上半年的绩效总结表明,我们需要加强自我学习和提升能力。如何保持良好的心理状态,成就个人和职业发展?以下是小编为大家整理的写作技巧和方法,希望能够帮助大家提高表达能力。
人教版数学六上教学设计篇一
设计理念1、突出问题的应用意识。教师首先用一个学生感兴趣的小故事引人课题,然后根据数轴给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习。
教学目标知识与技能:1、通过观察发现规律并能表示两个数的大小。
过程与方法:感受数学的连贯性,并体验数学的作用。情感态度与价值观:积极参与数学活动培养学生学习数学的兴趣。
重点比较两个数的大小,培养学生发现规律的能力。难点两负分数比较大小。
方法探索式教学法课型新授课教学过程。
教学环节教学内容师生活动设计意图。
一、创设情景一天数学王国中的-3和-5吵架了,-3说:我实际上比你大,你应该叫我哥哥,应该尊敬我。-5说:我的绝对值比你大,你叫我哥才对。
他们吵的不可开交,想找个人评理,你能帮他们评评么?
第1页画数轴并在数轴上标出下列数-3.5,3,-2,0,1.5,-(1)你能说出数轴上点的特点么?(2)用把上面的数连接起来教师以生动的语言讲故事,提高学生的兴趣。
复习数轴并用数轴比较数的大小,让学生温固而知新。
第2页。
人教版数学六上教学设计篇二
在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。
一、注重类比教学。
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学.在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的.有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。
首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:
《正比例函数》教学流程。
(一)环节一:概念的建立。
通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。
(二)环节二:函数图象。
这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。
(三)环节三:探究函数性质。
让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。
(四)环节四:概念的归纳。
将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。
二、注重数形结合的教学。
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:
(1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。
(2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的最优化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。
(3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。
函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。
关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。
人教版数学六上教学设计篇三
教学内容:人教版《义务教育课程标准实验教科书数学》一年级上册第47页。
教学目标:1、通过让学生亲身经历观察画面,理解画面内容,选择有用条件和恰当的方法计算的过程,使学生学会用数学知识解决简单的实际问题。2、初步培养学生的符号感。
3、使学生体验到学数学、用数学的乐趣,激发他们学习数学的兴趣。
教学重难点:让学生亲身经历观察画面,理解画面内容,选择有用条件和恰当的方法计算。教学过程:
一、创设情境,激发兴趣。
1、师:小朋友,你们知道现在是什么季节吗?
1(1)、师出示图1:我们先来看第一个画面,你们看到了什。
第1页么?(左边有4个小朋友在捉蝴蝶,右边有两个小朋友在捉虫子)。
(2)、师:你还发现了什么?(大括号,问号)。
(4)、师:要想知道一共有几个小朋友,我们就应该把这两部分的小朋友怎么样?(合起来)。
(5)师:谁愿意把你看到的和刚才那个问题连起来说一说?指名几个学生说。同桌互说。全班齐说。
(6)师:谁能列一个算式?4+2=6(师板书算式)为什么用加法计算?
指名学生说说4、2、6分别表示什么?还可以怎么列?
2(1)、出示图2,师:请小朋友仔细观察一下,说说这幅图画了什么?
第2页(2)、你能想到一个数学问题吗?(一共有7个向日葵,摘下了3个,还剩几个?)。
(4)、这个数学问题,你觉得应该用什么方法解决?把算式写在纸上,写得快的小朋友轻轻地告诉你的同桌,并说说你的算式表示的是什么意思。
(5)、反馈:7-3=47表示什么?为什么要减去3,4表示什么意思?
三、巩固新知,拓展深化。1、p47做一做。
(2)用手势表示1:6-3=32:3+3=6为什么?
(3)看懂蝴蝶图,说图意,1:5+2=77-2=52+5=77-5=2。
2、小结:今天我们看到了美丽的秋天的景色,也想到了很多数学问题,并且都用数学知识解决了,现在,你有什么想说的?(如果不知道,老师引导:我发现了这些数学问题有两类,有些是用加法计算的,有些是用减法计算,我们应该看清楚图画的意思来列算式。)。
四、拓展练习:五、全课总结:
第3页。
第4页。
人教版数学六上教学设计篇四
新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。
教学目标。
知识与技能。
1.知道什么是二次根式,并会用二次根式的意义解题;。
2.熟记二次根式的性质,并能灵活应用;。
过程与方法。
通过二次根式的概念和性质的学习,培养逻辑思维能力;。
情感态度价值观。
1.经历将现实问题符号化的过程,发展应用的意识;。
2.通过二次根式性质的介绍渗透对称性、规律性的数学美。
教学重点和难点。
重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;。
难点:确定二次根式中字母的取值范围。
教学方法。
启发式、讲练结合。
教学媒体。
多媒体。
课时安排。
1课时。
一、引入。
1.什么叫平方根、算术平方根?
2.用带有根号的式子填空,看看写出的式子有什么特点:
学习内容:
一、情境创设一块长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5㎝,容积是500㎝3的无盖长方体容器。求这块铁皮的长和宽。
一般情况下,应设要求的未知量为未知数;应从题中寻找未知数所表示的未知量与已知量之间的等量关系;这个问题的等量关系是长宽高=容积与长=宽2。
分析:如果设这两个月的利润平均月增长的百分率是x,那么7月份的利润是2500(1+x)元,8月份的利润是2500(1+x)2元。
人教版数学六上教学设计篇五
1.总理衙门的设立(设立的原因、时间、主要职权范围、性质及评价);辛酉政变;“借师助剿”;中外反动势力公开勾结;汉族官僚势力的扩大。
2.通过分析总理衙门设立的原因、主要职权范围、性质,使学生认识到总理衙门的设立,加强了清朝与外国的联系,但也便利了外国侵略者控制清政府,干涉中国内政。总理衙门的设立,加速了中国政治上的半殖民地化。通过学习辛酉政变和“借师助剿”,使学生认识到辛酉政变是中外反动势力正式勾结的开始,清朝统治日益腐败。
3.通过对清廷政策调整的讲述,让学生认识到:清政府的政策调整带有屈于列强侵略,力图剿杀农民革命的时代特点,清政府正逐渐沦为外国人侵华的统治工具。
教学建议。
教材地位分析。
在太平天国运动和第二次鸦片战争的双重打击下,清政府摇摇欲坠,已无力在镇压太平天国运动的同时,抵御列强的军事侵略。在这种情况下,清朝政局发生了巨大的变化。清政府被迫调整了对内对外政策,以巩固统治。清政府的阶级本质决定了其向列强妥协求和,以得到列强帮助,镇压人民革命。对内对外政策的调整导致了此后清政府处理对外事物时的软弱无力、卑躬屈膝以及一系列丧权辱国的条约的签订。政策的调整也使得主张对外妥协和好的洋务派当政,为以后的洋务运动的兴起和民族资本主义的产生准备了条件。此外,在镇压人民革命和抵御列强入侵时,满族的腐朽被彻底的暴露出来,清廷不得不开始倚重汉族地主,这样汉族官僚在清政府中所起的作用越来越主要,曾国藩、李鸿章、张之洞等人成为洋务运动的代表人物。汉族官僚势力扩大是19世纪60年代以后清朝政治的一大特征。
重点分析。
总理衙门、辛酉政变及其影响是本课的重点。清朝设立的总理衙门与前朝设立的对外机构在地位、设置背景等方面存在着很大的不同。它是中国在遭受外国侵略、主权丧失、沦为半殖民地社会的背景下成立的中央机构,这就注定了它将成为列强控制中国中央政府的工具。他的建立标志着清朝中央机构开始半殖民地化,对晚清政治产生了巨大的影响,也加速了中国半殖民地化的进程。
辛酉政变及其影响之所以是本课重点,是因为辛酉政变后清政府对外政策发生了根本性转变,由抵抗外来侵略变为妥协和好,并开始走上公开勾结的道路。清政府对外政策的改变,导致此后清政府在处理对外事物时,不惜以割地赔款、出卖主权来求得与列强和解,这使中国不可逆转的陷入了半殖民地的深渊,使人民陷入水深火热之中。慈禧的掌权与恋权也使中国失去了通过自上而下的改革走上资本主义道路的机会。
重点突破。
通过学生阅读课文,回答“总理衙门何时设立?”“总理衙门的管辖范围是什么?”“为什么要设立总理衙门?”等问题,使学生掌握有关“总理衙门”的基本问题。通过引导学生对比宋朝市舶司与总理衙门设立的背景、管辖范围等,使学生理解总理衙门有利于列强控制清朝的内政和外交,是清朝中央机构开始半殖民地化的标志。
通过学生阅读课文,回答“在辛酉政变之前,在清朝统治集团内部出现了怎样的变化?”“何时发生的辛酉政变?”“何人发动的辛酉政变?他们为什么要发动辛酉政变?”“为什么列强对辛酉政变采取“无异议”的态度?”等问题,使学生掌握有关“辛酉政变和‘借师助剿’的基本问题。通过引导学生思考“辛酉政变后清政府发生了怎样的变化?”,使学生理解辛酉政变产生的影响。
难点分析。
中外反动势力“合作”新格局为什么会出现。中外反动势力“合作”新格局的形成有着较为复杂的原因:一方面,太平天国运动使列强认识到只能通过扶植清政府,才能保护其业已取得的侵略权益,并获得更多的权益;另一方面,清政府在列强入侵和太平天国运动的双重打击下,以摇摇欲坠,由于阶级本性所决定,它必然选择依靠侵略者,镇压革命,维护自己的反动统治。由于学生运用历史唯物主义观点进行综合分析能力有限,因此在理解这一问题时会有些困难。
难点突破。
通过学生回答“辛酉政变后,在清政府中掌握实权的是哪些人物?他们的政治主张是什么?”“列强对待太平天国运动的态度为什么会由‘中立’转为协助清政府剿杀?”等问题,和讨论“清朝对内对外政策为什么会在19世纪60年代发生如此生变化?”“中外反动势力相勾结会给中国带来什么样的影响?”,使学生理解中外反对势力相勾结的局面出现的原因。
课内探究活动设计。
将学生分成若干组,以组为单位进行自学并进行小组讨论。之后,各组提出本组在自学中遇到的问题,由其他同学回答或大家讨论得出答案。教师就学生未涉及到的问题提问,使学生能较深入的理解本课内容。
第二章第一节清朝政局的变化。
重点:总理衙门辛酉政变及其影响。
难点:中外反动势力“合作”新格局为什么出现。
教学过程:
利用ppt文件向学生介绍本章学习内容。
通过提问学生:太平天国运动和第二次鸦片战争给清政府带来最直接的影响是什么?导入新课。
向学生提出其在自学中所要回答的问题:
清朝政局何时开始变动,怎样变动,为何要变,变化带来了哪些直接影响?
由学生分组进行自学,之后进行小组讨论,并整理出本学习小组在自学中遇到的本组学生无法理解的问题。
先由学生回答教师在前面提出的问题,之后,各组派出一名代表提出本组的问题,由学生讨论回答或教师引导学生分析得出答案。
学生有可能会提出一下问题:
“清朝政局的变化为什么是在19世纪60年代,而不是在第一次鸦片战争后?”、“19世纪60年代前的中国为什么不设立外交机构?”、“列强和慈禧为什么都要重用奕訢?”等问题。
在回答学生的问题时,教师应将这些问题根据本课内容以及问题的难易程度分类,按照课文内容的编排顺序逐一解决。并穿插教师提出的问题。
教师可以根据学生提出的问题的多少提出问题:
“总理衙门何时设立?”、“总理衙门的管辖范围是什么?”、“为什么要设立总理衙门?”、“宋朝市舶司与总理衙门有何不同,说明什么问题?”
“在辛酉政变之前,在清朝统治集团内部出现了怎样的变化?”、“何时发生的辛酉政变?”、“何人发动的辛酉政变?他们为什么要发动辛酉政变?”、“为什么列强对辛酉政变采取“无异议”的态度?”、“辛酉政变后清政府在哪些方面发生了怎样的变化?”、“辛酉政变后,在清政府中掌握实权的是哪些人物?他们的政治主张是什么?”、“列强对待太平天国运动的态度为什么会由‘中立’转为协助清政府剿杀?”、“清朝对内对外政策为什么会在19世纪60年代发生如此生变化?”、“中外反动势力相勾结会给中国带来什么样的影响?”
“清朝为什么改变倚重满族官员的既定方针开始重用汉族官僚?”、“被清政府倚重的汉族官员主要有哪些,他们有什么共同特点?”
人教版数学六上教学设计篇六
教学目标:
1.创设真实有趣的教学情景,引导学生用探索的方式学好2的乘法口诀.。
2.让学生在探索的过程中体验规律,经历编写的过程.。
3.要注意课堂气氛,组织好活动,激发学生学习数学的兴趣.。
教学重点:创设真实有趣的教学情景,引导学生用探索的方式学好2的乘法口诀.。
教学难点:让学生在探索的过程中体验规律,经历编写的过程.。
教学过程:
活动一:放筷子。
3.填一填.。
活动二:探索2的乘法口诀。
(黑板上竖放着主题图,对应着9道整齐的乘法算式.)。
师:刚才,我们根据放筷子活动整理出了这9个乘法算式.看着这些算式,你有什么想法?
生:他们的得数很有趣,我很想记熟这些得数.。
师:你能连算式也记住吗?
生:(摇摇头)那就难多了.。
师:好,咱们一起来解决这个问题吧.自己先动脑想一想,然后各小组商量商量,看谁有好。
办法记住这些算式和得数.。
(各小组认真讨论)。
生1:多读一读,读的遍数多了就记住了.。
(学生议论:太费劲,太麻烦.)。
生2:想着图来记.......。
生3:根据乘法的意义来记.一个二等于二,二个二等于四,三个二等于六......。
师:如果说的简单一点呢?
生4:可以说成:想5的乘法口诀......这样记,我们觉得挺方便.......。
……。
活动三:对口令(15页练习1题)。
1.我说二三、谁跟我对:生:得六。
2.二九十八。
谁跟我对乘法算式:2×9=18。
或9×2=18。
3.师生对练。
同伴对练。
小组选代表对练。
男女生对练。
活动四:比一比谁画圈画得最快.(15页练习2题)。
1.生独立完成.。
2.小组交流你是怎么想的?为什么这样填写.。
3.观察我们圈出的数有什么特点?
注意:可以告诉学生圈出的数都是双数,其余都是单数.。
活动五:看图列式(15页练习5题)。
1.学生独立完成.。
2.与小组交流你是怎么想的?为什么这样填写.。
注意:让学生理解学生乘法的意义.。
板书设计:
2的乘法口诀。
1个2。
1×2=2。
一二得二2个2。
2×2=4。
二二得四3个2。
2×3=6。
4个2。
2×4=8。
5个2。
2×5=10。
6个2。
2×6=12。
7个2。
2×7=14。
8个2。
2×8=16。
9个2。
2×9=18。
二三得六。
二四得八。
二五一十。
二六十二。
二七十四。
二八十六。
二九十八。
人教版数学六上教学设计篇七
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质。
(1)侧棱都相等,侧面是平行四边形。
(2)两个底面与平行于底面的截面是全等的多边形。
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形。
2、棱锥。
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形。
3、正棱锥。
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形。
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
人教版数学六上教学设计篇八
分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
(3)解整式方程;(4)验根.
增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.
应用题有几种类型;基本公式是什么?基本上有四种:
(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
(2)数字问题在数字问题中要掌握十进制数的表示法.
(3)工程问题基本公式:工作量=工时×工效.
(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。
等腰三角形判定。
中线。
1、等腰三角形底边上的中线垂直底边,平分顶角;。
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;。
角平分线。
1、等腰三角形顶角平分线垂直平分底边;。
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线。
1、等腰三角形底边上的高平分顶角、平分底边;。
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
2、有两条高相等的三角形是等腰三角形。
人教版数学六上教学设计篇九
教学内容:教科书p2-5例1、2及相应的"做一做"中的练习一的第1、2题。三维目标:
1.使学生认识长度单位毫米和分米。通过直观演示和学生自己操作,使学生初步建立1毫米、1分米的长度观念。让学生知道米、分米、厘米、毫米每相邻两个单位之间的关系。2、会用毫米、分米做单位度量物体的长度。3.初步渗透辨证思维的方法。教学重点、难点:
1.重点:米、分米、厘米、毫米之间的十进制关系。2.难点:初步建立1毫米、1分米的长度观念。教(学)具准备:
师:一把米尺、直尺和一根带子。
生:一把小尺子、一根带子、一枚一分硬币。教学过程:一、复习、1、复习米、厘米。
(1)我们已经学过哪些长度单位?1米、1厘米大约有多长?2、复习量法:
(1)量物体的长度一定要注意把物体的一端对着尺子的什么刻度线?(2)认整厘米。
a.判断:这种量铅笔的方法对不对?
b.错在哪里?
c.订正:
正确的方法应该是先把铅笔的一端对着尺子的"0"刻度线。
d.认整厘米,再看铅笔的另一端,你能看出铅笔是几厘米?8厘米是整厘米数吗?e.小结:象8厘米这样的结果是整厘米。二、引入新课:
这张纸条还是整厘米吗?不是整厘米量出来的数精确吗?如果要得到比较精确的结果该怎么办?小结:
这个比厘米更小的单位就是毫米。(板书课题)二、探究新知:
(一)毫米的认识。
1、出示米尺放大图。
(1)从观察中你知道一毫米是怎么得到的?(2)这个放大图上的每一毫米都是放大的。
(3)实际的1毫米有多长?请拿出尺子来随便找1小格看看。3、建立1毫米的长度观念。
(1)用1分硬币建立1毫米的长度观念。
拿出1分硬币,说出厚度在哪里。并和一小格比一比--1分硬币的厚度是1毫米。师:我们看见食指和拇指之间留下了一条缝,这条小缝的宽大约是多少?举例:你还见过什么东西的厚度大约是1毫米?(2)用厘米作对比出示1厘米长的纸条,量出长度。
4、毫米和厘米的关系。
(1)出示米尺放大图:
看看1厘米里有多少毫米?你是怎样看出来的?
(2)师领着学生数毫米。
(3)1大格有几毫米?1大格还可以说是几厘米?小结:所以1厘米等于几毫米?5、用毫米量。
师:用毫米做单位量物体的长度,与用米、厘米量物体的长度量法相同。(二)分米的认识。1量纸条。
量教师发的10厘米长的纸条。师:10厘米就是1分米。2、用手势建立1分米的长度观念。
用食指和拇指在纸条上比量出1分米的长度,移出手势说:"1分米大约这么长。3、厘米、分米的关系。
师:这么长是几厘米?这么长还可以说是几分米?所以1分米等于多少厘米?(板书:1分米=10厘米)4、分米和米的关系。画出1米长的线段。
小结:10分米和1米怎么样?(板书:1米=10分米)三、巩固练习:1、p3、4"做一做"。
2、p5页1、2题。四、小结:
这节课我们学习了哪些内容?1厘米是多少毫米?10厘米是多少分米?1米是多少分米?板书设计:
1毫米。
1分米1厘米=10毫米。
1分米=10厘米。
1米=10分米。
人教版数学六上教学设计篇十
2、过程和方法目标。
(1)通过观察和实验了解弹簧测力计的结构。
(2)通过自制弹簧测力计以及弹簧测力计的使用,掌握弹簧测力计的使用方法。
3、情感、态度与价值目标。
通过弹簧测力计的制作和使用,培养严谨的科学态度和爱动手动脑的好习惯。
二、重点难点。
重点:什么是弹力,正确使用弹簧测力计。
难点:弹簧测力计的测量原理。
三、教学方法:探究实验法,对比法。
四、教学仪器:直尺,橡皮筋,橡皮泥,纸,弹簧测力计。
五、教学过程。
(一)弹力。
1、弹性和塑性。
学生实验,注意观察所发生的现象:
(2)取一条橡皮筋,把橡皮筋拉长,体验手感,松手后,橡皮筋会恢复原来的长度。
(3)取一块橡皮泥,用手捏,使其变形,手放开,橡皮泥保持变形后的形状。
(4)取一张纸,将纸揉成一团再展开,纸不会恢复原来形状。
让学生交流实验观察到的现象上,并对这些实验现象进行分类,说明按什么分类,并要求各类再举些类似的例子。(按物体受力变形后能否恢复原来的形状这一特性进行分类)。
直尺、橡皮筋等受力会发生形变,不受力时又恢复到原来的形状,物体的这种特性叫做弹性;橡皮泥、纸等变形后不能自动恢复原来的形状,物体的这种特性叫做塑性。
2、弹力。
我们在压尺子、拉橡皮筋时,感受到它们对于有力的作用,这种力在物理学上叫做弹力。
弹力是物体由于弹性形变而产生的力。弹力也是一种很常见的力。并且任何物体只要发生弹性形变就一定会产生弹力。而日常生活中经常遇到的支持物的压力、绳的拉力等,实质上都是弹力。
3、弹性限度。
人教版数学六上教学设计篇十一
定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。解二元一次方程组的基本思路是“消元”——把“二元”变为“一元”。以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。
【第八章数据的代表】。
定义:一般地,对于n个数x1,x2,?xn,我们把1/n(x1+x2+?+xn)叫做这个数的算术平均数,简称平均数,记为x。
为a的三项测试成绩的加权平均数。
一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。
人教版数学六上教学设计篇十二
会画一个图形的轴对称图形,掌握画图的方法和步骤:先画出几个关键的对称点,再连线。
(二)过程与方法。
通过观察、操作等活动,能在方格纸上补全一个轴对称图形。
(三)情感态度和价值观。
让学生在探索的过程中进一步增强动手操作能力,发展空间观念,培养审美观念和学习数学的兴趣。
二、教学重难点。
教学重点:掌握画图的方法和步骤。
教学难点:能在方格纸上画出轴对称图形的另一半。
三、教学准备。
方格纸、课件。
四、教学过程。
(一)复习导入。
教师:同学们,我们昨天认识了轴对称图形,谁能说说它有什么特点?
预设:对应点到对称轴的距离相等。
(二)探索新知。
1.画出轴对称图形。
教师:根据对称轴,补全下面的.轴对称图形。
教师:要想顺利的画出另外一半的图形,你有什么办法呢?根据是什么?
(小组讨论,全班交流)。
预设:我们刚刚学习了轴对称图形的对称点的特点,可以利用这个方法来画。
教师:很好,怎样来找点呢,所有的点都找吗?
预设:不用,只要数出关键点到对称轴的距离;在对称轴的另一侧点出关键点的对称点;顺次连接描出的各个点即可。
教师:谁能来展示一下你画出的轴对称图形的另一半?
学生展示自己的作品。
2.探究结果汇报。
教师:同学们,今天我们学习了哪些知识?
预设:在方格纸上画出轴对称图形的另一半时,先确定对称轴,找出关键点,数出关键点到对称轴的距离,然后点出关键点的对应点,最后依次连接各个对应点,就可以画出轴对称图形的另一半。
教师:你能简要概述一下上面画轴对称图形另一半时的步骤吗?
学生:确定对称轴后,一找关键点;二数出距离;三点对应点;四连线。
【设计意图】引导学生思考:补全轴对称图形的方法是这节课的难点,在学生充分的讨论后,通过学生的实践来总结出方法,进行提炼,学生记忆的会更深刻。
(三)知识运用。
教师:看来同学们已经找到了画对称图形的方法,那我们来练一练吧。
1.动手操作:剪下教材附页上的脸谱,补全到教材第84页第2题的空白处。
2.教材第83页做一做。
3.教材第84页第4题。
4.教材第85页第6题。
注:这题关键点是哪几个点呢?特别是第二题,同学们要注意了。
(四)课堂小结。
通过今天的学习,你对轴对称图形有了哪些新的认识?又有什么收获呢?

一键复制