总之,教案是教师的得力助手,是教学活动的重要保障。如何编写一份高质量的教案是每个教师都需要面对的问题。请大家认真阅读以下教案范文,对照自身教学实践反思和优化教学方案。
教案高中数学篇一
难点是解组合的应用题.。
(一)导入新课。
(教师活动)提出下列思考问题,打出字幕.。
[字幕]一条铁路线上有6个火车站。
(1)需准备多少种不同的普通客车票?
(学生活动)讨论并回答。
答案提示:
(1)排列;
(2)组合。
[评述]问题。
(二)新课讲授。
[提出问题创设情境]。
(教师活动)指导学生带着问题阅读课文。
[字幕]。
1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.。
(教师活动)对照课文,逐一评析.。
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境。
【归纳概括建立新知】。
(教师活动)承接上述问题的回答,展示下面知识.。
(学生活动)倾听、思索、记录。
(教师活动)提出思考问题。
[投影]与的关系如何?
(师生活动)共同探讨.求从个不同元素中取出个元素的排列数,可分为以下两步:
第1步,先求出从这个不同元素中取出个元素的组合数为;
第2步,求每一个组合中个元素的全排列数为。
根据分步计数原理,得到。
[字幕]公式1:
公式2:
(学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票。
(三)小结。
(师生活动)共同小结。
本节主要内容有。
1.组合概念。
2.组合数计算的两个公式。
(四)布置作业。
1.课本作业:习题103第1(1)、(4),3题。
3.研究性题:
(五)课后点评。
3.能组成(注意不能用点为顶点)个四边形,个三角形.。
探究活动。
解设四人分别为甲、乙、丙、丁,可从多种角度来解。
教案高中数学篇二
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)
第2单元不等式(8学时)
第3单元函数(12学时)
第4单元指数函数与对数函数(12学时)
第5单元三角函数(18学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第9单元立体几何(14学时)
第10单元概率与统计初步(16学时)
2.职业模块
第1单元三角计算及其应用(16学时)
第2单元坐标变换与参数方程(12学时)
第3单元复数及其应用(10学时)
教案高中数学篇三
高中数学趣味竞赛题(共10题)
5个高中生有,她们面对学校的新闻采访说了如下的话:
爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”
玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”
千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?
有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。
一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。
那么,请问原来的算式是什么样子的呢?
用16根火柴摆成5个正方形。请移动2根火柴,
使
正形变成4。
把正三角形的纸如图那样折过来时,角?的度数是多少度?
求星形尖端的角度之和。
丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。
结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?
用折纸做成45度很简单是吧。那么,请折成15度,你会吗?
教案高中数学篇四
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
渐近线方程是,离心率,若点是双曲线上的点,则,。
2、又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3、经过两点的双曲线的标准方程是。
4、双曲线的渐近线方程是,则该双曲线的离心率等于。
5、与双曲线有公共的渐近线,且经过点的双曲线的方程为
1、双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。
2、已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。
3、设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。
1、双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。
2、与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。
3、若双曲线上一点到它的右焦点的距离是,则点到轴的距离是
4、过双曲线的左焦点的直线交双曲线于两点,若。则这样的'直线一共有条。
1、已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2、已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。
3、双曲线的焦距为
4、已知双曲线的一个顶点到它的一条渐近线的距离为,则
5、设是等腰三角形,,则以为焦点且过点的双曲线的离心率为。
教案高中数学篇五
教学内容:
整十数加一位数及相应的减法。
教学目标:
1、让学生经历两位数加、减一位数的口算方法的探索过程,能比较熟练的进行口算。并了解加、减发算式中各部分的名称。
2、在根据数的组成探索口算方法的过程中,体会知识间的内在联系,发展思维能力和口算能力。
3、培养用数学的观念看周围的事物的意识,培养同学之间的相互合作、交流的态度。
教学重难点:
两位数加、减一位数的口算方法。
教学准备:
课件。
教学过程:
2个十和5个一合起来是(),8个十和4个一合起来是()。95里面是由()个十和()个一组成。81里面有()个十和()个一。
1、出示32页情景图。
2、提问:你能从图中获得哪些数学信息?能提出一个数学问题吗?
学生回答:梳理问题。
(1)一共有多少个桃?
(2)一共有34个桃,去掉框里的30个,还剩多少个桃?
3、怎样列式?
(1)先想一想。
(2)小组交流。
小组内交流自己的算法。
(3)指名小组汇报。
结合学生回答小结:根据看图,数出来的;用小棒摆出来的;根据数的组成来思考的。34+4就是把3个十和4个一合起来,是34;34-30就是从34里去掉3个十,还剩4个一,是4。
4、解答“试一试”。
提问:4+30等于多少,你又可以怎样算?
(1)先想一想。
(2)小组交流。
小组内交流自己的算法。
(3)指名小组汇报。
4个一和3个十和起来是34;因为30+4=34,所以4+30=34。
谈话:“34-4”你会算吗?填在书上,并轻声地说说你是怎样想的。
指名回答,结合学生回答适当补充。
5、介绍算式中各部分的名称。
(1)介绍加法算式中各部分的名称。
谈话:每个小朋友都有自己的名子,在每一个算式中每个部分也都有各自的名子。在加法算式30+4=34中,相加的两个数都叫做加数。两个加数相加的结果叫做和。
(2)介绍减法算式各部分的名称。
(3)指名说出算式4+30=34,34-4=30中各部分的名称。
1、“想想做做”第1题。
(1)出示图,让学生说图意。
(2)根据图意,列出四个算式。
(3)说说每道算式表达什么意思。
2、“想想做做”第2题。
先独立完成,再说说怎样想的?
提问:根据60+3=63你能想到其他三个算式吗?
3、“想想做做”第3题。
先独立完成,再说说是怎样想的,集体核对结果。
4、“想想做做”第4题。
根据表中第一行的名称说说左表用什么方法计算,右表用什么方法计算。
5、“想想做做”第5题。
先了解“相邻数”是什么意思,再写数交流。
6、“想想做做”第6、7题。
先说说每题中的.已知条件和要求的问题。
再自己独立完成。
同桌交流并说说是怎样想的。
教案高中数学篇六
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
【矫正巩固】
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
【迁移应用】
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .
教案高中数学篇七
1.理解流程图的选择结构这种基本逻辑结构.。
2.能识别和理解简单的框图的功能.。
3.能运用三种基本逻辑结构设计流程图以解决简单的问题.。
一、问题情境。
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为。
其中(单位:)为行李的重量.。
试给出计算费用(单位:元)的.一个算法,并画出流程图.。
二、学生活动。
学生讨论,教师引导学生进行表达.。
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.。
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.。
在上述计费过程中,第二步进行了判断.。
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种。
操作的结构称为选择结构.。
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判。
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执。
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和。
两个退出点.。
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
教案高中数学篇八
下面给出教学实施过程设计的简要思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
学生或独立研究,或合作研究,教师巡视指导.
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.
当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.
当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
综合两种情况,我们得出如下结论:
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.
这样上边的结论可以表述如下:
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?
师生共同讨论,评价不同思路,达成共识:
(1)当 时,方程可化为
这是表示斜率为 、在 轴上的截距为 的直线.
(2)当 时,由于 、 不同时为0,必有 ,方程可化为
这表示一条与 轴垂直的直线.
因此,得到结论:
为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.
【动画演示】
演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.
(三)练习巩固、总结提高、板书和作业等环节的设计
略
教案高中数学篇九
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合a的元素,就说a属于集合a,记作a?a.
如果a不是集合a的元素,就说a不属于集合a,记作a?a.
(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1a组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
教案高中数学篇十
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2、过程与方法。
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3、情感态度与价值观。
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
重点、难点:用斜二测画法画空间几何值的直观图。
1、学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2、教学用具:三角板、圆规。
(一)创设情景,揭示课题。
1、我们都学过画画,这节课我们画一物体:圆柱。
把实物圆柱放在讲台上让学生画。
2、学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知。
1、例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈。
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2、例2,用斜二测画法画水平放置的圆的直观图。
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的`直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3、探求空间几何体的直观图的画法。
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4、平行投影与中心投影。
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5、巩固练习,课本p16练习1(1),2,3,4。
三、归纳整理。
学生回顾斜二测画法的关键与步骤。
四、作业。
1、书画作业,课本p17练习第5题。
教案高中数学篇十一
知识与技能。
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的.圆心半径,掌握方程x+y+dx+ey+f=0表示圆的条件。
过程与方法。
通过对方程x+y+dx+ey+f=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
情感态度与价值观。
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
重点。
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
难点。
二元二次方程与圆的一般方程及标准圆方程的关系。
(一)复习旧知,引出课题。
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?
教案高中数学篇十二
3.进一步提高问题探究意识、知识应用意识和同伴合作意识。
问题的提出与解决。
如何进行问题的探究。
启发探究式。
研究方向提示:
1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;
2.研究所给数列的项之间的关系;
3.研究所给数列的子数列;
4.研究所给数列能构造的新数列;
5.数列是一种特殊的函数,可以从函数性质角度来进行研究;
6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。
针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。
课堂小结:
1.研究一个数列可以从哪些方面提出问题并进行研究?
2.你最喜欢哪位同学的研究?为什么?
开展研究性学习,培养问题解决能力。
一、对“研究性学习”和“问题解决”的认识研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。
“问题解决”(problemsolving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。
问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。
二、“问题解决”课堂教学模式的建构与实践以研究性学习活动为载体,以培养问题解决能力为核心的'课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。
(一)关于“问题解决”课堂教学模式。
通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。
(二)数学学科中的问题解决能力的培养目标。
数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。
(三)“问题解决”课堂教学模式的教学流程。
(四)“问题解决”课堂教学评价标准。
1.教学目标的确定;
2.教学方法的选择;
3.问题的选择;
4.师生主体意识的体现;
5.教学策略的运用。
(五)了解学生的数学问题解决能力的途径。
(六)开展研究性学习活动对教师的能力要求。
教案高中数学篇十三
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
求曲线的方程。
计算机。
启发引导法,讨论法。
【引入】。
1.提问:什么是曲线的方程和方程的曲线。
学生思考并回答,教师强调。
2.坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何,解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
【问题】。
如何根据已知条件,求出曲线的方程。
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。
下面再看一个问题:
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
【作业】课本第72页练习1,2,3;

一键复制