通过总结,我们可以发现问题、分析原因,并提出可行的解决方法。在总结中,我们可以借鉴他人的成功经验,以便更好地自我提高。下面这些总结做得很出色,或许对大家的写作有所启示。
《近似数》教学反思简短篇一
1、教学目标要明确,内容要准确。这是基础,学生做题出现问题跟教师有直接关系。
2、教师要明确自己的角色,地位。教师要有自己的威严,要严慈相济;教师是教学活动的指导者,处于主导地位,把控课堂活动,要顾及全体学生,不能只看回答问题的学生。
3、发挥学生的主体地位。学生自己积极主动的探讨,不要满堂灌。
4、备课要全面。备教材,备学生。对于知识体系有关全面的了解,知道学生已有的知识水平,对于新授课程有铺垫的作用;尤其是学生的了解,可能直接决定教学方式的选择。
5、主副板书使用要合理,主板书部分要留给新授例题。
6、小组活动探究或者学生自己做练习时,教师要下面巡视,掌握学生知识掌握情况和易错点和共性问题,做到心里有数。
7、教师之间可以相互学习,相互借鉴,取其精华,转变成适合自己的模式。
文档为doc格式。
《近似数》教学反思简短篇二
师:今天,我们来认识另外一种数,[教学反思]求一个数的近似数教后感。下面,把书本打开,看看书本上是怎样介绍另外一种数的。
生看书自学课文第一、二自然段。
师:同桌交流一下,你看到的数叫什么,生活中碰到过这样的数吗?举例说一说。
全班交流。
生:我知道另一种数叫近似数,它表示大概有多少。
生:我知道近似数就是不是很准确的,只要接近这个数,大约是多少。比如说,我身高大约1米30。
生:我来说,我家离学校骑车大约要10分钟。
……。
师:那我们怎样求一个准确数的近似数呢?再来看书本例5例6和下面的那段话。把不懂的地方划出来。同桌交流。
学生再次看书自学。
生:我知道用四舍五入法可以求一个数的近似数。
四人小组讨论什么叫四舍五入法,汇报,请学生结合具体的数来讲一讲。请学生做小老师,到讲台上来讲给学生听,数学论文《[教学反思]求一个数的近似数教后感》。
生:我说101约等于100,我看十位上的数是0,它不满5,直接把尾数舍去。
生:我说289约等于300,我是看十位上的8,它比5大,把尾数舍去后还要向前一位进一,所以约等于300。
生依次回答,对4499出现的错误较多,认为应该约等于5000。
师:再来把书本上介绍的四舍五入法齐读一遍,想一想,它到底应该等于几。
生:哦,我看明白了,4499的最高位是千位,我们要看尾数左起第一位,它是百位上的4,4不满5,所以直接把尾数舍去。4499约等于4000,而不是5000。
师:弄懂了四舍五入的意思,我们一起来练一练。
学生做练习第一题。
师:学了求一个数的近似数,对我们的数学有什么好处呢?再次自学书本例7。
生:学了求一个数的近似数,我们可以进行估算。有时,可以帮我们检查计算是不是正确。
师:一起来估算一下328×4约等于多少?
生:我把328省略最高位后面的尾数,约等于300,300×4=1200,所以328×4的结果跟1200接近。
本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0。984≈0。98后,我让学生比较了求小数近似数的`方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0。984≈1。0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0。984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生。
总结。
但在“保留几位小数、精确到什么位、省略什么位后面的尾数”都出现以后,没有把它们之间的联系梳理出来,这样就会给学生造成要求太多记不住的麻烦。如果让学生明白保留两位小数就是要精确到百分位,省略百分位后面的尾数也是要精确到百分位,学生审题后就会自然地归到精确什么位,看什么位进行四舍五入的思维模式,这样就有了更加清晰的思维。
《近似数》教学反思简短篇三
1.情境化导入,引发学生的兴趣。
教学新知时,利用豆豆身高的近似数来引入:豆豆的身高是0.984m,三位同学的回答不同,通过说法的不同引出争论。通过引导,让学生在合作交流、自主探究、小组交流中把思维充分暴露出来,加深学生对用四舍五入法求小数的近似数方法的理解。
2.给学生充分展示的机会。
学生理解了保留几位小数的含义:保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……尽量让学生自己说出这些语句,小结后让学生熟读。通过让学生试着把豆豆的身高保留两位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出求一个小数的近似数的方法。
3.通过质疑,引发思考。
在比较近似数1.0与近似数1谁更精确些时,通过提问,引发学生思考,从而使学生明白近似数末尾的0不能省略的道理,突破难点。这样的设计使学生在真正理解和掌握基本的数学知识与技能、数学思想和方法的同时,获得了广泛的数学活动经验,为学生的全面发展提供了更多的机会。
同学们出现较多的问题是不能准确写出符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练。
再次教学中,要立足于学生的主体发展,引导学生思考,纠正学生错误,通过巩固练习使学生加深对小数不同数位的对应位置的理解,提高做题的正确率。
《近似数》教学反思简短篇四
教材中有关近似数的内容比较少,只有一个小例题。乍一看上去,内容也比较简单,很好理解。教学过程也很快,分析一下近似数的不唯一性,理解近似数的好处,就完成。学生做题却出现很多麻烦,找1198的'近似数,出现1200/1100/1190/1000//1150等。小近似数需要学生有良好的判断力,要判断离哪个数近,所以教学过程要重点引导学生分析判断。
《近似数》教学反思简短篇五
在学生学习了,万以内数的认识后,安排学习认识近似数,出现两幅情境图:(1)育英小学有1506人,约是1500人,(2)新长镇有9992人,约是10000人。从而自然引出1500是1506的近似数,10000是9992的近似数。要求学生根据实际问题的需要求一个数的近似数,培养学生的估算意识,发展学生的数感。
教学如何求一个数的近似数是本课的一个难点,我通过让学生观察两组数的特点,在小组内说一说你发现了什么,鼓励他们自己去发现,求一个数的近似数的方法,让学生们把自己个性化的想法说出来,使每个学生都得到不同程度的发展。
并引导学生讨论:准确数和近似数哪个更容易记住?你还能举出近似数的例子吗?从而明确近似数与准确数这两类数的特点,加深对近似数意义的理解。结合生活实际,举出生活中的近似数,让学生体会到近似数在日常生活中的重要作用。
在课堂上,学生没有知识积累,这以前他们没接触过数字估算,根本不会估算,当然也不可能有不同的策略|||交流;当要求举生活中的近似数的例子时,学生没有生活积累,举不出生活中估算的例子,我觉得一是学生没有仔细观察生活,另外也是学生的估算经历少;在作业中,求近似数也是出现了不少问题,有的乱估,有的离准确数太远,还有一些学生不会做题,我觉得他们是没有找到做题的方法。
估算就是推算出某数的大概数,即准确数的近似数。教学时重点强调,估算是没有唯一答案的,但在比较多个答案之后,让学生明白估算出的数要最接近于准确数。实践中我认为下列方法效果会好一些:
1、如果所要估算的数最高位是百位就看个位。
例如:506、217、428、734、962等就看个位,个位小于14的.数就直接写0,十位、百位的数不变。如734≈730,962≈960,如果个位是59的数,就在十位上加1,个位变0。如,506≈510、217≈220、428≈430。
2、如果最高位是千位就看十位。
十位是14就把十位和个位都写成0,百位、千位不变。例如:7046≈7000、1837≈1800。如果十位是59就把十位、个位写成0,在百位上加1,千位再随百位变化而变化。例如:6080≈6100、9960≈10000。
总之,学生估算意识和能力的形成需要长期的潜移默化地渗透,需要教师每堂课坚持不懈、持之以恒的努力,当学生将估算内化成一种自觉意识,才会迸发出许多有价值的、创造性的估算方法,学生的估算能力才能真正的提高。
《近似数》教学反思简短篇六
1.复习铺垫,激发学生的自信心。
复习铺垫能帮助学生沟通新旧知识的联系,分散难点,从而顺利地完成学习任务。本教学设计在课前复习求一个小数的近似数,为下面的教学做好铺垫,另一方面也加强了知识间的联系。复习时通过不同的方式表扬学生,使学生有信心学好这节课。
2.创设情境,探究新知。
近似数。
《近似数》教学反思简短篇七
《商的近似数》是堂新授课。但是我们已经学过积的近似数,于是我尝试让学生自己完成例题,并由学生来完成讲解,尝试效果如何。
1、问题的生成是学生亲身经历的,而不是教师提供的。
当学生在计算150÷44的时候,碰到了一种现象“除不尽”。这在以前的小数除法中没有出现过,与学生原有的认知产生了冲突,形成了问题。这是其自己发现的,很自然便会产生一种自己尝试解决的迫切欲望。这无疑为引导学生自主探究解决问题奠定了良好的心理基础。
2、解决问题策略的多样性,体现了学生自主探究的成果。
当问题产生以后,解决问题便成为了学生学习的目标。但由于教师没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了比较大的自由度。学生既可以结合已有的知识经验去解决这一问题,也可以“创造”出一种新方法来解决。当然,也出现了一些思路是正确的,结果却是错误的情况。但无论怎样,这是学生经过了一番思考后产生的一些想法,也是真正意义上的“解决问题策略的多样性”的典型表现。
3、问题解决的过程也是一个学生评价与反思的过程。
学生在展示自己独特的解决问题的方法和策略的同时,他们同样也关注别人解决问题的方法或策略。当别人的方法与自己不同时,学生自然会产生“为什么他的方法与我的不一样”、“我的方法到底有没有问题”等想法,从而促使其反思自己的做法。
总的看来,我在本节课的教学中,引导学生充分经历了问题的生成和解决过程,突出了学生在问题生成和解决过程中的主体作用,收到了良好的效果。
《近似数》教学反思简短篇八
本节课存在的问题也不少:
第一,数学概念没讲清。关于近似数的概念应是一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。教材中对于近似数的概念比较简单,备课时我对于近似数概念的把握有点疏忽,导致上课时没有讲清接近精确数这一要点,学生举例时的错误没有纠正。整节课没有讲清什么是四舍五入法,只讲了用四舍五入法求省略万位后面的尾数求近似数的方法。在以后的备课中,我一定会注意这点,不依赖教材,平时多看看相关的数学资料,力求把数学概念讲清楚讲准确。平时要多看看普通小学的数学教材,提升自己的`数学素养,使自己的数学思维严密。
第二,举例的范围太小。生活中很多地方都用到了近似数,可以举各方面的例子,如工业产值,世博场馆等等,让学生知道近似数在生活中的广泛运用。判断是不是近似数时可以加入一些不接近精确数的数据。
第三,教学课件不到位,针对我们学生注意力特点应该在课件效果上下功夫,多一点闪烁,特别是难点部分,可以通过课件来帮助学生理解,突破教学难点。以后要在课件方面加强,多一点闪烁的效果。
第四,板书不够美观。现在新教师培训正好在讲教师基本功—硬笔书法的讲座,我明白要写好粉笔字要先练钢笔字的楷书,以前我直接练粉笔字效果不佳,练字是一个循序渐进的过程,没有捷径可走。我会在以后每天备课之余练练钢笔字来提高自己的板书。
总之,我感觉自己要改进的地方还有很多,在以后的教学中要不断努力,设计教案时要反复斟酌。
《近似数》教学反思简短篇九
《求商的近似数》在学习小数除以整数,小数除以小数的知识教学的,它是一节计算课,求商的。
本课是由“小数除法”和“求近似值”两个知识点组成。学生对于这两个知识点并不陌生,因此,一般都能较快地理解并掌握这节课的知识。但是,“求商的近似值”这节课的内容虽然简单,但比较枯燥,学生不容易提起兴趣。而且学生刚初步学习小数除法,计算还不熟练,计算常出错。这节课我从实际生活中寻找素材,丰富课堂,使数学课充满生活气息。激发学生学习又能感受到学习的快乐。
让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”求出商的近似数。
学生总结出方法后,再进行加强联系。但在练习中我发现有一部分学生还是不能明白比要求多除一位的意思,比如要求商保留三位小数,学生做竖式时就只除到小数第三位,没有多除一位,导致结果出错。因此,只要不断强调方法中加强巩固,提高学生计算的正确率。
《近似数》教学反思简短篇十
这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
从生活出发,让学生感受数学与实际的联系。
在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
注重过程,让学生在探索中学习。
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
虽然求小数的近似数的方法与整数的近似数相似。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。
课堂也存在一些问题:
一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至“连环进位”,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。
《近似数》教学反思简短篇十一
数学作为自然科学的一个内容,是来源于生活,并最终要应用于生活的一门学科。在教学中,作为数学老师,在以数学书为主要内容进行教学时,一定不能脱离生活实际,否则,这样的教学只会让孩子成为只会“纸上谈兵”的书呆子。
在教学近似数的内容时,对于不同情况下数字是估大还是估小的问题,孩子们很难判断清楚。这一方面是因为学生的生活经验相对较少,另一方面也是因为教师教学数学的时候,过分以书本为本,使教学脱离了生活实际,人为地将数学学习与生活实际割裂开来造成的。其实,我们学习数学知识的.最终目的还是为了解决生活中的实际问题,而不是为了数学测验得到高分。可是由于教师以及学生评价方式的过分单一,最终造成了现在的情况。
以两道练习题为例。
这道题和之前学生做的题是又不同的。之前的练习题,都会出具明确的数字,学生一般采用四舍五入的方法进行估算。可是这道题,只告诉学生有“八百多名”,究竟这个“八百多名”是比较接近800,还是比较接近900,学生无法判断。其实,对于这道题,不管这个“八百多名”是比较800,还是比较接近900,都应该用900去算。因为座位只能多,不能少。因此,列式应为900+900+900=2700(个)2700<3000答:能坐下。但是很多孩子列式为800+800+800=2400(个)2400<3000。答:能坐下。数学教师用书上也是用这样的列式。虽然对于这道题来说,列式的不同不会影响最终的判断,但是思维的过程是没有从生活实际来考虑的。所以个人认为数学学习时不能脱离实际生活的,应该以第一种列式为准。
由于有第5题要用进一的方法取近似数计算,所以这道题有相当一部分的孩子这样列式:800+1000=1800(个)1500<1800。答:不够。其实,在现实生活中,为了保证每个人都能坐到椅子,椅子是不能用进一法计算的,要用去尾法。因此列式为700+900=1600(个)1500<1600。答:不够。虽然对于这道题来说,第一种列式的方法也不会影响对结果的判断,可是思维过程有问题的话,在面对其他数目的数学问题时,就极有可能出现判断错误。
因此,在数学教学中,数学老师一定要利用多种形式,如写数学日记、举现实生活中的例子甚至是用演示法等方法,引导学生逐步理解数学问题解决一定要基于生活实际,决不能脱离生活实际进行数学学习。

一键复制