教案的编写应该有明确的教学目标,符合学生的认知特点。如何编写一份优秀的教案是每位教师需要思考和探索的问题。以下是小编为大家收集的教案范例,供教师们参考和借鉴。
七年级数学有理数的乘法教案篇一
1.1正数和负数(2)。
教学目标:
教学重点:
深化对正负数概念的理解。
教学难点:
正确理解和表示向指定方向变化的量。
教学准备:彩色粉笔。
教学过程:
一、复习引入:
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
二、讲解新课。
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)。
三、课堂练习课本p4练习1,2,3,4。
四、课时小结。
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业教科书p5:2、4。
板书设计:
七年级数学有理数的乘法教案篇二
学习过程:
一、自主学习不动笔墨不读书!请拿出你的笔和你的激情,探究新知:
1.小学学过的加法运算律有哪些?举例说明运用运算律有何好处?
2.加法的交换律:
两个数相加,交换_______的位置,和不变.用式子表示:a+b=_______.
3.加法的结合律:
七年级数学有理数的乘法教案篇三
学习目标:。
1、理解加减法统一成加法运算的意义.
2、会将有理数的加减混合运算转化为有理数的加法运算.
3、培养学习数学的兴趣,增强学习数学的信心.
教学方法:讲练相结合。
教学过程。
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
记作+4.5千米—3.2千米+1.1千米—1.4千米。
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米.
2、你是怎么算出来的,方法是。
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.
如:(-20)+(+3)-(-5)-(+7)有加法也有减法。
=(-20)+(+3)+(+5)+(-7)先把减法转化为加法。
=-20+3+5-7再把加号记在脑子里,省略不写。
可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.
4、师生完整写出解题过程。
1、解决引例中的问题,再比较前面的方法,你的感觉是。
2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4。
3、练习:计算1)(—7)—(+5)+(—4)—(—10)。
1、小结:说说这节课的收获。
2、p241、2。
3、计算。
1)27—18+(—7)—322)。
五、作业。
1、p2552、p26第8题、14题。
七年级数学有理数的乘法教案篇四
(二)能力训练目标:
1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2、能运用乘法运算律简化计算。
(三)情感与价值观要求:
1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。
2、在讨论的过程中,使学生感受集体的力量,培养团队意识。
乘法运算律的运用。
乘法运算律的运用。
探究交流相结合。
创设问题情境,引入新课。
[活动1]。
问题2:计算下列各题:
(1)(-7)×8;。
(2)8×(-7);
(5)[3×(-4)]×(-5);
(6)3×[(-4)×(-5)];
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)。
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。
[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?
(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)。
讲授新课:
[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:
1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。
[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。
3、用简便方法计算:
[活动4]。
练习(教科书第42页)。
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题1.4的第7题(3)、(6)。
用简便方法计算:
(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。
(2)[(4×8)×25一8]×125。
七年级数学有理数的乘法教案篇五
1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘法法则,熟练运用有理数的法则进行准确运算。
2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。
3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。
重点:有理数乘法运算法则的推导及熟练运用。
难点:有理数乘法运算中积的符号的确定。
1、在小学我们已经接触了乘法,那什么叫乘法呢?
求几个的运算,叫乘法。
一个数同0相乘,得0。
2、请你列举几道小学学过的乘法算式。
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的()边()cm处。
可以列式为:(+2)(+3)=。
问题2:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的()边()cm处。
可以列式为:
问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的()边()cm处。
可以表示为:
问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的()边()cm处。
可以表示为:
2、观察这四个式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正数乘正数积为__数:负数乘负数积为__数:
负数乘正数积为__数:正数乘负数积为__数:
乘积的绝对值等于各乘数绝对值的_____。
思考:当一个因数为0时,积是多少?
两数相乘,同号得,异号得,并把绝对值。
任何数同0相乘,都得。
1、你能确定下列乘积的符号吗?
37积的符号为;(—3)7积的符号为;
3(—7)积的`符号为;(—3)(—7)积的符号为。
2先阅读,再填空:
(—5)x(—3)。同号两数相乘。
(—5)x(—3)=+()得正。
5x3=15把绝对值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]计算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
请同学们仿照上述步骤计算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
让我们来总结求解步骤:
两个数相乘,应先确定积的,再确定积的。
1、小组口算比赛,看谁更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔细计算。,注意积的符号和绝对值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列说法错误的是()。
a、一个数同0相乘,仍得0。
b、一个数同1相乘,仍得原数。
c、如果两个数的乘积等于1,那么这两个数互为相反数。
d、一个数同—1相乘,得原数的相反数。
2、在—2,3,4,—5这四个数中,任意两个数相乘,所得的积最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、计算下列各题:
(5)(—6)(—5)=;(6)(—5)(—6)=。
七年级数学有理数的乘法教案篇六
2.内容解析。
有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.
基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.
二、目标及其解析。
1.目标。
(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.
(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.
2.目标解析。
达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.
达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.
三、教学问题诊断分析。
有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.
本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.
四、教学过程设计。
教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.
设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.
问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?
如果学生仍然有困难,教师给予提示:
(1)四个算式有什么共同点?——左边都有一个乘数3.
(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.
设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.
教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.
追问2:根据这个规律,下面的两个积应该是什么?
3×(-2)=,
3×(-3)=.
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
设计意图:让学生自主构造算式,加深对运算规律的理解.
先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的.绝对值等于各乘数绝对值的积.
设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.
问题3观察下列算式,类比上述过程,你又能发现什么规律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓励学生模仿正数乘负数的过程,自己独立得出规律.
设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.
追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?
(-1)×3=,
(-2)×3=,
(-3)×3=.
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.
先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.
追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?
设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.
问题4利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追问1:按照上述规律填空,并说说其中有什么规律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.
问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?
学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.
学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.
设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.
例1计算:
(1)。
;(2)。
;(3)。
学生独立完成后,全班交流.
教师说明:在(3)中,我们得到了。
=1.与以前学习过的倒数概念一样,我们说。
与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.
追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?
设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).
设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.
小结、布置作业。
请同学们带着下列问题回顾本节课的内容:
(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?
(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.
(4)你能举例说明符号法则“负负得正”的合理性吗?
设计意图:引导学生从知识内容和学习过程两个方面进行小结.
作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.
五、目标检测设计。
1.判断下列运算结果的符号:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2计算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
设计意图:检测学生对有理数乘法法则的理解情况.
七年级数学有理数的乘法教案篇七
3.进一步感悟“转化”的思想。
把有理数的加减法混合运算统一为加法运算。
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算。
1、完成下列计算:
(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
归纳:根据有理数的减法法则,有理数的`加减混合运算可以统一为运算;
省略负数前面的加号和()后的形式是______________________;
展示交流。
1、把下列运算统一成加法运算:
2、将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
3、将下列运算先统一成加法,再省略加号:
=___[]______________________。
4、仿照本p37例6,完成下列计算:
盘点收获。
个案补充。
1.计算:
本p39习题2。5第6题(1)、(3)、(5),第7题。
七年级数学有理数的乘法教案篇八
3.注意培养学生的运算能力.。
教学重点和难点。
重点:有理数的混合运算.。
难点:准确地掌握有理数的运算顺序和运算中的符号问题.。
课堂教学过程设计。
一、从学生原有认知结构提出问题。
1.计算(五分钟练习):
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5).。
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、讲授新课。
1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.。
审题:(1)运算顺序如何?
(2)符号如何?
七年级数学有理数的乘法教案篇九
2、使学生更多经历有关知识发生、规律发现过程。
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的'过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
1、知识基础:
其一:小学所学过的乘法运算方法;
其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:
(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
列式:
即:小虫位于原来出发位置的东方6米处。
拓展:如果规定向东为正,向西为负。
列式:
即:小虫位于原来出发位置的西方6米处。
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数。
3、设疑:
如果我们把中的一个因数2换成它的相。
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
例:计算:
p52.1、2、3。
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
p57.1、2、3。
1、小学数学都学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
七年级数学有理数的乘法教案篇十
2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
例1计算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察。
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察。
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a。
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)。
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2计算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
让三个学生在黑板上计算?
课堂练习。
计算:
(1),,,-,;
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
让学生回忆,做出小结:
1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?
1?计算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4时,求下列各代数式的值:
4?当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
七年级数学有理数的乘法教案篇十一
3+4表示3和+4的代数和。
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4、先把正数与负数分别相加,可以使运算简便。
5、在交换加数的位置时,要连同前面的符号一起交换。如。
12-5+7应变成12+7-5,而不能变成12-7+5。
教学设计示例一。
一、素质目标。
(一)知识教学点。
1.了解:代数和的概念.。
2.理解:有理数加减法可以互相转化.。
(二)能力训练点。
培养学生的口头表达能力及计算的准确能力.。
(三)德育渗透点。
(四)美育渗透点。
七年级数学有理数的乘法教案篇十二
要想尽最大可能的发挥出课堂45分钟的效益,需要从许多方面去准备,去思考,比如对教学重点和难点的突破,对课堂的组织对突发事件的应对以及对学生实际情况的了解等等。要想上好一节课需要付出很多的精力。复习课并不是单纯的让学生去重复练习,更重要的是使学生在巩固基础的前提下,分析问题解决问题的能力得到提高。
七年级数学有理数的乘法教案篇十三
1.1正数和负数(2)。
教学目标:
教学重点:
深化对正负数概念的理解。
教学难点:
正确理解和表示向指定方向变化的量。
教学准备:彩色粉笔。
教学过程:
一、复习引入:
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
二、讲解新课。
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)。
三、课堂练习课本p4练习1,2,3,4。
四、课时小结。
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业教科书p5:2、4。
板书设计:
将本文的word文档下载到电脑,方便收藏和打印。
七年级数学有理数的乘法教案篇十四
平行公理及推论
(二)难点
平行线概念的理解
(三)解决办法
通过引导学生尝试发现新知、练习巩固的方法来解决
投影仪、三角板、自制胶片
1通过投影片和适当问题创设情境,引入新课
2通过教师引导,学生积极思维,进行反馈练习,完成新授
3学生自己完成本课小结
(-)明确目标
(二)整体感知
(三)教学过程
创设情境,引出课题
学生齐声答:不是
师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)
[板书]24平行线及平行公理
探究新知,讲授新课
师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?
学生:窗户相对的棱,桌面的对边,书的对边……
师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线
[板书]在同一平面内,不相交的两条直线叫做平行线
教师出示投影片(课本第74页图2?17)
师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?
学生:不会相交
师:那么它们是平行线吗?
学生:不是
师:也就是说平行线的定义必须有怎样的'前提条件?
学生:在同一平面内
师:谁能说为什么要有这个前提条件?
学生:因为空间里,不相交的直线不一定平行
教师在黑板上给出课本第73页图2
学生:两种相交和平行
由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种
尝试反馈,巩固练习(出示投影)
1判断正误
(1)两条不相交的直线叫做平行线()
(2)有且只有一个公共点的两直线是相交直线()
(3)在同一平面内,不相交的两条直线一定平行()
(4)一个平面内的两条直线,必把这个平面分为四部分()
2下列说法中正确的是()
a在同一平面内,两条直线的位置关系有相交、垂直、平行三种
b在同一平面内,不垂直的两直线必平行
c在同一平面内,不平行的两直线必垂直
d在同一平面内,不相交的两直线一定不垂直
学生活动:学生回答,并简要说明理由
师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)
已知直线和外一点,过点画直线
师:请根据语句,自己画出已知图形
学生活动:学生在练习本上画出图形
师:下面请你们按要求画出直线
注意:(1)在推动三角尺时,直尺不要动;
(2)画平行线必须用直尺三角板,不能徒手画
尝试反馈,巩固练习(出示投影)
1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)
2读下列语句,并画图形
(1)点是直线外的一点,直线经过点,且与直线平行
(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于
(3)过点画,交的延长线于
学生活动:学生思考并回答,能画,而且只能画一条
师:我们把这个结论叫平行公理,教师板书
【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行
学生:思考后,立即回答,能画无数条
师:请同学们在练习本上完成
(出示投影)
已知直线,分别画直线、,使,
学生活动:学生在练习本上完成
师:请同学们观察,直线、能不能相交?
学生活动:观察,回答:不相交,也就是说
师:为什么呢?同桌可以讨论
学生活动:学生积极讨论,各抒己见
学生活动:教师让学生积极发表意见,然后给出正确的引导
师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论
学生活动:学生在教师的启发引导下思考、讨论,得出结论
[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行
学生活动:学生思考,回答:不对,给出反例图形,
例如:如图1所示,射线与就不相交,也不平行
师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?
生:它们所在的直线平行
尝试反馈,巩固练习(投影)
七年级数学有理数的乘法教案篇十五
有理数的乘法是有理数运算的一个非常重要的内容,它与有理数的加法运算一样,也是建立在小学算术运算的基础上。“有理数乘法”的教学,在性质上属于定义教学,历来是一个难点课题,教师难教,学生难理解。有一个比较省事的做法是,略举简单的事例,尽早出现法则,然后用较多的时间去练法则,背法则。但新课程提倡让学生体验知识的形成过程。本节课尽量考虑在有利于基础知识、基础技能的掌握和学生的创新能力的培养,能最大限度地使教学的设计过程面向全体学生,充分照顾不同层次的学生,使设计的思路符合新课程倡导的理念。
反思这节课,成功之处在于:
1、创设情境,引入课题,体现了数学来源于生活又服务于生活的理念。。
2、精心设计的现实模型“水位变化,日期前后”使有理数的乘法法则的“规定合理性”与“规定必要性”都得到了事实的说明。:新课程标准强调,教师的有效教学应指向学生有意义的数学学习,而有意义的数学学习又必须建立在学生的主观愿望和知识经验基础之上.在此背景下,本节课的引入部分通过幻灯片形象直观地展示学生熟悉的水库水位变化情况,创设了真实的问题情境。意在诱发同学们进行探索与解决问题,这样既激发了学生的学习兴趣,又让学生体会到数学问题来源于实际生活。
3、练习设计,让学生体验到成功的乐趣。整节课内容安排紧凑,由浅入深,循序渐进地突破难点。根据初一学生的思维特点和年龄特征,设计了“试一试”、“练一练”、“合作学习”等环节,激发学生的好奇心,并在教学中尽量用激励性和导向性的语言来鼓励学生大胆发言,面向全体学生,让学生在比较轻松和谐的课堂氛围中较好地完成了学习任务。
尽管最初的设计能体现一些新的理念,但经过课堂实践后,仍感到有许多不足。
1、课堂引入化时间太多。有理数的加法对本节课的作用不是很大,直接从水位变化的实例引出可以节省一些时间用于合作学习的环节。
2、“练一练”这一环节的题目设计的较难,对中下学生一时难以接受。重点应该是练习有理数乘法的法则,计算量不易太大。先从整数乘以整数,再进行分数乘以分数,由易到难的顺序进行,学生会容易接受。
3、整堂课感觉教师启发引导的较多,给学生自主探索思考的空间较少。这样不利于学生思维的发展,不利于学生主体作用的发挥。
文档为doc格式。
。
七年级数学有理数的乘法教案篇十六
(3)几个因式都不为零,积的符号由负因式的个数决定。奇数个负数为负,偶数个负数为正。
以上对数学中有理数乘法法则知识点的内容讲解学习,相信同学们已经能很好的掌握了吧,希望同学们考试成功。
七年级上数学知识点之乘方的定义
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0?a=0,b=0;
(4)据规律 底数的小数点移动一位,平方数的小数点移动二位。

一键复制