教案的编写过程要注意教学内容的层次性安排,合理布置学生的学习任务。教案的编写应该注重课堂教学的互动性和参与性。希望以上教案范文能够对广大教师提供一些实际操作的指导和借鉴价值。
六年级数学教案比的化简篇一
1、进一步理解解比例的意义。
2、掌握解比例的方法,会解比例。
3、强调解比例的书写规范和计算中的灵活性,以提高同学们的审美能力和计算能力。
教学重难点。
掌握解比例的方法,学会解比例。
教学过程。
一、复习旧知。
1、什么叫做比例?什么叫做比例的基本性质?
2、根据比例的基本性质,将下列各比例改写成乘法等式。
3∶8=15∶40。
二、探索尝试,解释交流。
这个问题怎么解决?写出你的想法。
师:假设14个玩具汽车可以换x本小人书,你能写出一个比例吗?这个比例中x是多少呢?请在小组内交流一下。
(1)自己动脑写出想法。
(2)小组交流。
2、师:哪个小组展示本小组的想法。
板书:4:10=14:x。
解:4x=140。
x=35。
答:14个玩具汽车可以换35本小人书。
3、总结:
师:在比例里,如果已知任何三项你能求出比例中的另外一个未知项?
对,先写成乘法形式,再求出未知数的值。这种求比例中的未知项,叫做解比例。
三、课堂练习。
1、解比例。
2、根据下面的.条件列出比例,并解比例。
(1)6和8的比等于36和x的比。
(2)比例的两个内项是0.4和0.3,两个外项是6和x。
(3)比例的第一项是4,第二项是8,第三项是x,第四项是10。
四、总结:
谈谈这节课的收获?
六年级数学教案比的化简篇二
教学要求:
1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。
2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。
教学过程:
一、揭示课题。
1、口算(指名口算课本第64页第11题)。
2、引入新课。
我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。
二、复习约数和倍数。
1、提问:什么是整除(板书整除)如果a能被b整除,必须具备哪些条件?
当a能被b整除,也就是b整除a时,还可以怎样说?板书:
约数。
倍数。
2、做“练一练”第1题。
学生做在课本上,说明倍数和约数的依存关系。
3、学生练习。
(1)从小到大写出9的五个倍数。
复习约数倍数相关知识(略)。
(2)写出18的所有约数。
三、复习质数合数。
1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:
板书:1。
质数。
合数。
怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。
2、口答:
(1)说出比10小的质数和合数。
(2)最小的质数和最小的合数各是几?
(3)下面哪些是质数?哪些是合数?
785123579190。
3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)。
4、做“练一练”第3题。
练后指名口答,集体订正。
四、复习公约数和公倍数。
1、学生练习。
(1)写出18和24所有的公约数,指出公约数。
(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。
学生口答,老师板书。
提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?
(板书——公约数、公约数——公倍数——最小公倍数)。
2、“练一练”第4题。
集体练习,指名口答,说一说方法怎样归纳三种关系?
追问:用短除法求公约数和最小公倍数有什么相同和不同?
五、复习。
能被2、5、3整除各有什么特征。
1、提问:能被2、5、3整除各有什么特征。
(板书:——能被2、5、3整除的数)。
2、“练一练”第5题。
提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,
板书:偶数。
奇数。
想一想,自然数可以分为哪几类?
六、课堂小结。
根据板书内容,说说相互之间有什么联系。
七、课堂练习。
1、练习十一和12题。
2、课堂作业。
(练习十一第15、16题、17题中(3)(4)。
八、课外作业:练习十一第18题。
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学教案比的化简篇三
单元教学目标:
1、经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系。
2、在实际情境中,体会化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。
单元教材分析:
这部分内容是在学生已经学过分数的意义以及分数与除尘的关系的基础上学习的。本单元学习的主要内容有:生活中的比、比的化简、比的应用。本单元教材编写力图体现以下特点:
1、提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。
2、注重引导学生利用比的意义解决实际问题。
教学课时:12课时。
内容。
课时数。
生活中的比。
比的应用。
练习三。
机动。
六年级数学教案比的化简篇四
知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。
能力目标:会运用商不变的规律或分数的基本性质化简比,并能解决一些简单的实际问题。
情感目标:在化简比的同时感受数学的应用价值,体会数学知识的内在联系。
教学重难点重点:会运用商不变的性质或分数的基本性质化简比。
难点:运用比的化简解决生活中的一些实际问题。
教学过程。
一、复习铺垫,揭示课题。
1.师:上节课我们学习了生活中的比,谁来说说什么叫比?你能举个例子吗?
2.比与除法、分数有什么关系?
3.这节课我们继续学习关于比的知识(板书课题——比的化简)。
4.看了这个课题,你想知道些什么?
二、创设情境,探究新知。
1.体会化简比的必要性。
师:是的,又不能喝,光凭眼睛看不好判断,那你们需要老师给你提供些什么信息?
根据学生回答,课件出示相应的数据信息:
蜂蜜水。
号杯:3小杯12小杯。
号杯:4小杯16小杯。
师:根据这些信息,现在你有办法解决“哪杯蜂蜜水更甜”这个问题吗?
预设:生1:看看平均一小杯蜂蜜用了几小杯水,再进行比较。
生2:看看平均一小杯水用了多少小杯的蜂蜜,再进行比较。
教师适时引导学生找出蜂蜜与水之间的比,并板书:
1号杯:3:12。
2号杯:4:16。
师:联系前面学过的分数与比的关系,想一想,3:12和4:16这两个比能不能像分数化成最简分数一样,也能化成最简比呢?把你的想法和同桌说一说,并试一试。
师:谁来汇报一下你的方法,并说说这样做的依据。根据学生回答板书:
1号杯:3:12=3/12=1/4=1:4。
2号杯:4:16=4/16=1/4=1:4。
师:现在我们发现,两杯水中蜂蜜和水的比实际上都是1:4,说明这两杯水是?(一样甜)。
2.理解化简比。
师:从刚才的化简过程中,我们知道3:12=4:16,两杯水是一样甜的。笑笑也写了两组相等的比(课件出示)仔细观察,看看有什么发现,请你也试着写一组相等的比,并和同桌交流。
(1)学生独立思考,试着写一写,并同桌交流自己的发现。
(2)结合学生汇报,课件演示每组相等的比中前项、后项是如何变化的,并引导学生发现比的化简与商不变规律以及分数的基本性质之间的联系。
3.归纳比的基本性质。
师:你能根据商不变规律和分数的基本性质概括出比的基本性质吗?
比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。(强调“0除外”)。
4.揭示“最简整数比”。
师:分数约分要注意什么?比的化简又要注意什么?
分数约分要约到最简分数,化简比也要化到前项和后项只有公因数1为止,这样的比就叫最简整数比。
5.化简比的方法。
师:分数可以约分,比也可以化简,你能化简下面的比吗?(课件出示)。
化简下面的比:
24:42120:60。
1)独立尝试。(指明两人板演)。
交流:说说你的思路。(方法、根据)。
2)小组活动:(课件出示)。
化简下面的比:
0.7:0.82/5:1/4。
思考:这两组比与前面的最大区别是什么?
小组讨论:如何把这两组比化简?并试一试。
全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)。
3)归纳:怎样化简比?
小组讨论、全班交流。
4)师小结:看来,化简比的方法不唯一,不过都有一个共同目标:最后都要化简成最简整数比。
三、巩固应用,解决问题。
1.化简比:(带的为选做)。
(要求:学习有些吃力的学生可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)。
21:240.3:1.54/5:5/7。
1:4/50.12:60.4:1/4。
2.教材第73页“练一练”第1、2题。学生独立完成,集体交流、订正。
3.教材第73页“练一练”第4题。
(1)学生独立完成(1)、(2)两题,集体订正。
(2)小组讨论完成第(3)题,集体交流,明确:判断谁投球命中率的高低就是看比值的大小。
四、全课总结。
师:回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
六年级数学教案比的化简篇五
【教学内容】教材第3-4页例3。
【教学目标】。
知识与技能:结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。
过程与方法:通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
情感、态度与价值观:通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
【重点难点】。
重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
难点:推导算理,总结法则。
【新知探究】。
明确算理,探究算法。
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)。
(一)探究几分之一乘几分之一的算理算法。
1.求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)。
求一个数的几分之几,我们可以用乘法来计算。
2.等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3.学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4.进行交流反馈。
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固:把1个正方形看作1公顷,先平均分成2份,每份表示公顷,再把公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是公顷。
6.猜想计算方法。
六年级数学教案比的化简篇六
按比例分配的练习。
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的`能力。
练习、反思、总结。
小黑板
(一)六1班男生和女生的比是3:2
1.男生人数是女生人数的( )
2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).
3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).
4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).
5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).
6.全班人数是女生人数的( ),全班人数和女生人数的比是( ).
把250按2比3分配,部分数各是多少
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
提高练习的灵活度,以及练习的形式。
六年级数学教案比的化简篇七
学生汇报:
(1)男生人数是女生人数的(),男生人数和女生人数的比是()。
(2)女生人数是男生人数的(),女生人数和男生人数的比是()。
(3)男生人数占全班人数的(),男生人数和全班人数的比是()。
(4)全班人数是男生人数的(),全班人数和男生人数的比是()。
(5)女生人数占全班人数的(),女生人数和全班人数的比是()。
(6)全班人数是女生人数的(),全班人数和女生人数的比是()。
2、口答应用题。
口答:100÷2=50(平方米)。
提问:这是一道分配问题,分谁?(100平方米)。
怎么分?(平均分)。
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)。
指出:按比例分配就是把一个数量按照一定的比来分配。
imgsrc="。
六年级数学教案比的化简篇八
一、利用旧知学习新知的学习方法。如在教学例1前,先让学生做一道这样的练习题:学校有8个篮球,12个排球,篮球和排球个数的比多少?让学生发表各种意见,然后讨论篮球和排球的个数比是写成8:12好还是写成2:3好?在教学例1时,先把例题转化成约分:14/21,1.25/4这种形式,让学生运用以前的知识经验进行计算;接着让学生把它看成比的形式,该怎么读呢?学生齐读。教师直接指出这就是我们要学的化简比;从而使学生在不知不觉中进入新的学习。学生学习起来也感觉很简单,容易接受。
二、加强对比,沟通知识间的联系。如8:12和2:3进行比较,通过讨论,发现比的特点,让学生更清晰什么是最简单的整数比;把约分转化成化简比,鲜明的对比,明确地理解化简比的方法。
三、从故事的情景中引入课题,激发学生学习的积极性,并突出学习化简比的必要性。在教学中,本人讲述了一个《商人和上帝》的故事,商人向上帝倾诉自己的努力,却得不到应有的回报,希望能得到上帝的支持和帮助;于是,上帝提出这样的要求:在所给的比当中选择一个比,就是你的朋友与商人的。商人只要从上帝提出的要求中(2.4:4.8、1/6:1/3、36:72等等)选择一个比,上帝就会无条件地送给他们所想的礼物;从商人的思考、难以选择的困惑中,让学生体会到化简比的必要性。
这节课,学生都充满积极向上的信心,都在不断地探索中不断获得新知,在学生的练习反馈中,也发现大部分学生能掌握了这一知识点。
六年级数学教案比的化简篇九
难点:对所涉时关键:懂得利率、保险费率和税率的意义。
间的理解。
学情分析。
学情分析:学生学习了常用百分率、求一个数的百分之几是多少的应用题的基础上进行教学的。为实际应用作好准备。
学习目标。
1、能利用百分数的有关实际问题,提高解决实际问题的能力。
2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
导学策略。
尝试教学法、练习法。
教学准备。
幻灯片、小黑板。
教师活动。
学生活动。
一、谈话导入。
师:你收到过压岁钱吗?你是怎样支配的?
(如果学生没有提到银行,则由教师引导揭题)。
二、探究新知。
1、利息。
师:这节课我们一起走进银行,解决银行中与我们有联系的数学问题。
师:你了解银行的一些什么知识?
师根据生口答进行板书。
师:我们该怎样计算利息?你能用一个公式表示吗?(师板书)。
2、利息税。
从1999年11月1日起,个人在银行存款所得利息应按20%纳税,这就是利息税。国家将这部分税收用于社会福利事业。
算一算陈杰1年、2年、5年各应缴多少利息税?
3、自学例题。
4、巩固练习。
(1)小调查:先让学生做调查,然后思考存两年有多少种存法?估计一下哪种存法的利息多,再实际计算。最后全班交流。
(2)练一练1--3。
5、总结:你这节课有何收获?
6、作业。
学生做调查后算一算那种方法更合理。
教学反思。
这节课挺实用的所以教学效果教好。
课题百分数的应用(四)的练习课第8课时(总第21课时)。
六年级数学教案比的化简篇十
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)。
六年级数学教案比的化简篇十一
2.使学生能利用正、反比例的意义正确解答应用题.。
3.培养学生的判断推理能力和分析能力.。
教学重点。
教学难点。
利用正反比例的意义正确列出等式.。
教学过程。
一、复习准备.(课件演示:比例的应用)。
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.。
2.路程一定,速度和时间.。
3.单价一定,总价和数量.。
4.每小时耕地的'公顷数一定,耕地的总公顷数和时间.。
5.全校学生做操,每行站的人数和站的行数.。
(二)引入新课。
教师板书:比例的应用。
二、新授教学.。
(一)教学例1(课件演示:比例的应用)。
1.学生利用以前的方法独立解答.。
14025。
=705。
=350(千米)。
2.利用比例的知识解答.。
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例。
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长千米.。
答:两地之间的公路长350千米.。
3.怎样检验这道题做得是否正确?
4.变式练习。
(二)教学例2(课件演示:比例的应用)。
1.学生利用以前的方法独立解答.。
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)。
3.如果设每小时需要行驶千米,根据反比例的意义,谁能列出方程?
六年级数学教案比的化简篇十二
本节课在谈话中引出问题复习旧知,为新授做铺垫,同时也让学生切身实地的感受到数学就在我们身边,从而很自然地引出课题。
整节课紧紧围绕三个问题展开,共分两大部分:一、分一分:创设情境,鼓励学生通过操作,在交流不同分法的过程中体会1:1分配的不合理性,产生按比分配的必要性,同时体会按比分配在生活中的实际应用;二、算一算:再有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解决问题的策略解决实际问题。
由于按比分配在生活中的运用很广泛,所以在练习的设计上,主要通过有层次、有坡度的一组问题,让学生用今天所学的知识来解决这些生活上的问题。
存在问题:由于学生个体差异较大,教学在短暂的课堂要面对全体学生,还有个别学生不能顺利准确的解决问题,造成教学效果的不足。为了提高教学效果,加强学生全面发展,在课余时间进行个别辅导,做到有的放矢,因材施教,在课堂上关注学困生,培养学习兴趣从而提高教学效果。
六年级数学教案比的化简篇十三
本单元的内容主要包括百分数的意义和读写法,百分数和分数、小数的互化以及用百分数解决问题。
百分数在生活中有着广泛的应用,人们常用百分数对事物进行描述、分析、统计、比较。虽然学生在日常生活中已经大量接触了百分数,但是对百分数的意义以及其应用价值的认识还处于模糊阶段。本单元在学生学习了整数、分数、小数相关知识的基础上,正式认识百分数。百分数表示的是一个数是另一个数的百分之几的数,因此,它是一种特殊的分数,有关百分数的计算与应用都可以由分数的相关知识迁移过来。由于百分数与实际生活联系紧密,学习百分数对理解和判断生活中相关数据信息以及运用百分数解决日常生活中的实际问题有着重要的意义。
六年级上册主要教学百分数的意义及一般应用,六年级下册教学百分数的特殊应用(如利率、折扣、成数)。两部分内容的着眼点有所不同,六年级上册的教学重点是利用知识的迁移,认识百分数的意义及一般性应用;而六年级下册的教学重点是了解百分数在生活中一些特殊领域的应用,更强调对其实际意义的理解。
备课目标
知识与技能
过程与方法
情感、态度与价值观
1.理解百分数的意义,会正确读写百分数,会用百分数表述生活中的一些数学现象。
2.掌握小数、分数和百分数的互化方法。
3.在理解、分析数量关系的基础上,正确解决有关百分数的实际问题。
4.经历探究百分数意义的过程,积累探究问题的经验。
5.经历探究小数、分数和百分数互化方法的过程,体会转化、类比、迁移等数学思想方法。
6.经历用百分数解决问题的过程,学习解决问题的策略,提升解决问题的能力。
7.在探究百分数的意义的过程中,体会数学与生活的密切联系。
8.积极参与数学活动,激发好奇心和求知欲。
9.在运用数学知识和方法解决问题的过程中,认识数学的价值。
重点:
1.理解百分数的意义及掌握百分数与小数、分数之间的互化方法。
2.用百分数解决问题。
难点:
1.百分数和分数在意义上的区别。
2求比一个数多(或少)百分之几的数是多少。
六年级数学教案比的化简篇十四
使学生知道对于同样的数据可以有多种分析的方法,能根据需要选择合适的统计图,直观、有效地描述数据,进一步发展数据分析观念。
教学重点了解不同统计图的特点,合理选择用不同统计图来未表述。
教学难点熟练掌握不同统计图的特点。
我们已经学过哪些统计图,它们各有什么特点?
名称优点
条形统计图能清楚地看出数量的多少
折线统计图不仅可以反映数量的多少,还能看出数量增减变化趋势
扇形统计图能清楚地反映出各部分与整体的关系
下面几组数据分别选用哪种统计图表示更合适?
(1)绿荫小学xxxx-xxxx年校园内树木总量变化情况统计表。
(2)xxxx年绿荫小学校园内各种树木所占百分比情况统计表。
(3)xxxx年绿荫小学校园内各种树木数量统计表。
第(1)小题
(1)绿荫小学xxxx-xxxx年校园内树木总量变化情况统计表。
绿荫小学xxxx-xxxx年校园内
树木总量变化情况统计图
第(2)小题
(2)xxxx年绿荫小学校园内各种树木所占百分比情况统计表。
这题给出了各种树木占树木总量的百分比,用条形统计图和扇形统计图都可以表示出这些信息。但用扇形统计图更能直观地看出部分与整体之间的关系。
第(3)小题
(3)xxxx年绿荫小学校园内各种树木数量统计表。
这题给出了各种树木的数量,只能用条形统计图来表示。为什么不能用其他的统计图?
1、在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。
下面是我国乔木林各龄组的面积构成情况。
以上信息可以用什么统计图描述?哪种更直观些?
2、完成教科书第99页“做一做”
3、完成练习二十一第5、6、7、8题
这节课学习了什么内容?应该注意些什么?
六年级数学教案比的化简篇十五
教学内容:
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。
四、巩固练习
3.练习十七2(机动)
――替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
六年级数学教案比的化简篇十六
分数乘法的计算法则和分数乘法的意义是分数乘除法的基础,也是整个六年级应用题学习的基础和关键。而在人教版第5页的例3中,它是从分数乘分数的意义着手进行理解和分析,在经过繁杂的把单位1按分数意义平分再平分,还要借助画图让学生发现其实就是把单位1平均分成十份,而这个十份就是把分母相乘而得来的。法则的证明过程对于小学生来说非常的复杂的。纵观教材的编排思路与意图,它是按照成人的思维能力从最正统的思路按部就班着手进行分析与解释,它忽略了这个年龄段的大多数学生的接受能力。
有没有学生比较容易理解而又不难得出分数计算法则的方法?其实在学生学习分数乘法的过程中,特别是分数乘法的'计算法则的学习,到了后面的计算对于学生来说记得的只是它的计算法则了,我们大可以撇开分数乘法的意义,换个角度去进行思考。大家都知道学生在五年级时学过分数化小数的知识,不妨在这节里拿出来用用,从小数乘法着手进行推导,学生会很快接受和掌握。
可以这样进行,先讲例3,把例3里的分数改成可以化成有限小数的分数,如。
1、一台拖拉机每小时耕地3/5公顷,3小时可耕地多少公顷?
学生列式:3/5*3=?
2、一台拖拉机每小时耕地3/5公顷,3/4小时可耕地多少公顷?
引导学生想数量关系:
每小时耕地的公顷数*小时数=一共可耕地的公顷数。
列式:3/5*3/4=。
1、让学生尝试计算并自由发言自己的想法。
师生齐小结:3/5*3表示有3个3/5相加即。
3/5+3/5+3/5=3*3/5=9/5(公顷)。
2、而3/5*3/4则可以化成小数进行计算。
3/5*3/4=0.6*0.75=0.45即。
3/5*3/4==9/20(把小数的结果化成分数)。
让学生猜猜,中间的计算过程是可以怎样填写。
补充完整:3/5*3/4=3*3/5*4=9/20。
学生尝试完成并板书:1/2*1/5=1*1/2*5=1/10。
5/8*1/4=5*1/8*4=5/32(这道题稍繁杂)。
通过对以上式子的观察从而得出结论:分数乘分数用分子相乘的积作分子,用分母相乘的积作分母。
如例题中的3/5*3,其实也可以用以上法则进行计算。
过程如下:3/5*3=3/5*3/1=3*3/5*1=9/5。
把整数3化成分数形式3/1就可以用以上法则进行计算了。
如:3/9*2/7=。
让学生用两种方法去做,
第一种方法:是把分数化成小数(保留两位小数)。
3/9*2/7=033*0286=009438。
第二种方法:是用分数乘法的法则去做。
3/9*2/7=3*2/9*7=6/63=00952。
这样进行教学虽然有其局限性,如分类数的选择就有讲究,必须是能化成有限小数的,二是化成小数然后再化成分数这个过程不是每个小数化分数都很容易。故而这样的分数也不是很随意的能找到,而对于不能化成有限小数的分数乘法就很难用这样的方法去进行有效的验证,当然这里使用的是不完全归纳法,举一知十进行推理,从而得出计算法则。这样做的基础是从学生最近发展区出发,从学生最容易接受的旧知出发正向迁移至新的知识中去。这是可行的。
六年级数学教案比的化简篇十七
课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。
使学生理解比的基本性质,掌握化简比的方法。
一、复习。
1.除法中的商不变规律是什么?
2.分数的基本性质是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
1.教学比的基本性质。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
六年级数学教案比的化简篇十八
3、导入课题:
我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
1、教学例3比的基本性质。
(4)师:你觉得哪些词语比较重要?0除外你怎样理解得?
2、教学例4应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。
出示:把下面各比化成最简单的整数比
(1)12:18(2)(3)1、8:0、09
(1)让学生试做第(1)题
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。

一键复制