教案的编写需要充分考虑学生的需求和教学目标。教案的编写需要不断更新和改进,适应教育改革和教学发展的需求。以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
小学因数和倍数的教案篇一
掌握因数、倍数的概念,知道因数、倍数的相互依存关系。
2、过程与方法。
通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。
3、情感态度与价值观。
使学生感悟到数学知识的内在联系的逻辑之美。
教学重点。
掌握找一个数的因数、倍数的方法。
教学难点。
能熟练地找一个数的因数和倍数。
课件、投影。
一、迁移引入。
同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……)。
这些自然数。(课件去“0”)。
去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。
二、情境创设,探究新知。
1、理解整除的意义。
(1)出示例1,在前面学习中,我们见过下面的算式。
12÷2=68÷3=2……230÷6=519÷7=2……59÷5=1.8。
26÷8=3.2520÷10=221÷21=163÷9=7。
你能把这些算式分类吗?
(2)分类所得:
第
一
类
12÷2=620÷10=2。
30÷6=521÷21=1。
63÷9=7。
第
二
类
8÷3=2……29÷5=1.8。
19÷7=2……526÷8=3.25。
(3)观察发现,合作交流。
观察算式,说一说谁是谁的倍数,谁是谁的约数。
12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)。
3、总结归纳。
(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
4、注意:
为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。
5、做一做。
下面的4组数中,谁是谁的因数?谁是谁的倍数?
4和2436÷1375÷2581÷9。
6、教学例2。
18的因数有哪几个?
18的因数有1、2、3、6、9、18。
也可以这样用图表示。
18的因数。
1,2,3,
6,9,18。
30的因数有哪些?36呢?
7、教学例3。
2的倍数有哪些?
2的倍数有2、4、6、8……。
2的倍数。
2,4,6,
8,10,12,
14,……。
3的倍数有哪些?5呢?
8、小组讨论,归纳总结。
一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
1、填空。
(1)36是4的()数。
(2)5是25的()。
(3)2.5是0.5的()倍。
2、下面各组数中,有因数和倍数关系的有哪些?
(1)18和3(2)120和60(3)45和15(4)33和7。
3、24和35的因数都有哪些?
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
小学因数和倍数的教案篇二
1、从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。
2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
小学因数和倍数的教案篇三
1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。
2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。
3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。
掌握倍数和因数等相关概念,以及应用概念判断、推理。
理解相关概念的联系和区别。
一、揭示课题。
1.回顾知识。
提问:上节课,我们已经复习了整数和小数的有关知识。
结合学生交流,板书。
2.揭示课题。
引入:这节课,我们复习因数和倍数的相关知识。
通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。
二、基本练习。
1.知识梳理。
提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?
学生回顾,交流,教师适当引导回顾。
根据学生回答,板书整理。
2.做练习与实践第10题。
学生独立完成,指名板演。
集体交流,让学生说说找一个数的因数和倍数的方法。
3.做练习与实践第11题。
出示题目,学生直接口答。
提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?
追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。
4.做练习与实践第12题。
学生先独立写出质数和合数,再指名口答。
追问:最小质数是几?最小的合数呢?
小学因数和倍数的教案篇四
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
教材中首先引导学生理解数与数之间的关系,进而用乘法算式把不同的列法表示出来,再根据乘法算式教学倍数和因数的意义。这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。
倍数和因数的意义是本单元的重要知识,其他内容的教学都以此为基础。在学生得出乘法算式后,首先引导学生观察3×4=12这道算式,边指着算式边先介绍“12是3的倍数”,然后启发学生“看着算式你还能想到什么?”很多学生已经领会12也是4的倍数,指名说后,再强化一下让学生连起来说说谁是谁的倍数。接着教学“3是12的因数”,再启发“这时你又能想到什么?”学生很容易联想到“4也是12的因数”,而且学生的学习兴趣浓厚、求知欲强。这时再让学生完整的说一说谁是谁的倍数,谁是谁的因数,已经“水到渠成”。在初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系之后,接着练一练让学生根据2×6=12先同桌互相说说哪个数是哪个数的倍数(或因数),在全班交流。最后根据1×12=12先指名说一说哪个数是哪个数的倍数(或因数),再让学生轻声地说说有点特别的两句。
整个过程处理细致、层次清晰、有扶有放,生生交流、师生交流充分,反馈及时、兼顾学困生,让学生在迁移中理解倍数和因数的意义。
找一个数的倍数或因数,既能巩固倍数和因数的意义,也为研究倍数的特征及意义作准备。探索找一个数的倍数或因数的方法时,重点是帮助学生建立相应的数学模型。
探索求一个数因数的方法是本课的难点,例题直接安排找24的因数更是困难。教学中我还是利用3×4=12做铺垫,引导学生先找一找12的因数,初步感知了找因数的方法。然后层层推进,先让学生想一道算式找24的因数,引出根据除法找因数的方法,再让学生按除法通过自主探究找出24的所有因数,接着组织学生比较、讨论、优化提升出找一个数的因数的方法。
教学4的倍数时,学生在4×4=16的铺垫下,很容易找到一个或几个4的倍数,但是想要“一个不漏且有序的找全,并体会出4的倍数的个数是无限的”却很难。如何引导学生建构完整的倍数的数学模型呢?我遵循学生的认知规律,然后引导学生按从小到大的顺序整理,接着向两头延伸:有比4更小的吗?接着4×2=8,4×3=12,4×4=16,…像这样说下去说得完吗?4的倍数的特点逐步在学生的脑海中得以完善、合理建构。
这样搭建了有效的平台、形成了师生互动生成的过程,学生经历了无序、不完整逐步由点及面向有序、完整的思维迈进,有效的建构了数学模型。
小学因数和倍数的教案篇五
4、培养学生的观察能力。
掌握找一个数的因数和倍数的方法。
能熟练地找一个数的因数和倍数。
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为26=12。
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)。
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。
齐读p12的注意。
二、新授。
(一)找因数。
1、出示例1:18的因数有哪几个?
学生尝试完成:汇报。
(18的因数有:1,2,3,6,9,18)。
师:说说看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一对一对找,如118=18,29=18)。
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36。
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)。
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
小学因数和倍数的教案篇六
义务教育课程标准小学数学五年级下册第二章《因数和倍数》第1节例1(教材第13页)及练习二的第2题,第四题的前部分。
本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。
2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。
探究求一个数的因数的方法及规律特点。
用求一个数的因数的方法熟练找全一个数的因数。
投影仪、小黑板、卡片。
教学课时:一课时。
运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。
一、复习旧知。
师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?
生:(预设)可以!
师:出示小黑板。
1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。
21和72×7=1430÷6=5。
2、判断。
(1)12是倍数,2是因数。()。
(2)1是14的因数,14是1的倍数。()。
(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。()。
教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……。
二、新课教学。
过程一:尝试训练。
(一)出示问题。
师:同学们,老师有一个新问题,想请大家帮助解决,行吗?
生:行!(预设)。
尝试题:14的因数有哪几个?
(二)学生解决问题,教师巡视并根据实际适时辅导学困生。
(三)信息反馈。
板书:
1×14。
142×7。
14÷2。
14的因数有:1,2,7,14。
过程二:自学课本(p13例1)。
(一)学生自学例1。
教师提出自学要求(投影):
1、18有哪些因数?
2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。
3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。
(二)信息反馈。
1、反馈自学要求情况;
板书:
1×18。
182×9。
3×6。
18的因数有1,2,3,6,9,18。
还可以这样表示:18的因数。
2、知识对比,探索发现规律。
(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:
投影出示问题:
思考一:你用什么方法找出?
(2)学生思考,教师适时引导。
(3)同桌交流思考结果。
(4)师生互动。总结方法、点出课题。
求一个数的因数的方法:用乘法计算或除法计算(整除)。
过程三:尝试练习。
(一)用小黑板出示练习题。
1、找出30的因数有哪些?36的因数有哪些?
(二)信息反馈:师生互动总结特点。
板书:
一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。
三、课堂作业。
练习二第2题和第4题前半部分。
四、课堂延伸。
猜一猜:(卡片)只有一个因数的数是谁?
五、课堂小结。
师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?
生:……。
求一个数的因数的方法。
1×14。
142×7方法:用乘法计算或除法计算(整除)。
14÷2。
14的因数有:1,2,7,14。
1×18。
182×9。
3×6。
18的因数有:1,2,3,6,9,18特点:一个数的因数的个数是有限的。
还可以表示为:
它的最小因数是1的因数是它本身。
小学因数和倍数的教案篇七
第6课时。
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:探索奇数、偶数相加的规律。
[板书设计]。
数的奇偶性。
12+34=48偶数+偶数=偶数。
11+37=48奇数+奇数=偶数。
12+11=23奇数+偶数=奇数。
小学因数和倍数的教案篇八
1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。
2.我知道100以内的质数,记住了20以内的质数。
3.我能在自主探究中独立思考,合作探究时畅所欲言。
能理解质数、合数的意义,正确判断一个数是质数还是合数。
用恰当的方法找出100以内的质数;会给自然数分类。
一、导入新课。
二、检查独学。
1.互动分享收获。
2.质疑探讨。
3.试试身手:第23页做一做。
三、合作探究。
1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。
2.展示、交流:你们是怎样找出100以内质数的?
3.小组讨论:
(1)有没有最大的质数或合数?
(2)根据因数的个数,可把非零自然数分成哪几类?
4.我能很快熟记20以内的质数。
5.独立思考:
(1)是不是所有的`质数都是奇数?
(2)是不是所有的奇数都是质数?
(3)是不是所有的合数都是偶数?
(4)是不是所有的偶数都是合数?
6.组内交流。
小学因数和倍数的教案篇九
1、使学生结合乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法。
2、使学生在探索的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
3、增强学生学习数学的兴趣,感受到成功的快乐。
理解倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法。
理解倍数和因数的含义及倍数和因数的相互依存关系。
学生:每人准备12个同样大小的正方形。教师:课件。
一、认识倍数和因数。
1、提出活动要求:每一桌的同学合作,用12个同样大小的正方形拼成一个长方形,想想有几种不同的摆法,并用乘法算式把不同的摆法表示出来。看看哪桌的同学最快完成。
2分组操作活动,师巡视指导。
3、指名汇报,出示课件,全班交流。汇报时是引导学生根据“每排摆几个”“摆了几排”这两个问题说出三种不同的乘法算式。师提示:每排摆5个,能摆几排,明确只有这三种摆法。
4、教学“倍数”和“因数”的概念。
(1)结合4×3=12,说明12是4的倍数,12也是3的倍数,4和3都是12的因数。并板书。
(2)齐读这三句话,板书课题:倍数和因数。
(3)指名看式子说。
(4)请学生根据6×2=12和12×1=12两道算式,照样子说。
一说哪个数是哪个数的倍数?哪个数是哪个数的因数?
追问:如果说12是倍数,3是因数,可以吗?为什么?
明确:倍数和因数都是指两个数之间的关系,是相互依存的。
教师指出阅读底注明确:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。不是0的自然数,0要考虑吗?那从什么数开始。如1、2、3、4、5、6、7、8、9……在小数和分数等其他数中就也没有倍数和因数的说法了。(可根据具体的算式说明,如0×3=0,1.5×2=3。)。
(5)练习:“想想做做”第1题。每位同学都各选一个乘法算式同桌之间互相说一说,
三、探索找倍数和因数的方法。
1、探索找一个数的倍数的方法。
(1)提出问题:什么样的数会是3的倍数呢?明确:3的倍数是3与一个数相乘的积。你能找到多少个3的倍数?先让学生独立思考,再组织交流。
(2)启发:谁能按从小到大的顺序有条理的说出3的倍数?根据什么样的乘法算式?明确:可以按从小到大的顺序,依次用1、2、3、4……与3相乘,每次乘得的积都是3的倍数。同时板书:
3×1=(3)3×2=(6)……。
追问:能把3的倍数全部说完吗?应该怎样表示3的倍数有哪些呢?
根据学生的回答课件演示:3的倍数有3、6、9、12、15……。
(3)完成后面的试一试。提醒学生注意有序的思考,并规范的表示出结果。
(4)一个数的倍数的特点。
提问:观察上面的几个例子,你发现一个数的倍数有什么特点?根据学生的交流归纳:一个数的倍数中,最小的是它的本身,没有最大的倍数,一个数的倍数的个数是无限的。
提问:现在你能很快说出6的最小倍数是多少吗?10呢?
2、探索找一个数的因数的方法。
(1)提出问题:什么样的数是36的因数?
学生举例说明。明确:如果有两个数相乘的积是36,那么这两个数都是36的因数。
板书()×()=36。
学生试着在练习本上列式找出。
(3)学生汇报交流,根据学生的回答课件演示。
请同学们看书71页,完成书上的填空。
(5)完成“试一试”。提醒学生有序的思考,做到不重复,不遗漏。
学生汇报,说说你是怎样找的。
(6)观察发现。
提问:观察上面的例子,你发现一个数的因数有什么特点?
小结:一个数因数的个数是有限的,一个数的因数中,最小的是1,最大的是它本身。
提问:现在你能很快说出18的最小因数和最大因数是多少吗?25呢?
四、巩固练习。
1、“想想做做”第2题。
2、“想想做做”第3题。
五、全课总结。
这节课你学会了什么?

一键复制