教案是教师为完成教学目标,合理组织和安排课堂教学内容、教学方法、教学过程和教学评价等内容而制定的一种计划性文稿,它对于教师来说具有重要意义。教案可以帮助教师有效地组织教学内容,提高教学质量,使学生能够全面、系统地掌握所学知识。因此,教案的编写对于教师来说是一项非常重要的工作。教案的编写可以结合教学经验和教学反思,不断进行改进和完善。接下来将为大家推荐一些教案范文,希望能对大家的教学工作有所启发。
分解因式教案篇一
1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.
【过程与方法】。
经历观察、分析、交流的过程,逐步提高运用知识的能力.
【情感态度】。
提高学生的观察、分析能力和对图形的感知水平.
【教学重点】。
会求反比例函数的解析式.
【教学难点】。
反比例函数图象和性质的运用.
教学过程。
一、情景导入,初步认知。
【教学说明】复习上节课的内容,同时引入新课.
二、思考探究,获取新知。
1.思考:已知反比例函数y=的图象经过点p(2,4)。
(1)求k的值,并写出该函数的表达式;。
(2)判断点a(-2,-4),b(3,5)是否在这个函数的图象上;。
分析:
(1)题中已知图象经过点p(2,4),即表明把p点坐标代入解析式成立,这样能求出k,解析式也就确定了.
(2)要判断a、b是否在这条函数图象上,就是把a、b的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.
(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.
【归纳结论】这种求解析式的方法叫做待定系数法求解析式.
2.下图是反比例函数y=的图象,根据图象,回答下列问题:
(1)k的取值范围是k0还是k0?说明理由;。
(2)如果点a(-3,y1),b(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:
(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k0.
(2)因为点a(-3,y1),b(-2,y2)是该函数图象上的两点且-30,-20.所以点a、b都位于第三象限,又因为-3-2,由反比例函数的图像的性质可知:y1y2.
【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.
分解因式教案篇二
1、知识与能力:
1)进一步巩固相似三角形的知识.
2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.
2.过程与方法:
经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:
1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。
2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(三)教学重点、难点和关键。
重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
分解因式教案篇三
知识点:
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
教学过程:
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
如多项式。
其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用。
写出结果。
(3)十字相乘法。
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根x1,x2,那么。
1、教学实例:学案示例。
2、课堂练习:学案作业。
3、课堂:
4、板书:
5、课堂作业:学案作业。
6、教学反思:
分解因式教案篇四
3、选择恰当的方法进行因式分解。
4、应用因式分解来解决一些实际问题。
5、体验应用知识解决问题的乐趣。
灵活运用因式分解解决问题。
一、创设情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾。
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)。
(7).2πr+2πr=2π(r+r)因式分解。
2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程。
分解因式要注意以下几点:(1).分解的对象必须是多项式。
(2).分解的结果一定是几个整式的乘积的形式。(3).要分解到不能分解为止。
4、强化训练。
试一试把下列各式因式分解:
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例题讲解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知识应用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展应用。
2、20042+2004被2005整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数。
五、课堂小结:今天你对因式分解又有哪些新的认识?
分解因式教案篇五
3、选择恰当的方法进行因式分解。
4、应用因式分解来解决一些实际问题。
5、体验应用知识解决问题的乐趣。
灵活运用因式分解解决问题。
灵活运用恰当的因式分解的方法,拓展练习2、3。
一、创设情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾。
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)。
(7)。2πr+2πr=2π(r+r)因式分解。
2、。规律总结(教师讲解):分解因式与整式乘法是互逆过程。
分解因式要注意以下几点:(1)。分解的对象必须是多项式。
(2)。分解的结果一定是几个整式的乘积的形式。(3)。要分解到不能分解为止。
4、强化训练。
教学引入。
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示。
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]。
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课。
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质。
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]。
动画演示:
场景三:矩形的性质。
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]。
动画演示:
场景四:菱形的性质。
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]。
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
试一试把下列各式因式分解:。
(1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。
(3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。
三、例题讲解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+。
例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知识应用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展应用。
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数。
五、课堂小结:今天你对因式分解又有哪些新的认识?
分解因式教案篇六
这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容。
在新课引入的过程中,我首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接着就让学生利用平方差公式做三个整式乘法的运算。然后,我巧妙的将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。只见我的题目一出来,学生就争先恐后地回答出来了。待学生回答完之后,我马上追问“为什么”时,学生轻而易举地讲出是将原来的平方差公式反过来运用,马上使学生形成了一种逆向的思维方式。之后,我就顺利地和同学们一起分析了因式分解中的平方差公式——两数的平方差等于这两个数的和与这两个数的差的积,讨论了“怎样的多项式能用平方差公式因式分解?”可以说,对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用平方差公式进行因式分解。
分解因式教案篇七
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用
写出结果。
(3)十字相乘法
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根x1,x2,那么
2、教学实例:学案示例
3、课堂练习:学案作业
4、课堂:
5、板书:
6、课堂作业:学案作业
7、教学反思:
分解因式教案篇八
1、会运用因式分解进行简单的多项式除法。
二、教学重点与难点教学重点:
教学重点。
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程。
(一)引入新课。
(二)师生互动,讲授新课。
一个小问题:这里的x能等于3/2吗?为什么?
想一想:那么(4x—9)(3—2x)呢?练习:课本p162课内练习。
合作学习。
等练习:课本p162课内练习2。
(三)梳理知识,总结收获因式分解的两种应用:
(四)布置课后作业。
作业本6、42、课本p163作业题(选做)。
分解因式教案篇九
分解因式是数学学科中重要的一部分,它是代数运算中的基础内容之一。分解因式涉及到对多项式的因式进行拆分和分解,是解决代数方程、方程组等各种问题的基础。近期在学习分解因式的过程中,我积累了一些心得体会,想通过这篇文章与大家分享,希望能对大家的学习有所帮助。
在开始学习分解因式之前,我们需要掌握一些基础原则。首先,我们需要了解因式与被分解多项式之间的关系。也就是说,分解因式的目的是将多项式拆分成较为简单的因子乘积,最终得到与原多项式等价的表达式。其次,我们需要学会分解因式的基本方法。对于一元多项式而言,我们可以使用因式分解公式,如平方差、立方差、二次方差、立方和等公式,以及分组、通分等方法来完成分解。对于多元多项式,我们可以进行公因式提取、配方法等操作来实现因式分解。
除了基础原则外,掌握一些分解因式的技巧也是提高分解因式能力的关键。首先,我们可以利用因式的特征进行分解。例如,对于二次多项式,我们可以通过判断其特征值来确定分解因式的形式。其次,我们可以尝试进行因式分解与求根联系起来。通过观察多项式与其根之间的关系,我们可以推导出分解因式的表达式。此外,熟练掌握素因子分解法也是非常重要的。根据多项式的组成特点,我们可以将其分解成素因子的乘积,从而达到简化多项式的目的。
第四段:解决实际问题的应用。
学习分解因式不仅仅是为了解题,更是为了运用到实际问题的解决中。例如,在解决约数问题、最大公约数最小公倍数问题时,我们可以利用分解因式的知识来简化计算。在解决二次方程、立方方程等代数方程时,分解因式也是化简公式、求解根的基础。在解决几何问题、物理问题时,分解因式能够帮助我们找到正确的答案。因此,掌握好分解因式的方法,能够提高我们解决实际问题的效率。
第五段:总结。
分解因式是数学学科中的重要内容,也是解决代数问题的基础。通过学习和实践,我深刻体会到了分解因式的重要性。作为一种基本的数学技能,分解因式不仅具有解决问题的能力,更能培养我们的逻辑思维能力和创造力。因此,在今后的学习中,我将继续加强对分解因式的掌握,不断提高解决实际问题的能力,为自己的数学学习打下坚实的基础。
分解因式教案篇十
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
分解因式教案篇十一
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
分解因式教案篇十二
3、选择恰当的方法进行因式分解。
5、体验应用知识解决问题的乐趣。
灵活运用恰当的因式分解的方法,拓展练习2、3。
一、创设情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾。
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)。
2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.
分解因式要注意以下几点:(1).分解的对象必须是多项式.
(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.
4、强化训练。
教学引入。
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示。
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]。
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课。
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质。
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]。
动画演示:
场景三:矩形的性质。
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]。
动画演示:
场景四:菱形的性质。
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]。
师:请同学们回想矩形与菱形的`定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例题讲解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+。
例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知识应用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展应用。
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
五、课堂小结:今天你对因式分解又有哪些新的认识?
分解因式教案篇十三
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
灵活运用平方差公式进行分解因式。
平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

一键复制