收敛的反常积分的方法;反常积分数和函数的概念、基本性质以及递推公式。

1111dx的敛散性条件;dx与 函pp0xx

多元函数微积分学(24学时)

教学要点:

预备知识,多元函数的概念;方向导数、偏导数与全微分;多元复合函数与隐函数微分法;高阶偏导数与高阶全微分;多元函数的极值。

教学内容:

1)空间坐标系的有关概念,空间两点之间的距离;向量的概念和坐标表示;向量的平行和垂直的坐标表示;平面和空间中常见的二次曲面的方程;平面上点的邻域、区域及其边界、闭区域等概念。2)多元函数的概念;二元函数的定义与表示法。3)二元函数的极限与连续性的概念。

4)二元函数的方向导数、偏导数、全微分的概念;多元函数的偏导数与全微分的概念;求偏导数与全微分的方法;函数的梯度概念。

5)多元复合函数偏导数的链式法则;多元函数的一次微分形式不变性;隐函数的微分法。6)二元函数的高阶偏导数和高阶全微分的表示及其求法。

7)二元函数极值与条件极值的概念;二元函数极值存在的必要条件与充分条件;二元函数的极值;用拉格朗日乘数法求简单二元函数的条件极值。

8)二重积分的概念、几何意义与基本性质;在直角坐标系与极坐标系下计算二重积分的常用方法;一些简单的二重积分的计算;无界区域上的反常二重积分概念、记号。

无穷级数(14学时)

教学要点:

常数项级数的概念和性质,正项级数,任意项级数,幂级数。

教学内容:

1)无穷级数及其一般项、部分和、收敛与发散,以及收敛级数的和等基本概念。2)几何级数与p级数的敛散性判别条件;调和级数的敛散性。3)级数收敛的必要条件,以及收敛级数的基本性质。

4)正项级数的比较判别法、比值判别法、根值判别法,正项级数的积分判别法。5)交错级数的莱布尼兹判别法。

6)任意项级数绝对收敛与条件收敛的概念;绝对收敛与条件收敛的判别方法。

7)函数项级数的收敛点、收敛域、和函数等基本概念;幂级数的阿贝尔定理;幂级数的收敛点、收敛半径、收敛区间、收敛域、和函数概念;幂级数收敛半径、收敛区间的求法;幂级数收敛域的求法;幂级数在收敛区间内的连续性、逐项求导公式、逐项求积公式;幂级数在收敛区间内的性质求简单幂级数的和函数及简单数项级数的和。

8)函数的泰勒级数、麦克劳林级数;基本初等函数的麦克劳林展开式;间接展开法求一些简单函数的幂级数展开式。

微分方程初步(10学时)

教学要点:

微分方程的基本概念;一阶微分方程;二阶常系数线性微分方程;微分方程在经济学中的应用

教学内容:

1)微分方程的阶、通解与特解等概念。

2)可分离变量方程、齐次方程和一阶线性微分方程的解法。

3)二阶常系数齐次和非齐次线性微分方程解的结构;二阶常系数齐次线性微分方程的解法;二阶常系数非齐次线性微分方程特解和通解的求法。

4)一些简单的经济应用题。

十 差分方程(8学时)

教学要点:

差分方程的基本概念;一阶常系数线性差分方程;二阶常系数线性差分方程;差分方程在经济学中的简单应用。

教学内容:

1)差分与差分方程,差分方程的阶与解(通解与特征)等概念。2)一阶与二阶常系数齐次线性差分方程的解法。

3)某些特殊的一阶与二阶常系数非齐次线性差分方程的特解与通解。4)一些简单经济应用题。

三、教材与参考教材

教材:《微积分》(第二版)朱来义主编 高等教育出版社2004.3第二版 参考书: 《高等数学》(第五版)同济大学应用数学系主编 高等教育出版社2002年7月出版 《微积分与数学模型》贾晓峰主编 高等教育出版社

《微积分学习与考试指导》赵树螈 胡显佑 陆启良 中国人民大学出版社 《经济数学基础教材辅导》(微积分)北大数学科学学院 田勇 主编

双博士数学课题组 编写 机械工业出版社2002 《微积分学习指导》 韩云瑞 等编 清华大学出版社

《微积分全程学习指导》第二版 王丽燕 秦禹春 编著 大连理工大学出版社

线 性 代 数—经济类专业

一、说明

(一)课程性质

本课程是高等经济类各专业的一门必修的基础理论课,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。

本大纲适应经济类专业2006级学生,在大学一年级第一学期开设 开课单位:数理与信息科学学院数学系

(二)教学目的及要求

通过教学,使学生掌握该课程的理论与方法,培养解决实际问题的能力,并为学习相关课程及进一步扩大数学知识面奠定必要的数学基础。

(三)教学内容

1、矩阵;

2、线性方程组;

3、线性空间与线性变换

4、矩阵的特征值与特征向量;

5、二次型.

(四)教学时数及学分 学时:54学时,学分:3分。

(五)教学方式

讲授与讨论相结合,同时注重基本理论和实际问题的密切结合.

一 矩阵(16学时)

教学要点:

矩阵的概念,矩阵的运算,方阵的行列式,矩阵的分块,可逆矩阵,矩阵的初等变换,矩阵的秩,矩阵应用的两个例子。

教学内容:

1)2)3)4)5)6)

矩阵的加法、乘法、数乘和转置的定义及其运算法则,矩阵的经济背景。方阵的行列式定义,行列式的性质。

矩阵分块的概念;分块矩阵的运算及其运算法则。可逆矩阵的概念及其性质,用伴随矩阵求矩阵的逆。

矩阵初等变换的概念及其与初等矩阵的关系,用行初等变换的方法求矩阵的逆。矩阵的秩的概念。

二 线性方程组(20学时)

教学要点:

线性方程组,向量及其线性运算,向量间的线性关系,向量组的秩,线性方程组解的结构,rn的标准正交基

教学内容:

1)克拉默法则的条件和结论;线性方程组有解的判别定理。2)n维向量的概念;向量的加法和数乘运算及其运算法则。

3)向量的线性组合的概念; 向量组线性相关和线性无关的概念; 向量组的极大线性无关组的概念; 向量组的秩和矩阵的秩的关系。向量组的极大无关组和秩。

4)齐次线性方程组的基础解系的概念;线性方程组解的性质和解的结构;用行初等变换的方法求线性方程组的一般解,由此求出方程组的全部解。

5)rn的基的概念;向量内积的定义及其运算性质;向量正交的定义和正交向量组的概念;掌握施密特正交化方法; rn的标准正交基的概念;正交矩阵的定义与性质。

三 线性空间与线性变换(8学时)

教学要点:

线性空间,线性变换,欧几里得空间简介

教学内容:

1)线性空间的概念,知道线性空间的维数、基与坐标,基变换与坐标变换的矩阵表示。2)线性变换的定义及简单性质,线性变换在一组基下的矩阵,线性变换与矩阵的对应关系。

3)欧几里得空间中的内积、向量长度、向量的夹角、向量正交等概念。标准正交基以及求标准正交基的施密特正交化方法。正交矩阵与正交变换的概念。

四 矩阵的特征值和特征向量(12学时)

教学要点:

矩阵的特征值和特征向量,相似矩阵与矩阵可对角化的条件,实对称矩阵的特征值和特征向量,矩阵级数,应用(一),应用(二)——投入产出分析简介

教学内容:

1)矩阵特征值和特征向量的概念;特征值和特征向量的性质;求矩阵特征值和特征向量的方法。2)矩阵相似的定义和相似矩阵的性质;一般的n阶矩阵与对角形矩阵相似的条件。3)实对称矩阵的特征值和特征向量的性质;将实对称矩阵化为对角阵的方法。

五 二次型(14学时)

教学要点:

基本概念,二次型的标准形与规范形,二次型和对称矩阵的有定性,正定矩阵的应用

教学内容:

1)二次型的定义;二次型的矩阵表示方法。

2)可逆线性替换的概念;矩阵合同的定义与合同矩阵的性质。

3)用配方法化二次型为标准形;用正交变换法和初等变换法(合同变换法)化二次型为标准形的方法。4)惯性定理;正定二次型与正定矩阵的定义和正定的几个充分必要条件。

三、教材与参考教材 1.《线性代数》,卢刚主编,高等教育出版社。

2、《线性代数》,赵树嫄.北京:人民大学出版社 2001年8月第三版第九次印刷

3、《线性代数》,丁雨丰、籍明文.天津:南开大学出版社

4、《linear algebra and its application》,david .5、《线性代数》,同济大学.北京:高等教育出版社

概率论与数理统计—经济类专业

一、说明

(一)课程性质

《概率论与数理统计》是高等经济类各专业的一门必修的基础理论课,制订大纲的原则是使具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习更深的理论打下基础。

(二)教学目的和要求

通过本课程的学习,使学生了解概率论与数理统计的基本概念,掌握概率论与数理统计的基本理论,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法解决实际问题的能力。

本大纲适用于本科专业的教学。概率论与数理统计是一门比较抽象的数学学科,在高等学校非数学理工科类各专业教学计划中是一门重要的基础理论课。通过本课程的教学,使学生掌握概率论与数理统计的基本概念,了解其基本理论和方法,从而使学生初步掌握基本思想和方法,培养学生运用概率论与数理统计方法分析和解决实际问题的能力。

(三)教学内容

本课程介绍概率论的基本概念.随机变量及其概率分布、二项分布、泊松分布及正态分布,随机向量及其分布,数理统计常用的几个分布,数理统计的基本概念,统计推断,应用简介等内容。

重点:详尽讲解基本概念和基本方法。

难点:概率论特有的思考方法是该课的难点,讲解时尽可能将主要概念的产生背景及概念之间的内在联系加以介绍(例如为什么要研究随机理论,数理统计在实际应用中的经济效益)并配合举一些说明问题的例子。

本课程涉及到微积分、代数、解析几何等知识,因而在开设本课程之前需为学生开设预备课程:数学分析、高等代数、解析几何。

(四)教学时数及学分

总学时:72学时 ;总学分:4学分。

(五)教学方式

以讲授为主,在条件允许的情况下,可辅助于实验教学。

在教学中应该注重对学科精神的领会;体现以‘人为本’的教育理念;采用引导式教学模式,即在在传授知识的同时,开阔学生的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的良好习惯,从而激活学生的创新潜能、激发他们的创新欲望、增长他们的创新能力。

二、本文

随机事件与概率(10学时)

教学要点:

随机事件,随机事件的概率,古典概型与几何概型,条件概率,事件的独立性

教学内容:

1)随机事件、随机事件的频数、频率、概率等概念。

2)随机事件的关系与运算,随机事件的运算律,概率的基本性质。3)古典概型与几何概型的概念,较简单的古典概型和几何概型问题。

4)条件概率的概念,乘法公式,全概率公式和贝叶斯公式,及有关问题的求解。5)事件的独立性概念,伯努利概型。

随机变量的分布与数字特征(12学时)

教学要点:

随机变量及其分布,随机变量的数字特征,常用的离散型分布,常用的连续型分布,随机变量函数的分布。

教学内容:

1)随机变量的概念;离散型随机变量的概率分布、连续型随机变量的概率密度、随机变量的分布函数等概念及其性质。

2)随机变量的期望和方差的定义与性质;利用随机变量的分布,求其期望与方差。切比雪夫不等式。

3)几种常用的离散型和连续型随机变量的分布以及它们的期望与方差。标准正态分布函数表。4)简单随机变量函数的分布。

随机向量(12学时)

教学要点:

随机向量的分布,条件分布与随机变量的独立性,随机向量的函数的分布与数学期望,随机向量的数字特征,大数定律与中心极限定理

教学内容:

1)2)3)4)5)6)二维随机向量的联合分布与边缘分布的概念。

已知联合分布会求边缘分布; 条件分布的概念; 随机变量的独立性。随机变量的期望和方差的进一步性质。

协方差、协差阵和相关系数等概念 协方差的性质,协方差、协差阵和相关系数的求法。

二维随机向量的函数的分布。

二维正态分布的密度函数。

大数定律的含义,中心极限定理。

数理统计的基础知识(6学时)

教学要点:

总体与样本,统计量,常用的统计分布,抽样分布。

教学内容:

1)总体,样本,样本容量及样本分布的概念。

2)统计量和枢轴量的概念;分位数的概念;常用统计量的定义,χ2分布表,t分布表和f分布表;正态总体的样本分布的主要结论。

参数估计与假设检验(12学时)

教学要点:

点估计概述,参数的最大似然估计与矩估计,置信区间,假设检验概述,单正态总体的参数假设检验,双正态总体的参数假设检验,一般总体的参数假设检验,拟合优度χ2检验与独立性检验。

教学内容:

1)参数点估计的两种方法:最大似然估计法与矩估计法;评价估计量的标准:无偏性和有效性,相合性(一致性)的概念。

2)置信区间的概念;求正态总体参数的置信区间的方法;在大样本下,求概率p的置信区间。假设检验的概念和基本思想。

3)正态总体的未知参数的各种假设检验方法(单个正态总体的均值,方差的检验及两个正态总体的均值差,方差比的检验)。

4)关于分布的假设检验方法(拟合优度χ2检验与独立性检验)。

方差分析(10学时)

教学要点:

方差分析概述,单因素方差分析,双因素方差分析。

教学内容:

1)方差分析的统计思想,明确要做什么。

2)单因素方差分析的数学模型,建立原假设,方差分析表,正确分析检验结果。3)双因素方差分析的数学模型,建立原假设,方差分析表,正确分析检验结果。

回归分析(10学时)

教学要点:

一元线性回归模型及其参数估计,一元线性回归模型的检验,一元线性回归的残差分析,一元线性回归的预测和控制,一元非线性问题的线性化,多元线性回归分析。

教学内容:

`1)回归分析的基本概念和统计思想,与统计相关的概念。

2)一元线性回归的数学模型,对模型种的未知参数进行ls估计,建立变量间的统计相关关系的定量表达式――回归方程;线性回归模型中的相关性加上进行显著性检验,点估计和区间估计。

3)多元线性回归的数学模型,未知参ls估计的矩阵表达法以及对线性回归模型的相关性假设进行显著性检验。在确认存在线性相关关系的条件下,对回归参数的假设进行检验。

4)回归的基本思想和步骤。

三、教材与教学参考书

1、《概率论与数理统计》,龙永红编 高等教育出版社,2004年4月,第二版.2、《概率论与数理统计》(第二版)华中科技大学数学系,高教出版社,2003.

3、《概率论与数理统计学习辅导与习题全解》华中科技大学数学系,高教出版社,2003.

4、《概率论与数理统计教程》茆诗松等编著,高等教育出版社,2004.

5、《概率论与数理统计》陈希孺编著,科学出版社,中国科学技术大学出版社,2000.

6、《概率论与数理统计教程》 魏宗舒编,概高等教育出版社,1983.7、《概率论基础及其应用》 王梓坤编,高等教育出版社,1996.8、《概率论基础》 李贤平编,高等教育出版社,1997.

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 软件
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
总结是对过去的一种回顾,同时也是对未来的一种规划和指导。写总结时,还可以请教他人的意见和建议,从不同的角度和视角来审视和改进自己的总结作品。以下是小编为大家整理
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。认识小数评课
总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。怎样写总结才更能起到其作用呢?总结应该怎么写呢?以下我给大家整理了一
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?下面是我给大家整理的教案范文,欢迎大家阅读分享借
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么我们该如何写一篇较为完美的教案呢?下面我帮大家找寻并整理了一些优秀的教案范
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面
在工作生活中,总结是提高效率和提升能力的有效方式。总结是评估自己的机会,该如何抓住它呢?以下是小编为大家整理的一些优秀总结样本,希望能够对大家的写作有所帮助。评
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。计划怎么写才能发挥它最大的作用呢?下面是小编整理的个人今后的计划范文,欢迎阅读分享,
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
在当下社会,接触并使用报告的人越来越多,不同的报告内容同样也是不同的。报告对于我们的帮助很大,所以我们要好好写一篇报告。下面我给大家整理了一些优秀的报告范文,希
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下是小编为大家
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?那么下面我就给大家讲一讲教案怎么写才比较好,我们一
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来
教案应当符合教育教学的原则和教学计划的要求,既有可操作性又有可评价性。教案应该围绕教学目标展开,合理安排各个教学环节的时间和任务。在以下范文中,可以看到不同学科
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下是小编
通过演讲稿的准备,可以帮助演讲者更好地控制演讲的时间和节奏。写演讲稿时,可以通过讲述一些生动的故事、引用精彩的引言或提出挑战性问题来引发听众的思考和共鸣。如果你
演讲稿中的语言应该精确、简洁,并具备一定的感染力,能够打动听众的心。演讲稿要注意避免过分夸张和庸俗浮夸的言辞,保持真实和中肯。以下是一些富有情感的演讲稿,这些演
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看
时间是公平的,每个人都是一天24小时,如何安排好这段时间取决于个人的自制力和效率。情感表达是情感智能的重要组成部分,需要我们不断提高和培养。以下是我为大家收集的
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是我为大家
提高口头表达和写作能力,培养沟通交流技巧。总结是一个重要的环节,帮助我们更好地反思过去的经验。通过阅读总结范文,我们可以拓宽思路,丰富写作的内容和形式。《比的应
计划是指为了达到某种目标或完成某项任务而做出的详细安排和安排程序的活动,它可以使我们有条不紊地进行工作和生活。计划给我们提供了一定的目标方向和时间节点,让我们能
制定计划前,要分析研究工作现状,充分了解下一步工作是在什么基础上进行的,是依据什么来制定这个计划的。写计划的时候需要注意什么呢?有哪些格式需要注意呢?这里给大家
计划可以帮助我们更好地分配工作任务,给予每个人合适的责任和权力。制定计划时,我们需要考虑到可能遇到的挑战和困难,并制定解决方案。着眼于未来,做好长远规划,实现更
计划是一种对自己负责,对未来负责的态度,是我们追求精益求精的动力之一。在制定计划时,要先明确目标,再考虑如何达到目标,并制定相应的措施和时间表。计划的成功与否取
通过制定计划,我们可以更好地分配时间和资源,提高工作和学习效果。为了编制有效的计划,我们需要先明确自己的目标和需求。计划是一个组织思想、安排行动的过程,它可以帮
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。计划怎么写才能发挥它最大的作用呢?以下我给大家整理了一些
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。计划怎么写才能发挥它最大的作用呢?以下我给大家整理了一些
光阴的迅速,一眨眼就过去了,很快就要开展新的工作了,来为今后的学习制定一份计划。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?以下是小编为大家收集的计划范文
时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。写计划的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编整理的个人今后的计划范文,欢
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是我给大家整理的教案范文,
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编带来的优秀教案范文,希望大家能够喜
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。那么我们写心得体会要注意的内容有什么呢?以下是我帮大家整理的最新心得体
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。那么我们写心得体会要注意的内容有什么呢?以下是我帮大家整理的最新心得体
心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。那么你知道心得体会如何写吗?下面小编给大家带来关于学习心得体会范文,
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。等腰三
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。那么我们该如何写一篇较为完美的计划呢?那么下面我就给大家讲一讲计划书怎么写才比较好,
总结是在探索和进步中不可或缺的一环,它可以帮助我们在前进的道路上更好地调整方向。在总结中,我们可以用实例和案例来说明自己的观点和结论。下面是一些写作优秀的总结例
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。等腰三角形性
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面我帮大家找寻并整理了一些优秀
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下我给大家整理了一些优质的教案范文,希
写心得体会能够帮助我们发现自己的不足和需要改进的地方。写心得体会时要注重思考和分析,不仅要描述自己的经历,还要总结经验和提出建议。接下来是一些写心得体会的完整案
体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。我们想要好好写一篇心得体会,可是却无从下手吗?以下是我帮大家整理的最新
写心得体会能够让我们更加深入地理解和分析所学的内容,提升学习效果。写心得体会时,要注意突出重点和亮点,吸引读者的注意力。以下是小编为大家收集的一些优秀心得体会范
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是我为
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文
musicolet
2025-08-21
Musicolet作为一款高质量音乐播放器,确实不负众望。它不仅汇集了海量的音乐资源,包括网络热歌与歌手新作,即便是小众歌曲也能轻松找到,满足不同用户的音乐需求。更重要的是,该软件干扰,提供清晰音质和完整歌词,为用户营造了一个纯净、沉浸式的听歌环境。对于追求高品质音乐体验的朋友来说,Musicolet绝对值得一试。
Anyview阅读器的历史版本是一款出色的在线小说阅读软件,它提供了详尽而全面的小说分类,涵盖了都市、武侠、玄幻、悬疑等多种类型的小说。用户可以随时在线阅读自己喜欢的小说,并且该软件还支持多种阅读模式和功能设置,让用户能够自由地免费阅读感兴趣的内容。这不仅为用户带来了全方位的追书体验,还配备了便捷的书架管理功能,方便用户轻松收藏热门小说资源,并随时查看小说更新情况,以便于下次继续阅读。欢迎对此感兴趣的用户下载使用。
BBC英语
2025-08-21
BBC英语是一款专为英语学习设计的软件,它提供了丰富多样的专业英语学习资源。无论你是想提高口语水平还是锻炼听力能力,这里都有专门针对这些需求的训练内容。此外,该软件还能智能地评估和纠正你的口语发音,帮助你使发音更加标准、记忆更加准确。
百度汉语词典
2025-08-21
百度汉语词典是一款专为汉语学习设计的软件。通过这款软件,用户能够访问到丰富的汉语学习资源,包括详细的学习计划和学习进度统计等功能,提供了非常全面的数据支持。该软件还支持汉字查询,并且可以进行多种词典内容的关联搜索,从而在很大程度上满足了用户对于汉语学习的各种需求。
屏幕方向管理器是一款专为用户提供手机方向控制服务的应用程序。作为一款专业的管理工具,它能够强制调整手机屏幕的旋转方向。这款应用程序提供了多种功能,使用户能够轻松选择个性化的屏幕旋转方式。此外,屏幕方向管理器还具备丰富的设置选项,让用户可以通过简单的操作实现更多个性化配置,使用起来既方便又快捷。

关于我们 | 网站导航 | 网站地图 | 购买指南 | 联系我们

联系电话:(0512)55170217  邮箱: 邮箱:3455265070@qq.com
考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved. 工信部备案号: 闽ICP备2025091152号-1