总结是对自己所做工作和所取得成绩的一种自我检视和评估。提高写作表达的技巧。总结范文中的语言简洁明了,逻辑清晰,易于理解和接受。
商的近似数教学反思篇一
数学作为自然科学的一个内容,是来源于生活,并最终要应用于生活的一门学科。在教学中,作为数学老师,在以数学书为主要内容进行教学时,一定不能脱离生活实际,否则,这样的教学只会让孩子成为只会“纸上谈兵”的书呆子。
在教学近似数的内容时,对于不同情况下数字是估大还是估小的问题,孩子们很难判断清楚。这一方面是因为学生的生活经验相对较少,另一方面也是因为教师教学数学的时候,过分以书本为本,使教学脱离了生活实际,人为地将数学学习与生活实际割裂开来造成的。其实,我们学习数学知识的.最终目的还是为了解决生活中的实际问题,而不是为了数学测验得到高分。可是由于教师以及学生评价方式的过分单一,最终造成了现在的情况。
以两道练习题为例。
这道题和之前学生做的题是又不同的。之前的练习题,都会出具明确的数字,学生一般采用四舍五入的方法进行估算。可是这道题,只告诉学生有“八百多名”,究竟这个“八百多名”是比较接近800,还是比较接近900,学生无法判断。其实,对于这道题,不管这个“八百多名”是比较800,还是比较接近900,都应该用900去算。因为座位只能多,不能少。因此,列式应为900+900+900=2700(个)2700<3000答:能坐下。但是很多孩子列式为800+800+800=2400(个)2400<3000。答:能坐下。数学教师用书上也是用这样的列式。虽然对于这道题来说,列式的不同不会影响最终的判断,但是思维的过程是没有从生活实际来考虑的。所以个人认为数学学习时不能脱离实际生活的,应该以第一种列式为准。
由于有第5题要用进一的方法取近似数计算,所以这道题有相当一部分的孩子这样列式:800+1000=1800(个)1500<1800。答:不够。其实,在现实生活中,为了保证每个人都能坐到椅子,椅子是不能用进一法计算的,要用去尾法。因此列式为700+900=1600(个)1500<1600。答:不够。虽然对于这道题来说,第一种列式的方法也不会影响对结果的判断,可是思维过程有问题的话,在面对其他数目的数学问题时,就极有可能出现判断错误。
因此,在数学教学中,数学老师一定要利用多种形式,如写数学日记、举现实生活中的例子甚至是用演示法等方法,引导学生逐步理解数学问题解决一定要基于生活实际,决不能脱离生活实际进行数学学习。
商的近似数教学反思篇二
本节课是人教版,小学二年级,第二单元,万以内数的认识,第三课时,万一内数的大小比较和近似数。
从整节课来看,还是令人满意的,在本节的教学过程中,我首先采用数数,数的组成,和千以内数的大小比较作为铺垫引导学生很自如的过渡到;万以内数的大小比较并且掌握了比较的方法,能正确的解决日常生活中的实际问题,在近似数这一块学生掌握的不好主要是在取近似数时,不是与准确数最接近的整十、整百整千或整万的数。
那么造成学生对近似数的理解不确切的原因主要有以下几个方面;(1)近似数是一个新的概念学生没有准确的理解这个名词(2)板书练习的少,生活中的实际问题结合的少(3)练习比较单一(4)学生课堂练习的时间少一些。
如果让我重新设计这节课,我会把重难点放在“近似数”上。板书指导多样化结合日常的生活,帮助学生理解,增加巩固练习的内容和时间,引导他们动脑、动手、拓宽学生的思路正确理解近似数这一名词,我认为这样会收到事半功倍的教学效果。
商的近似数教学反思篇三
数学源于生活,本节课从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识。收到了良好的教学效果。
我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。首先教师出示例7:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以谈话的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。再要求学生根据提出的信息列式计算.当学生除到商为两位小数时,还除不尽。教师巡视中发现,有的学生一直往下除根本没有停下来的意思。这时教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。
本以为求近似数是教学难点,所以在新授前安排了大量相关知识的复习.但在实际教学中才发现计算才是真正的教学难点,由于例题及做一做中所有习题全是小数除以整数,所以当作业中出现小数除以小数计算时,许多学生装都忘记了"一看,二移"的步骤.所以在设计巩固练习时应增加小数除以小数的练习.
其次我根据学情补充介绍了一种求商近似数的简便方法.即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
其实在上课的时候,不能因为需要保留两位小数或保留一位小数而强调学生说只能除到小数部分的第三位或第二位,遇到学生除到了比实际需要更多的数位,应加以鼓励表扬,并及时提示学生根据实际需要去除,决不能“一味扼杀,一棒子打死”。这也许是学生创新的灵感之花,是一种钻研精神的表现,新课程改革需要的是这样的教学,也需要这样的老师,更需要作为教师的我们要培养有创新精神的学生。新教材为我们提供了广阔的思维空间,我们要结合课改,挖掘教材,合理、科学的利用教材,全面贯彻课改精神,实现学生在学习活动上的“知识与技能、过程与方法、情感态度与价值观”三维目标而努力教学,这样才无愧于学生,才能称得上是一名新课改下的老师。
商的近似数教学反思篇四
师:今天,我们来认识另外一种数,[教学反思]求一个数的近似数教后感。下面,把书本打开,看看书本上是怎样介绍另外一种数的。
生看书自学课文第一、二自然段。
师:同桌交流一下,你看到的数叫什么,生活中碰到过这样的数吗?举例说一说。
全班交流。
生:我知道另一种数叫近似数,它表示大概有多少。
生:我知道近似数就是不是很准确的,只要接近这个数,大约是多少。比如说,我身高大约1米30。
生:我来说,我家离学校骑车大约要10分钟。
……。
师:那我们怎样求一个准确数的近似数呢?再来看书本例5例6和下面的那段话。把不懂的地方划出来。同桌交流。
学生再次看书自学。
生:我知道用四舍五入法可以求一个数的近似数。
四人小组讨论什么叫四舍五入法,汇报,请学生结合具体的数来讲一讲。请学生做小老师,到讲台上来讲给学生听,数学论文《[教学反思]求一个数的近似数教后感》。
生:我说101约等于100,我看十位上的数是0,它不满5,直接把尾数舍去。
生:我说289约等于300,我是看十位上的8,它比5大,把尾数舍去后还要向前一位进一,所以约等于300。
生依次回答,对4499出现的错误较多,认为应该约等于5000。
师:再来把书本上介绍的四舍五入法齐读一遍,想一想,它到底应该等于几。
生:哦,我看明白了,4499的最高位是千位,我们要看尾数左起第一位,它是百位上的4,4不满5,所以直接把尾数舍去。4499约等于4000,而不是5000。
师:弄懂了四舍五入的意思,我们一起来练一练。
学生做练习第一题。
师:学了求一个数的近似数,对我们的数学有什么好处呢?再次自学书本例7。
生:学了求一个数的近似数,我们可以进行估算。有时,可以帮我们检查计算是不是正确。
师:一起来估算一下328×4约等于多少?
生:我把328省略最高位后面的尾数,约等于300,300×4=1200,所以328×4的结果跟1200接近。
本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0。984≈0。98后,我让学生比较了求小数近似数的`方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0。984≈1。0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0。984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生。
总结。
但在“保留几位小数、精确到什么位、省略什么位后面的尾数”都出现以后,没有把它们之间的联系梳理出来,这样就会给学生造成要求太多记不住的麻烦。如果让学生明白保留两位小数就是要精确到百分位,省略百分位后面的尾数也是要精确到百分位,学生审题后就会自然地归到精确什么位,看什么位进行四舍五入的思维模式,这样就有了更加清晰的思维。
商的近似数教学反思篇五
去年也是这个时候教学《近似数》,批阅作业时那个头痛至今都忘不了。一是当时对这节内容没教的过于简单,高估了孩子的学习水平;二是又感觉不会很难,不就是用个“四舍五入法”求一个数的近似数么?导致自己的备课与学生的实际情况有些脱离,所以交上来的作业,可想而知,学生出现的错误直接告诉自己没有上好这一节内容。自我认为很是简单,教材也是安排一个课时结束新知,可实际不然。所以今天在教学这个内容时,把事速度放慢了许多,也打算用2个课时来完成。与其快速没有效果的完成,还不如让学生掌握牢固多用一个课时来消化。
今天放慢了速度,所以在课堂上出现了一些问题,而这些问题也正是让我明白学生对于求一个数的近似数的真实情况,以免后面会忘记,所以特记下来,以备下次之需,同时也改进自己的教学。
问题一:学生明白“四舍五入法”,不明白的是怎么用这个方法。
在讲解完“四舍五入法”时,学生通过其他人的理解和老师的引导,能够接受‘满五要也向前一位进一,不满五就要舍’的道理。但是真正用的时候,他们还是不理解。例如教材中安排了“233184人约等于20万人,说说你是怎么得到的?”有些孩子一下子就明白了,“四舍五入到十万位,就看万位是不是比5大?”;可在今天的课堂中仍然有一些孩子提出自己的“质疑”:那8不是比5大吗?为什么不是“进一”,而是“舍掉”。从这些孩子的理解上出了问题。课堂上没有直接消除他们的疑问,而是由两个孩子说了自己的看法。a说,8在十位上,表示八十,对20万是根本不受影响的。b说,就算是五入,8向前进一位,那也只能说百位上变成,然后不能再继续向前进一位了。c说“233184”在数线上离20万更近,所以约等于20万;其实三个孩子的说法都有一定的理由,同时孩子能在较短的时间内进解述自己的看法,已经是非常了不起。于是在孩子们的想法上,我把“四舍五入”的方法进行了讲解,可还是有一部分人不明白什么“四舍五入到十万”。所以要让学生掌握到关键:四舍五入到哪一位,再看这一位的下一位……。
问题二:15000约等于多少?
教材为了让学生理解近似数更接近于哪一个精确的数,安排了一个直观的“数线找位置”的方法,再观察与哪个更接近,再约等于哪个数。这个方法很好,非常直观。课堂当中有一位男生对18000接近于20000,理解就非常好。这个孩子告诉大家,在数线上,先找到15000,如果比15000大一些就近2万,如果比15000小一些就近约等于1万。其实就可以说是直观的“四舍五入法”了。但是有人就提出疑问,那如果正好在中间,15000又是近似哪一个数。
今天这节课虽然没有按照教材的安排一个课时完成,但课堂中学生提出的疑惑让人很是开心。这些暴露在学生中的问题,既是今后在备课教学所需要注意的,也是能看出学生在课堂中有善于思考,学会提出问题。这应该也是课堂中的一个较大的收获。
文档为doc格式。
商的近似数教学反思篇六
1.情境化导入,引发学生的兴趣。
教学新知时,利用豆豆身高的近似数来引入:豆豆的身高是0.984m,三位同学的回答不同,通过说法的不同引出争论。通过引导,让学生在合作交流、自主探究、小组交流中把思维充分暴露出来,加深学生对用四舍五入法求小数的近似数方法的理解。
2.给学生充分展示的机会。
学生理解了保留几位小数的含义:保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……尽量让学生自己说出这些语句,小结后让学生熟读。通过让学生试着把豆豆的身高保留两位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出求一个小数的近似数的方法。
3.通过质疑,引发思考。
在比较近似数1.0与近似数1谁更精确些时,通过提问,引发学生思考,从而使学生明白近似数末尾的0不能省略的道理,突破难点。这样的设计使学生在真正理解和掌握基本的数学知识与技能、数学思想和方法的同时,获得了广泛的数学活动经验,为学生的全面发展提供了更多的机会。
同学们出现较多的问题是不能准确写出符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练。
再次教学中,要立足于学生的主体发展,引导学生思考,纠正学生错误,通过巩固练习使学生加深对小数不同数位的对应位置的理解,提高做题的正确率。
商的近似数教学反思篇七
1.复习铺垫,激发学生的自信心。
复习铺垫能帮助学生沟通新旧知识的联系,分散难点,从而顺利地完成学习任务。本教学设计在课前复习求一个小数的近似数,为下面的教学做好铺垫,另一方面也加强了知识间的联系。复习时通过不同的方式表扬学生,使学生有信心学好这节课。
2.创设情境,探究新知。
近似数。
商的近似数教学反思篇八
四年级数学上册《近似数》教学反思在先求近似数再改写这一课中,学生已经在三年级学过估算,能够熟练的对一个数保留整十或整百的数,但是学生表现出来一个问题是,当问题是省略万位以后的数是多少或者保留整万位,学生会做。当问题是四舍五入到万位时,学生就不知道怎么做了,很多学生都做错。原来学习的保留整十或整百,保留的都是最高位,现在让保留的不是最高位时,学生会在最高位再保留一次,导致出现错误。这种情况出现的不多,课堂上没有认真听讲。
学生刚从三年级进入到四年级,所学习的知识在加深,但是学生的思想还没有及时转变过来,过多的沉浸在三年级的学习经验中,会对四年级的学习造成一定的影响,我在上课时要想办法扭转这种现状。在知识的学习中既要注重学生原有知识的应用,还要关注新知识的学习,让新知识在旧知识的基础上衍生出来,学生学起来会更容易,记得牢固。
商的近似数教学反思篇九
去年也是这个时候教学《近似数》,批阅作业时那个头痛至今都忘不了。一是当时对这节内容没教的过于简单,高估了孩子的学习水平;二是又感觉不会很难,不就是用个“四舍五入法”求一个数的近似数么?导致自己的备课与学生的实际情况有些脱离,所以交上来的作业,可想而知,学生出现的错误直接告诉自己没有上好这一节内容。自我认为很是简单,教材也是安排一个课时结束新知,可实际不然。所以今天在教学这个内容时,把事速度放慢了许多,也打算用2个课时来完成。与其快速没有效果的完成,还不如让学生掌握牢固多用一个课时来消化。
今天放慢了速度,所以在课堂上出现了一些问题,而这些问题也正是让我明白学生对于求一个数的近似数的真实情况,以免后面会忘记,所以特记下来,以备下次之需,同时也改进自己的教学。
问题一:学生明白“四舍五入法”,不明白的是怎么用这个方法。
在讲解完“四舍五入法”时,学生通过其他人的理解和老师的引导,能够接受‘满五要也向前一位进一,不满五就要舍’的道理。但是真正用的时候,他们还是不理解。例如教材中安排了“233184人约等于20万人,说说你是怎么得到的?”有些孩子一下子就明白了,“四舍五入到十万位,就看万位是不是比5大?”;可在今天的课堂中仍然有一些孩子提出自己的“质疑”:那8不是比5大吗?为什么不是“进一”,而是“舍掉”。从这些孩子的理解上出了问题。课堂上没有直接消除他们的疑问,而是由两个孩子说了自己的看法。a说,8在十位上,表示八十,对20万是根本不受影响的。b说,就算是五入,8向前进一位,那也只能说百位上变成,然后不能再继续向前进一位了。c说“233184”在数线上离20万更近,所以约等于20万;其实三个孩子的说法都有一定的理由,同时孩子能在较短的时间内进解述自己的看法,已经是非常了不起。于是在孩子们的想法上,我把“四舍五入”的方法进行了讲解,可还是有一部分人不明白什么“四舍五入到十万”。所以要让学生掌握到关键:四舍五入到哪一位,再看这一位的下一位……。
问题二:15000约等于多少?
教材为了让学生理解近似数更接近于哪一个精确的数,安排了一个直观的“数线找位置”的方法,再观察与哪个更接近,再约等于哪个数。这个方法很好,非常直观。课堂当中有一位男生对18000接近于0,理解就非常好。这个孩子告诉大家,在数线上,先找到15000,如果比15000大一些就近2万,如果比15000小一些就近约等于1万。其实就可以说是直观的“四舍五入法”了。但是有人就提出疑问,那如果正好在中间,15000又是近似哪一个数。
今天这节课虽然没有按照教材的安排一个课时完成,但课堂中学生提出的疑惑让人很是开心。这些暴露在学生中的问题,既是今后在备课教学所需要注意的,也是能看出学生在课堂中有善于思考,学会提出问题。这应该也是课堂中的一个较大的收获。
商的近似数教学反思篇十
《求商的近似数》在学习小数除以整数,小数除以小数的知识教学的,它是一节计算课,求商的。
本课是由“小数除法”和“求近似值”两个知识点组成。学生对于这两个知识点并不陌生,因此,一般都能较快地理解并掌握这节课的知识。但是,“求商的近似值”这节课的内容虽然简单,但比较枯燥,学生不容易提起兴趣。而且学生刚初步学习小数除法,计算还不熟练,计算常出错。这节课我从实际生活中寻找素材,丰富课堂,使数学课充满生活气息。激发学生学习又能感受到学习的快乐。
让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”求出商的近似数。
学生总结出方法后,再进行加强联系。但在练习中我发现有一部分学生还是不能明白比要求多除一位的意思,比如要求商保留三位小数,学生做竖式时就只除到小数第三位,没有多除一位,导致结果出错。因此,只要不断强调方法中加强巩固,提高学生计算的正确率。

一键复制