在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
北师大版六年级数学第三单元知识点公式篇一
1、24分=()小时450克=()千克
2、实际完成全年计划的,这里把()看作单位“1”,乙的相当于甲,这里把()看作单位:“1”。
3、甲数是0.4,乙数是0.6,甲数与乙数的比是()比值是()。
4、():24==12÷()=
5、一种磨粉机小时磨粉吨,1小时磨粉()吨,每磨粉1吨需要()小时。
6、()×=×()=÷()=1
7、一个三角形三个内角的比是1:2:3,这是一个()三角形,最大的角是()度。
8、46÷的意义是()
9、一种药水的药液和水的比是1:300。现在有药液750克,应加水()。
10、甲数与乙数的比是3:5,甲数是乙数的(),乙数是甲数的()。
1、甲与乙的比是3:2,甲是两数和的。()
2、甲数除以乙数,等于甲数乘乙数的倒数。()
3、4米增加它的后是5米,5米减少它的后是4米。()
4、男生人数的相当于女生的人数,女生人数是单位“1”。
5、把1克盐入9克水中,盐和盐水的比是1:9。()
1、a÷(a≠0)的计算结果()a。
①小于②大于③等于
2、一个数(0除外)除以,这个数就()。
①扩大8倍②缩小8倍③减少8④增加8
3、一项工程,甲队独做8天完成,乙队独做7天完成,甲、乙两队每天完成这项工程的量的比是()。
四、填空。(22分)
1、圆的位置由()决定,圆的大小由()决定。
2、圆的周长是这个圆直径的()倍,是半径的()倍。
3、周长与直径的`比值叫(),用字母()表示。
4、一个圆的直径是7厘米,周长是(),面积是()。
6、一个车轮外直径是55厘米,车轮滚动一周,大约前进()米。
7、在一个长6分米,宽4分米的长方形中画一个最大的圆,这个圆的周长是(),面积是()。
8、圆是( )图形,( )是圆的对称轴.
9、一个半圆的直径是6厘米,它的周长是( ),面积是( )。
10、一个半径是3厘米的半圆,周长是(),面积是()。
11、圆的半径扩大3倍,直径扩大()倍,周长扩大()倍,面积扩大()倍。
12、小圆的半径是大圆半径的,小圆的面积是大圆面积的()。
13、一个圆半径由2厘米增加到3厘米,周长增加(),面积增加()。
1、所有的直径相等,所有的半径相等。()
2、一种铁轨长米重吨,1米重()吨。
3、甲数是乙数的,丙数是甲数的,丙数是乙数的()
1、6÷=1÷=-=÷9=×==-0.7==
2、计算下面各题。(能简算的要简算)
3、化简下面各比。
1.8:2.4公顷:2500平方米:
4、求比值。
::1.2
货多少吨?
4、某县今年造林950公顷,比去年这增加,去年造林多少公顷?
1、圆的对称轴有条,长方形的对称轴有条。
2、用圆规画图,圆的位置由决定,圆的大小由决定。
3、已知圆的周长是c,它的直径d=,它的半径r=
4、在边长10厘米的纸板上剪一个最大的圆,这个圆的半径是,面积是。
5、一个圆的直径扩大3倍,则周长扩大倍,面积扩大倍。
6、一个圆的周长是3.14米,它的直径是,半径是。
7、大圆的半径是小圆半径的2倍,小圆的面积是大圆的面积的()(),小圆周长是大圆周长的()()。
8、在圆形的钟面上,分针长是6厘米,它转了一圈扫过的面积是
9、一个圆的周长、直径和半径和是13.92厘米,这个圆的半径是
厘米,面积是。
10、在同一个圆内,直径是半径的()倍,周长是直径的()倍。
1、圆上两点间的最长线段一定是直径。…………………()
2、两个圆的周长相等,它们的面积也一定相等。………()
3、半径是直径的一半。……………………………………()
4、半圆的周长正好是圆周长的一半。……………………()
北师大版六年级数学第三单元知识点公式篇二
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.下面是小编整理的关于六年级下册第三单元数学知识点,欢迎大家参考!
1、比的意义
(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)最新的小学六年级数学下册第三单元知识点归纳:根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的'意义:比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
7、比和比例的区别
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例出有基本性质,它是解比例的依据。
7、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)
10、判断两种量成正比例还是成反比例的方法:
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分数
(1)数值比例尺和线段比例尺
(2)缩小比例尺和放大比例尺
12、图上距离:实际距离=比例尺
实际距离×比例尺=图上距离
图上距离÷比例尺=实际距离
13、应用比例尺画图
(1)写出图的名称、
(2)确定比例尺;
(3)根据比例尺求出图上距离;
(4)画图(画出单位长度)
(5)标出实际距离,写清地点名称
(6)标出比例尺
14、图形的放大与缩小:形状相同,大小不同。(相似图形)
15、用比例解决问题:
北师大版六年级数学第三单元知识点公式篇三
1、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!
2、负数的定义:在正数前面加上“—”就是负数。
3、负数前面必定有“—”如果前面不是“—”(可能没有符号或者是“+”)都是正数(0除外)。
4、0既不属于正数,也不属于负数,它是正数和负数的分界。
将以下数字按要求分类
1。25、、—7、3、3。011……、—5、0、、—0。03
正数 负数 自然数 非正数
写数下列数相对的负数形式
0。33……、
负数的作用
负数是在人为规定正方向的前提下出现的。
负数常用来表示和正数意义相反的量。
在选择用正数还是负数表示时,首先看是否规定了正方向。
一般含有褒义的量用正数表示,含有贬义的量则用负数表示。
例:零上5°用+5℃表示;零下5°用—5℃表示。收入20xx元用+20xx元表示;支出500元用—500元表示。
1、如果﹢20%表示增加20%,那么﹣20%表示什么?
2、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
3、正常水位为0,水位高于正常水位0。2记作_____________,低于正常水位0。3米记作______________。
正常水位为5米,现在水位为6。3m记作 ,低于正常水位2。5m记作 。
4、按照要求回答:一个学生演示,教师提出要求规定向前走为正。
(1)向前走2步记作_________________。 (2)向后走5步记作_________________。
(3)“记作6步”他应怎么走? “记作-4步”呢?
5、看图答题
6、判断题
(1)0可以看成是正数,也可以看成是负数( )
(2)海拔—155米表示比海平面低155米( )
(3)如果盈利1000元,记作+1000元,那么亏损200元就可记作—200元( )
(4)温度0℃就是没有温度( )
7、常见负数的意义
(2)收入与支出 收入:2600元, ( ) 教育支出:300元 ( ) 娱乐支出:500元 ( ) 。
(3)电梯间的负数 —3层是什么意思?是以谁为标准的?
8、以学校为起点,往东走为正,往西走位负,小明从学校走了+50m,又走了—100m,这时小明离学校的 距离是( ) 。
9、食品包装上常注明: “净重500±5g, 表示食品的标准质量是 ” ( ) 实际没袋最多不多于 , ( ) , 最少不少于( ) 。
1、读法:在所读数的前面加上“负”
3 摄氏度
1、数轴的要素:正方向(箭头表示) 、原点(0 刻度) 、单位长度(刻度) 。
2、正方向:根据题意要求确定正方向,一般以向上或向右为正方向。
3、原点:也就是数字 0 所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数差 不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。
4、单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一 些,如果数字偏小刻度距离可以适当大一些。单位长度不一定每个刻度只能表示 1。
北师大版六年级数学第三单元知识点公式篇四
(1)两个数相除又叫做两个数的比
(2):是比号,读作比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)2016年的小学六年级数学下册第三单元知识点归纳:根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的'方法通常叫做按比例分配。
方法:
首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例出有基本性质,它是解比例的依据。
7、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示xy=k(一定)
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
(1)数值比例尺和线段比例尺
(2)缩小比例尺和放大比例尺
13、图上距离:实际距离=比例尺
实际距离比例尺=图上距离
图上距离比例尺=实际距离
(1)写出图的名称、
(2)确定比例尺;
(3)根据比例尺求出图上距离;
(4)画图(画出单位长度)
(5)标出实际距离,写清地点名称
(6)标出比例尺
形状相同,大小不同。(相似图形)
根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
北师大版六年级数学第三单元知识点公式篇五
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面为大家带来了人教版六年级数学上册知识点整理归纳:第三单元,欢迎大家参考!
知识点一:分数除法的意义
整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法
把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:
(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
知识点一:一个数除以分数的计算方法
一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的.大小关系
一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。0除以任何数商都为0。
知识点一:分数除加、除减的运算顺序
除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法
分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
知识点三:不含括号的分数混合运算的运算顺序
在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
知识点四:含有括号的分数混和运算的运算顺序
在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
知识点五:整数的运算定律在分数混和运算中的运用
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。被除数分子乘除数分母,被除数分母乘除数分子。
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
小数除法的计算方法:
计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:
取近似数的方法有三种,①四舍五入法;②进一法;③去尾法。
一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:
另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1吨=1000千克1千克=1000克=1公斤=1市斤
1公顷=10000平方米1亩=666.666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米
北师大版六年级数学第三单元知识点公式篇六
知识点一:分数除法的意义
整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法
把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:
(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
知识点一:一个数除以分数的计算方法
一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系
一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。0除以任何数商都为0。
知识点一:分数除加、除减的运算顺序
除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法
分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
知识点三:不含括号的分数混合运算的运算顺序
在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
知识点四:含有括号的分数混和运算的运算顺序
在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
知识点五:整数的运算定律在分数混和运算中的运用
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。被除数分子乘除数分母,被除数分母乘除数分子。
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
小数除法的'计算方法:
计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:
取近似数的方法有三种,①四舍五入法②进一法③去尾法
一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:
另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1吨=1000千克1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米1亩=666.666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米
北师大版六年级数学第三单元知识点公式篇七
1、分数除法的意义:
乘法:因数×因数=积除法:积÷一个因数=另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
规律(分数除法比较大小时):
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
“[]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。)
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”:单位“1”的量×分率=分率对应量
2、解法:(建议:最好用方程解答)
(1)方程:根据数量关系式设未知量为x,用方程解答。
(2)算术(用除法):分率对应量÷对应分率=单位“1”的量
3、求一个数是另一个数的几分之几:就一个数÷另一个数
①求多几分之几:大数÷小数–1
②求少几分之几:1-小数÷大数

一键复制