编写教案需要根据学生的实际情况和学科特点,科学合理地安排教学内容和教学活动。教案要与教材内容和学生背景相结合,形成有机连接。如果你不知道如何开始编写教案,以下是一些范文供你参考。
湘教版七年级数学轴对称教案篇一
1.能结合实例,了解一元一次不等式组的相关概念。
2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点。
1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法。
探索方法,合作交流。
教学过程。
一、引入课题:
1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2.由许多问题受到多种条件的限制引入本章。
二、探索新知:
自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)。
四、拓展:
合作解决第4页“动脑筋”
1.分组合作:每人先自己读题填空,然后与同组内同学交流。
2.讨论交流,求出这个不等式的解集。
五、练习:
p5练习题。
六、小结:
通过体课学习,你有什么收获?
七、作业:
第5页习题1.1a组。
选作b组题。
后记:
湘教版七年级数学轴对称教案篇二
知识提要:在数学中,用一条直线上的点表示数,这条直线叫做数轴.数轴的三要素为:原点、正方向、单位长度.
1.关于数轴,下列说法最准确的是(d)。
a.一条直线。
b.有原点、正方向的一条直线。
c.有单位长度的一条直线。
d.规定了原点、正方向、单位长度的直线。
湘教版七年级数学轴对称教案篇三
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点。
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)。
四、小组对学案进行分任务展示。
(一)、温故知新:。
(二)小组合作交流,探究新知。
1、观察下图,回答问题:(五组完成)。
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.
4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)。
(1)4,-4;(2)0.8,-0.8;。
从上面的结果你发现了什么?
3、议一议:(八组完成)。
(1)|+2|=,
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)。
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)。
5:做一做:(三组完成)。
1、(1)在数轴上表示下列各数,并比较它们的大小:
-3,-1。
(2)求出(1)中各数的绝对值,并比较它们的大小。
(3)你发现了什么?
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)(2)?
(3)-8和-3(七组完成)。
5和-2.7(六组完成)6五、达标检测:
1:填空:
绝对值是10的数有()。
|+15|=()|–4|=()。
|0|=()|4|=()2:判断(1)、绝对值最小的数是0。()(2)、一个数的绝对值一定是正数。()(3)、一个数的绝对值不可能是负数。()。
(4)、互为相反数的两个数,它们的绝对值一定相等。()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()。
六、总结:
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;。
负数的绝对值是它的相反数;0的绝对值是0.
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.
七、布置作业。
p50页,知识技能第1,2题.
湘教版七年级数学轴对称教案篇四
(1)能用代数式表示实际问题中的数量关系.
(2)理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数.
讲授法、谈话法、讨论法。
【教学重点】。
单项式的有关概念。
【教学难点】。
负系数的确定以及准确确定一个单项式的次数。
【课前准备】。
教师准备教学用课件。
【教学过程】。
一、新课引入。
教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题:
1.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
分析:(1)根据速度、时间和路程之间的关系:路程=速度×时间.列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),t小时行驶的路程为100×t=100t(千米).
(2)列车通过非冻土地段所需时间为2.1t小时,行驶的路程为120×2.1t(千米);列车通过冻土地段的路程为100t,因此这段铁路的全长为120×2.1t+100t(千米).
(3)在格里木到拉萨路段,列车通过冻土地段要u小时,那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u千米,非冻土地段的路程为120(u-0.5)千米,这段铁路的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相差为[100u-120(u-0.5)]千米.
思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、交流的基础上教师引导学生分析怎样列式.
上述的3个问题中的数量关系我们分别用含有字母的式子表示,通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简.
kb2.下面,我们再来看几个用含字母的式子表示数量关系的问题.
用含有字母的式子填空,看看列出的式子有什么特点.
(1)边长为a的正方体的表面积为______,体积为_______.
(2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5倍圆珠笔的单价是_______元.
(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米.
(4)数n的相反数是_______.
教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流.
上面各问题的代数式分别是:6a2,a3,2.5x,vt,-n.
观察上面各式中运算有什么共同特点?
上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式.如:-2,a,,都是单项式,而,1+x都不是单项.
单项式中的数字因数叫做这个单项式的系数,例如:6a2的系数是6,a3的系数是1,-n的系数是-1,-的系数是-.
单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式的系数是1或-1时通常省略不写.
一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x中字母x的指数是1,2.5x是一次单项式;vt中字母v与t的指数和是2,vt是二次单项式,-ab2c中字母a、b、c的指数和是4,-ab2c是4次单项式.
湘教版七年级数学轴对称教案篇五
1、初步感知轴对称图形并理解轴对称图形的含义。
2、能准确地判断出哪些是轴对称图形,并能找出轴对称图形的对称轴。
3、通过观察、思考和动手操作培养学生的抽象思维和空间想象能力。
4、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
教学重难点。
轴对称图形和对称轴的概念。
画出轴对称图形的对称轴的方法。
教学过程。
(一)、欣赏图片,建立表象。
1、师:今天老师给大家带来了礼物,猜猜是什么?出示蝴蝶的一半。
生:蝴蝶。
师:你是怎么猜到的呢?你怎么知道是蝴蝶的呢?
生说一说,师加以引导。
师:生活中,像蝴蝶这种两边大小、形状、图案一模一样的图形叫轴对称图形。
2、你在生活中见过轴对称图形吗?说一说吧。
生举例子,师加以引导并表扬肯定。
(二)、小组合作,探究新知。
1、出示小青蛙图片。
小组动手操作。
2、交流汇报。
用对折的办法,发现两边完全重合。
中间的折痕就是对称轴。
3、剪一剪——认识轴对称图形。
在剪之前先想一想怎样剪才能剪出对称的图形,然后动手试一试。
学生小组合作,完成剪一剪。
组织学生将自己小组剪出的对称图形进行展示并汇报各自的剪法。
(2)引导学生明确剪对称图形的方法。
要剪出一个对称图形,可以先把纸张进行对折再剪,最后沿对折的地方打开,这就形成了一个对称图形。
教师小结:像这样剪出来的图形都是对称的,它们都是轴对称图形。
教师引导:我们剪轴对称图形时,先要对折,那就是说,把你手上的图形对折,如果能完全重合,就是轴对称图形。
学生操作,判断。指名上台演示,说说判断的理由。(展示时,教师注意让学生从不同的方向,横着、竖着、斜着的方向对折,感受不同角度进行判断。)。
4、引导学生认识对称图形的对称轴。
谈话:将对折的图形打开,你有什么发现?(中间有一条折痕。)。
师:这条折痕就是这个轴对称图形的对称轴。
同学们,用铅笔画出你们所剪图形的对称轴。
学生认识对称轴,画出对称轴。
(三)、拓展延伸,巩固深化。
1、判断哪些图形是轴对称图形,说明理由。
引导学生在头脑中将图形对折,看看是否完全重合。
生活中还有很多图形是轴对称图形,老师收集了一些图形,你想看看吗?
(四)、课堂小结。
师:通过今天的学习,同学们有哪些收获?
学生自由发言。
教师小结:这节课我们从生活中的对称现象认识了轴对称图形,只要我们留心观察,我们生活的周围处处可以看见轴对称图形,正是因为有了这些图形,我们的生活才会装扮得这么美丽。
板书。
两边一模一样对称轴。
湘教版七年级数学轴对称教案篇六
1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。
2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。
教学重难点。
教学重点:
认识轴对称图形的基本特征。
教学难点:
教学工具。
课件。
教学过程。
一、故事导入,激发兴趣。
播放课件,故事导入新课。
二、探究新知,感知对称。
(1)引导观察,感知对称。
师:为什么说在数学王国里,蜻蜓,树叶,蝴蝶都是一家子呢?
师:请同学们仔细观察这些图形的左边和右边,说说你发现了什么?
学生自由发言。
生1:我发现……。
生2:我发现……。
学生自由发言。
课件演示对折过程,说明对折后图形的两边完全重合的现象,就是对称。
师:生活中你还见过哪些对称现象?学生自由发言。
学生欣赏对称美(课件出示)。
(3)在实际操作中深入认识轴对称图形。
师展示剪好的衣服,这件衣服是对称的吗?你有什么办法来验证吗?学生发言。
你有什么办法把它剪出来吗?注意用剪刀安全,不要伤到自己的小手。
学生剪出小衣服之后介绍操作方法:用长方形的纸,先对折再画一画,最后剪出小衣服。
教师:用这样的方法,你还能剪出其它图案吗?试试看,相信你一定能行!教师收集学生的作品,是实物投影展示。
教师:老师展示的这些作品,它们形状不同,但它们有什么共同点?小组讨论,选代表发言。教师小结:像这样通过对折,再剪出的图形都是对称的,它们都是轴对称图形。
(4)引导学生认识对称图形的对称轴。
谈话:将对折的图形打开,你有什么发现?(中间有一条折痕。)。
师:这条折痕所在的直线就是这个轴对称图形的对称轴。
教师指导学生在剪出的图形上画出对称轴,对称轴用虚线表示。
三、拓展延伸,巩固深化。
1、指导学生完成教材第29页“做一做”。
下面这些图形中,哪些是轴对称图形?
引导学生在头脑中将图形对折,看看是否完全重合。
2、完成教材“练习七”的第2题。
谈话:我们接触最多的10个阿拉伯数字里也有轴对称图形,你能找出来吗?
出示第2题的数字图,学生寻找。
交流汇报。
3、说一说下面的字母,哪些是轴对称的?
4、说一说下面的汉字,哪些是轴对称的?
5、完成教材“练习七”的第3题。下面的图形分别是从哪张对折后的纸上剪下来的?连一连。
学生读题,说说下面的图案分别是从哪张对折后的纸上剪下来的,连一连。
指名回答。
四、课堂小结。
师:通过今天的学习,同学们有哪些收获?
学生自由发言。
教师小结:这节课我们从生活中的对称现象认识了轴对称图形,只要我们留心观察,我们生活的周围处处可以看见轴对称图形,正是因为有了这些图形,我们的生活才会装扮得这么美丽。
湘教版七年级数学轴对称教案篇七
教学目标:。
1.在生活实例中认识轴对称图。
2.分析轴对称图形,理解轴对称的概念。
3.了解两个图形成轴对称性的性质,了解轴对称图形的性质。
教学重点1、轴对称图形的概念;2、探索轴对称的性质。
教学难点1、能够识别轴对称图形并找出它的对称轴;。
2、能运用其性质解答简单的几何问题。
教学方法启发诱导法。
教具准备多媒体课件。
教学过程。
一、情境导入。
同学们,自远古以来,对称的形式被认为是和谐、美丽的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称的形式都随处可见,对称给我们带来了美的感受!而轴对称是对称中重要的一种,今天让我们一起走进轴对称世界,探索它的秘密吧!
从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,1.认识生活中的轴对称图形,并能找出轴对称图形的对称轴。2.了解两个图形成轴对称,能找出它们的对称轴及对应点。3.弄清轴对称图形,两个图形成轴对称的区别与联系。
湘教版七年级数学轴对称教案篇八
教学目标:
1、使学生从数学的角度认识放大与缩小现象。
2、知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变,从而体会图形相似变化的特点。
3、能在方格纸上按一定的比将简单图形放大或缩小。
教学重点:
使学生知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变。
教学难点:
体会图形相似变化的特点。
教学过程:
一、导入。
1、上两节课我们学习了比例尺,知道比例尺表示的是图上距离和实际距离的比,是按一定的比把实际距离进行放大或缩小。请同学们观察教科书p55的图。
2、说说图中反映的的是什么现象?哪些是将土体放大了?哪些是将物体缩小了?生活中还存在许多放大与缩小的现象,这节课我们就来研究“图形的放大与缩小”。
二、新授。
1、教学例4。
(1)。
出示例4,让学生说说题中要求的按“2∶1”放大图形什么意思?(按2∶1放大图形也就是图形的各边放大到原来的2倍)。
(2)学生尝试着画出正方形和长方形放大后的图形。
(3)。
画直角三角形时,引导学生思考:直角三角形的斜边不能看出是多少格,怎么办?(只要把两直角边放大到原来的2倍,再连成封闭图形就可以了)画完后通过量一量的方式,发现放大后的斜边的长度也是原来的2倍。
(4)。
观察对比原图形和放大后的图形,说说有什么变化?(一个图形按2∶1的比放大后,图形各边的长度放大到原来的2倍,但图形的形状没变)。
2、例4的延伸。
(1)如果把放大后的这组图形的各边再按1∶3缩小,图形又会发生什么变化?学生讨论后的出:a、图形缩小了,但形状不变。
b、缩小后的图形各条边分别缩小到原来长度的。
(2)学生独立画出缩小后的图形,指名投影展示。
3、归纳小结:图形的各边按相同的比放大或缩小后,只是大小发生了变化,形状没变。
4、学生独立完成书p57的“做一做”,交流是怎样思考与操作的,并及时纠正错误。
三、巩固练习。
1、教科书p60练习九第1题,找出图形a放大后的图形。
2、教科书p60练习九第2题。
四、总结。
图形的各边按相同的比放大或缩小后,只是大小发生了变化,形状没变。
湘教版七年级数学轴对称教案篇九
(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2.过程与方法。
通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3.情感、态度与价值观。
通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
【教学重点】。
轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
【教学难点】。
轴对称的性质。
【教学方法】创设情境-主体探究-合作交流-应用提高.。
【教学用具】多媒体课件、直尺、剪刀和彩纸等。
【教学过程】。
一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形。
我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.
(1)这些图形有什么共同的特征?
对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?
(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?
(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?
二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念。
师生互动操作设计:
1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.。
2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?
在学生交流的基础上,引导学生对轴对称的概念进行归纳.。
3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:
轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.。
三、师生合作,应用提高,拓展创新。
1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等。
学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法。
对称轴是任何一对对应点所连线段的垂直平分线。为下一课学习垂直平分线的画法打下基础。
2.利用以前认识过的一些简单的几何图形,如三角形,正方形,矩形,平行四边形,梯形等,以这些图形的任意一条边所在直线做为对称轴,找出对称点,自己设计和创作轴对图形或是成轴对称的两个图,并将学生的成果展示在黑板上。
四、归纳小结。
1.这节课你学到了什么?
(3).线段垂直平分线的概念;
(4).轴对称的性质。
2.你还学到了什么?还想学习什么?
五、布置作业、下课。
作业:收集和整理生活中有关轴对称的图片,课余时间进行交流,发现生活中对称的美。
湘教版七年级数学轴对称教案篇十
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法。
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
湘教版七年级数学轴对称教案篇十一
(4)设n是一个数,则它的相反数是________.
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
2.请学生说出所列代数式的意义。
(设计意图:让学生会用单项式表示现实生活中的数量关系,进一步感悟用字母表示数的简洁、方便,使用的广泛性。)。
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
(由小组讨论后,经小组推荐人员回答)。
(设计意图:教师提出问题,激发学生学习的欲望、学习的积极性、主动性,以此为载体感悟单项式的特征,为归纳单项式概念作好准备)。
二、新授内容。
1、单项式。
通过上述特征的描述,从而概括单项式的概念,:
单项式:即由_____与______的乘积组成的代数式称为单项式。
补充:单独_________或___________也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。
解:是单项式的有(填序号):________________________。
湘教版七年级数学轴对称教案篇十二
教学目标:
2、掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。
3、培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:
教学方法:
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
预习作业:
1、欣赏p1的图片,你发现了这些图形有什么相同点和不同点?
2、同桌互相说说什么样的图形叫作轴对称图形?
3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?
4、试着在例2的格子图片上画一画。
5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?
教学过程:
一、复习引入。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
二、例题1。
你能发现什么规律。
三、交流。
教师:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
例题2。
1、在研究的基础上,让学生用铅笔试画。
2、通过课件演示画的全过程,帮助学生纠正不足。
五、练习。
1、欣赏下面的图形,并找出各个图形的对称轴。
2、学生相互交流。
用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,
(1)思考。
a、怎样画?先画什么?再画什么?
b、每条线段都应该画多长?
3、课内练习一——第1、2题。
5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数。
学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。
湘教版七年级数学轴对称教案篇十三
(1)通过观察操作,认识轴对称图形的特点,掌握轴对称图形的概念。
(2)能准确判断哪些事物是轴对称图形。
(3)能找出并画出轴对称图形的对称轴。
(4)通过实验,培养学生的抽象思维和空间想象能力。
(5)结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
(1)认识轴对称图形的特点,建立轴对称图形的概念;
(2)准确判断生活中哪些事物是轴对称图形。
根据本班学生学习的实际情况,本节课教学的难点是找轴对称图形的对称轴。
一、认识对称物体。
1、出示物体:今天秦老师给大家带来了一些物体,这是我们学校的同学参加数学竞赛获得的奖杯。这时一架轰炸战斗机。这是海狮顶球。
2、请同学们仔细观察这些物体,想一想它们的外形有什么共同的特点。(可能的回答:对称)。
(但部分学生这时并不真正理解何为对称)。
追问:对称?你是怎样理解对称的呢?
(可能的回答:两边是一样的)。
(可能正确的回答:蝴蝶、蜻蜓……)。
(可能错误的回答:剪刀)。
若有错误答案则如此处理。追问:剪刀是不是对称的?学生产生分歧,有说是,有说不是。剪刀两边不是完全一样的,所以它不对称。但是沿着轮廓把它画在纸上,是一个对称的。
二、认识对称图形。
1、这些对称的物体,我们把它画在纸上,就得到这样一些平面图形。(出示图片)这些图形还是对称的吗?(是对称的)。
同学们真聪明,一眼就能看出这些图形都是对称的。那么像这样的图形,我们就把它们叫做——(生齐说:对称图形)。
(师在“对称”后接着板书:图形)。
(师在黑板上贴出图形)。
边贴边说:汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽图形。
这些图形都是对称的吗?(不是)。
3、你们能给它们分分类吗?(能)谁愿意上来分一分?
你准备怎么分类?(分成两类:一类是对称图形,一类是不对称图形)。
问全班同学:你们同意吗?(同意)。
你们怎么知道这些图形就是对称图形?有什么办法来证明吗?(对折)。
好,我们用这个办法试一下。谁愿意上来折给大家看的?自己上来,选择一个喜欢的图形折给大家看。
4、图形对折后你发现了什么?谁先说?(可能的回答:对折后两边一样或对折后两边重叠)。
你们所说的两边一样、两边重叠,也就是说对折后两边重合了。
(师板书:重合)(若有说出完全重合则板书:完全重合)。
请将对折后的对称图形贴到黑板上,谢谢。
师指不对称图形。同学们刚才我们通过把这些对称图形对折,发现对折后两边重合了,现在再请几位同学上来折一折不对称图形,看看这次又有什么发现?还是自己上来。
(有一点重合)。
(可能的回答:这个全部重合了,这个没有)。
这些对称的图形对折后全部重合了,也就是完全重合了!
(师在“重合”前板书:完全)而不对称图形只是部分重合。
好,谢谢你们,请将图形放这(不对称图形下黑板)。
大家的表现非常出色,奖励一下我们自己,来拍拍手吧!
“一——二——停!”我们的两只手掌现在是——。
(生齐说:完全重合)。
三、认识对称轴,对称轴的画法。
1、请将你创作的对称图形,慢慢打开,问:你们发现了什么?
(中间有一条折痕)。
大家把手中的对称图形举起来,看看是不是每个对称图形中间——都有一条折痕。这些折痕的左右两边——(生齐说:完全重合)。
这条折痕所在的直线,有它独有的名称叫做“对称轴”。
(在“对称图形”前板书:轴)。
像这样的图形,我们就把它们叫做“轴对称图形”。
(师手指板书,边说边把“对折——完全重合——轴对称图形”连起来)。
现在大家知道了这个图形是——轴对称图形。这个呢?这个呢?他们都是——轴对称图形。接下来请你看着自己创作的图形说说。
谁来说说,怎样的图形是轴对称图形?
可以上来拿一个轴对称图形说。请学生用自己的语言说。
2、师拿一张轴对称图形,随便折两下。
这是一个轴对称图形吗?是的。师随便折两下。
谁来说说这个轴对称图形的对称轴是那条?
(一条都不是。)为什么?
只有对折后两边完全重合的折痕才是对称轴。
请你来折出它的对称轴。通常我们用点划线表示对称轴。
师示范。请你在所创作的轴对称图形上用点划线表示出对称轴。
四、平面图形中的轴对称图形,及它们的对称轴各有几条。
(可能的回答:正方形、长方形、平行四边形、圆形、梯形、三角形等等)(教师板书,适当布局)。
好,那我们就拿出课前准备的平面图形,用对折的方法来证明,注意如果它有对称轴请你折出来。
结论出来了吗?现在你的判断和刚才还是一样的吗?
3、问:你想汇报什么?学生汇报。教师机动回答,回答语可有:
这位同学既能给出判断结果,又能说出判断的理由,非常好。
看来,仅靠经验、观察得出的结论有时并不准确,还需要动手实验进行验证。
能抓住轴对称图形的特征进行分析,不错!
圆有无数条对称轴。所有的圆都是轴对称图形。
讨论平行四边形、梯形、三角形时,我们既要考虑一般的图形,又要考虑特殊的图形。但是关于圆形,我们却无需考虑这么多,正如你所说的,所有的圆都是轴对称图形,不存在什么特殊的情况。看来,数学学习中,具体的问题还得具体对待。
(一般三角形、一般梯形、直角梯形、一般平行四边形不是轴对称图形,等腰三角形、等腰梯形、正三角形、长方形、正方形和圆都是轴对称图形)等腰梯形(1条),正五边形(5条),圆(无数条)。
4、用测量的方法找对称轴。
大家都有一张长方形纸,假设它就是不能对折的黑板面,怎么画出它的对称轴?(我们可以用测量的方法,来找出对边的中点,连结中点。用同样的方法,我们可以画出另一条对称轴。
现在请同学们打开书本,画出书上长方形的对称轴。(小组内交流检查)。
五、练习。
1、学习了什么是轴对称图形,现在请在你身边的物体上找出三个轴对称图形。(瓷砖面、电视机柜、衣服、国旗?、凳面、桌面)。
问:国旗是轴对称图形吗?
产生冲突。说明:不但要观察外形,还要观察里面的图案。
2、判断国旗是否是轴对称图形。
4、领略窗花的美丽,再从中找到创作的灵感,创作轴对称图形。教师可出示一些指导性图片。
选择一些贴到黑板上,最后出示“美”字。
总结:轴对称图形非常美丽,因此被广泛的运用于服装、家具、交通、商标等方面的设计中,希望大家能够运用今天的知识,把我们的教室、把你的家以后把我们的祖国装扮得更漂亮。
湘教版七年级数学轴对称教案篇十四
1、大于0的数叫做正数(positivenumber)。
2、在正数前面加上负号“-”的数叫做负数(negativenumber)。
3、整数和分数统称为有理数(rationalnumber)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则。
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则。
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则。
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则。
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)。
22、根据有理数的乘法法则可以得出。
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;。
(2)同级运算,从左到右进行;。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significantdigit)。
短时间提高数学成绩的方法。
1、查查在知识方面还能做那些努力。关键的是做好知识的准备,考前要检查自己在初中学习的数学知识是否还有漏洞,是否有遗忘或易混的地方;其次是对解题常犯错误的准备,再看一下自己的错误笔记,如果你没有错题本,那可以把以前的做过的卷子找出来。翻看修改的部分,那就是出错的地方、争取在答卷时,不犯或少犯过去曾犯过的错误。也就是错误不二犯。
2、一定要对自己、对未来充满信心,心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道初中数学题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。
3、看完书后,把课本放起来,做习题,通过做习题来再一次检查自己哪些地方做的不够好,如果碰到不会的地方,可以再看课本,这样以来,相信会给你留下深刻的印象。
数学学习方法。
1、基础很重要。
是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。
李现良表示,班里某位同学来找自己讲题,其实题目并不难,但这位同学就是因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。
2、错题本很重要。
在所有科目中,数学这个科目最重要错题本学习法。李现良同学也特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。
3、做题要多反思。
数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。
4、把数学知识形成体系。
数学学霸李现良表示,课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。
湘教版七年级数学轴对称教案篇十五
1知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点。
1教学重点:
掌握用整十数除的口算方法。
2教学难点:
理解用整十数除的口算算理。
教学工具。
多媒体设备。
教学过程。
1复习引入。
口算。
20×3=7×50=6×3=。
20×5=4×9=8×60=。
24÷6=8÷2=12÷3=。
42÷6=90÷3=3000÷5=。
2新知探究。
1.教学例1。
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式80÷20。
(3)学生独立探索口算的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
a.因为20×4=80,所以80÷20=4这是想乘算除。
b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。
为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误。
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。
(6)用刚学会的方法再次口算,并与同桌交流你的想法。
40÷2020÷1060÷3090÷30。
(7)探究估算的方法。
出示:83÷20≈80÷19≈。
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于4,所以83除以20约等于4。
19接近于20,80除以20等于4,所以80除以19约等于4。
2.教学例2。
(1)创设情境引出问题。
师:谁会解决这个问题?
150÷50。
(2)小组讨论口算方法。
(3)你是怎么这样快就算出的呢?
a.因为15÷5=3,所以150÷50=3。
b.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30240÷80300÷50540÷90。
3.估算。
(1)探计估算的方法。
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?
3巩固提升。
1.独立口算。
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3.解决问题。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40=6(包)。
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30=4(个)。
答:看完这本书大约需要4个月。
课后小结。
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书。
口算除法。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=。
文档为doc格式。
。
湘教版七年级数学轴对称教案篇十六
会画一个图形的轴对称图形,掌握画图的方法和步骤:先画出几个关键的对称点,再连线。
通过观察、操作等活动,能在方格纸上补全一个轴对称图形。
让学生在探索的过程中进一步增强动手操作能力,发展空间观念,培养审美观念和学习数学的兴趣。
教学重点:掌握画图的方法和步骤。
教学难点:能在方格纸上画出轴对称图形的另一半。
方格纸、课件。
(一)复习导入。
教师:同学们,我们昨天认识了轴对称图形,谁能说说它有什么特点?
预设:对应点到对称轴的距离相等。
(二)探索新知。
1、画出轴对称图形。
教师:根据对称轴,补全下面的轴对称图形。
教师:要想顺利的画出另外一半的图形,你有什么办法呢?根据是什么?
(小组讨论,全班交流)。
预设:我们刚刚学习了轴对称图形的对称点的特点,可以利用这个方法来画。
教师:很好,怎样来找点呢,所有的点都找吗?
预设:不用,只要数出关键点到对称轴的距离;在对称轴的另一侧点出关键点的对称点;顺次连接描出的各个点即可。
教师:谁能来展示一下你画出的轴对称图形的另一半?
学生展示自己的作品。
2、探究结果汇报。
教师:同学们,今天我们学习了哪些知识?
预设:在方格纸上画出轴对称图形的另一半时,先确定对称轴,找出关键点,数出关键点到对称轴的距离,然后点出关键点的对应点,最后依次连接各个对应点,就可以画出轴对称图形的另一半。
教师:你能简要概述一下上面画轴对称图形另一半时的步骤吗?
学生:确定对称轴后,一找关键点;二数出距离;三点对应点;四连线。
【设计意图】引导学生思考:补全轴对称图形的方法是这节课的难点,在学生充分的讨论后,通过学生的实践来总结出方法,进行提炼,学生记忆的会更深刻。
湘教版七年级数学轴对称教案篇十七
教学内容:
课本p63页第1题及练习十四的第1、2、4、5、6题。
教学目标:
1、使学生初步学会根据除法的意义解决一些简单的实际问题。
2、使学生懂得从数学的角度提出学过的数学问题,并能够解决问题,培养学生应用数学的意识。
3、培养学生积极参与数学学习活动的兴趣,对数学有好奇心和求知欲。在交流中养成倾听他人想法以及尊重他人与人进行合作的良好习惯。
教学重点:
沟通乘、除法的联系,掌握口诀求商的方法。
教学难点:
灵活运用所学解决简单问题,提高计算的正确率。
教学方法:启发学生思考,探究合作学习,
教学准备:每人一张空白纸,口算卡。
教学过程:
一、创设情景,复习导入。
师:同学们,我们前几天学过了哪些知识,谁能说一下这些小朋友在干什么?
(设计意图:直奔主题,让学生在最短的时间内直接明确学习的内容和任务。)。
二、回顾整理,建构网络。
1、教学第63页主题图(课件出示)。
师:你看懂了什么?
引导学生观察主题图,同桌互相说一说题意。
生:把除法算式有规律地排一下,还可以利用乘法口诀表的排列方式整理除法算式。
师:(1)发下一张空白的表格纸。
(2)组织学生根据45句乘法口诀写出45道除法算式。
(3)让学生以小组为单位按一定的规律合作整理除法算式,或者按除数相同的规律进行整理,培养学生井井有条的思维习惯,按规律办事的思想方法。
(4)归纳整理:一是把除数相同的算式归类。二是按商相同的算式归类(对于其他的方式也给予肯定)。
(设计意图:利用乘法口诀的排列方式以小组为单位按一定的规律合作整理除法算式,培养学生井井有条的思维习惯,按规律办事的思想方法。)。
三、重点复习,强化提高。
学生做第64页的第1题。
先算出每道算式的结果,写在对应动物的下面,然后再将所得7个结果按从小到大的顺序排列。
要求学生熟练应用乘法口诀求商,同时学会有序地思考问题的方法。
游戏形式做第64页第2题。
先让学生看清加、减、乘、除的运算符号。
使学生初步形成百以内四则运算的口算技能。
学生独立完成第65页第4、6题,完成后找学生起来回答他是怎样做的。
做第65页中第5题。
先让学生看懂图意。
再让同桌两人为一组进行对口令活动。
使学生进一步理解乘除法之间的关系,理解“倍”的意义。
(设计意图:用多种形式进行练习,提高学生的学习兴趣,巩固学生对表内除法计算的理解与熟练。)。
四、自主检评,完善提高。
1、27÷9=36÷4=56÷8=35÷7=42÷6=64÷8=。
45÷5=8÷8=14÷7=18÷3=28÷7=54÷6=。
2、你能给下面这些算式排排队吗?
7÷721÷345÷972÷936÷4。
()()()()()。
文档为doc格式。
。

一键复制