教案不仅是教学活动的规范和指导,还是教师对教学内容和方法的深入思考和研究。教案的编写要充分利用教学资源,提高教学资源的利用效率。这些教案呈现了不同学科和年级的教学实践,涵盖了各种教学内容和形式。
用连乘解决问题教案篇一
教材第69页例3及相关题目。
1.结合具体情境认识与圆相关的组合图形的特征;掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思 考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化教育;通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
掌握计算组合图形面积的方法,并能准确计算。
对组合图形进行分析。
多媒体课件。
学生活动(二次备课)
课件出示例3中的雕窗图案。
1.观察一下,这两种设计图案有什么联系和区别?每个图案中的圆和正方形有什么关系?都是由正方形和圆组成的,但左边是外方内圆,正方形的边长等于圆的直径;右边是外圆内方,圆的直径等于正方形的对角线的长。
2.理解题意。如果两个圆的半径都是1m,求出正方形和圆之间部分的面积。抽象成我们学过的数学图形就是:思考:怎样求正方形和圆之间部分的面积?先想一想,再同桌交流。左图求的是正方形比圆多的面积,即用正方形的面积减去圆的面积。右图求的是圆比正方形多的面积,即用圆的面积减去正方形的面积。
3.分析解答。知道两圆的半径,就可以求出它们的面积,关键是求正方形的面积。观察图可知,左图正方形的边长等于圆的直径,由此可求面积;右图正方形的边长不知道,不能直接用公式求面积,可以将正方形看成两个底是圆的直径,高是圆的半径的三角形。学生自己计算,集体订正。
4.回顾反思,理解算法。师:如果两个圆的半径是r,结果又是怎样的?结合图形算一算。学生分小组探究、汇报结论。想一想:当r=1时,和前面的结果一致吗?代入看看。小结:不管圆的大小如何改变,外方的正方形与圆之间的面积都是半径平方的0.86,而内方的正方形与圆之间的面积都是半径平方的1.14倍。
四、巩固练习
完成教材第70页做一做。
五、拓展提升
求下面各图中阴影部分的面积。
(1)3.14×52÷2-5×2×5÷2=14.25(cm2)(2)12×12÷2-3.14×(12÷2)2÷2=15.48(cm2)
六、课堂总结
通过本节课的学习,你有哪些收获?你还有哪些问题?七、作业布置教材练习十五第9、11题。
观看欣赏美丽的图片。教师根据学生预习的情况,有侧重点地调整教学方案。观察两个图案,找出组成两个图案的基本图形,并找出它们的特点关系。先独立思考再交流、分析后可得:其实就是求图中阴影部分的面积。以小组为单位进行讨论计算。
板书设计
解决问题例3左图:
2×2—3.14×12
右图:3.14×12-
×2×1
×2=4-3.14
=3.14-2=0.86(m2)
=1.14(m2)
(2r)2-3.14×r2=0.86r2
3.14×r2×2r×r×2=1.14r2
成功之处:本节课设计让学生经历观察思考、分析推理等学习活动,解决问题,提高学生对数学的好奇心和求知欲。不足之处:对组合图形的面积的计算没有进行回顾和总结。教学建议:教学时在每个环节结束后让学生进行总结或说一说感受,使知识能够得到沉淀。
用连乘解决问题教案篇二
《用连乘方法解决问题》是三年级下册第四单元的一节数学课,学生在二年级学习时,已经会用表内乘、除法以及加、减法解决简单两步计算的实际问题。本单元提供的需要用两步计算解决的实际问题,选材范围扩大了,提供的信息数据范围扩大了。“问题解决”从原来的计算、概念、应用题到现在新课程的“处处渗透”,从有形到无形,从典型问题到生活问题,进行了较大的改革.我有以下几点反思:
学生根据题目的信息思考:要求一共卖了多少元?第一步先求什么?第二步再求什么?要求学生独立思考,再同桌交流,最后全班交流,学生积极性很高,而且有利于学生对不同解法的理解。使学生深刻的领会数学与现实之间的联系:数学源于生活,最终应用于生活。教材里两种解法都采用综合法思路引导学生分析推理。第一种解法是引导学生根据每箱12个,每个保温壶45元,可以求出什么?再根据什么求出题目的结果,然后依次用分步列式和综合算式解答。第二种解法是先引导学生根据另外两个联系的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式和综合算式解答。让学生用综合法思路来分析数量关系,有利于学生找出不同的中间问题,理解两种解法所表示的不同的数量关系,明确两种解题方法的区别,便于学生掌握分析和解答的方法。
问题蕴含在生活之中。以主题式展开教学,让学生在这些熟知的生活情境中提炼数学问题、解决数学问题,不仅让他们体味到生活中处处有数学,也大大激发了他们自主探究的兴趣。教学中,我通过让学生选择老师出示的算式哪些是可以解决这个问题的方法,让学生通过算式说说想的过程,通过相互交流,能有条理地分析连乘问题的数量关系,并让学生初步感知同一问题可以有不同的解决办法,拓宽了学生的解题思路。让学生初步掌握连乘问题的基本数量关系,培养学生分析解决问题的能力。
应用题教学理当重视数量关系的分析与解题思路的梳理。本节课在分析应用题时,让学生从情景中发现问题、提出问题并解决问题。提出问题和解决问题的过程是学生思维的过程,在课堂上给学生留有充足的时间和空间,让学生去探索。这样教学不仅使学生的主体地位得到了充分的'体现,也使学生的创新思维得到的发展。
成功的预设是课堂教学得以和谐展开的基础。单一的问题解决课教师稍有不慎就极易上成练习堆积课。我通过知识层次的递进,一步步的让学生发现问题,解决问题,最后的练习也是水到渠成了。
在教完这节课后,我觉得大部分学生都能在老师的引导下自主地解决问题,并且能一题多解,思维能力得到了明显提高,但少数学生由于能力有限,所以自主学习对他们来说,还有点困难,还有些学生口头表达能力有待提高。
用连乘解决问题教案篇三
1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。
2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。
3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。
教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。
教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。
教学准备:课件
一、谈话引入
1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?
(1)将题目中的信息整理到下面的表格中。
(2)分析表格中的信息,明确解题思路。
引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。
(3)学生独立解答。
一本故事书:27÷3=9(元)
5本故事书:9×5=45(元)
2、谈话导入。
刚才我们采用了哪种解决问题的策略?(列表)
他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)
二、交流共享
1、课件出示教材第48页例题1。
让学生读题,说说题目中的已知条件和所求的问题。
已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。
所求问题:两人各有邮票多少枚?
2、交流解题策略。
提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?
学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。
引导:接下来我们就来学习用画线段图的策略来分析这道题。
3、根据题意画线段图。
(1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:
小宁:
多()枚()枚
小春:
(2)追问:你能根据题意把线段图填写完整吗?
让学生在教材的线段图上填一填,完成后组织汇报交流。
小宁:
多(12)枚(72)枚
小春:
4、看线段图,分析数量关系。
提问:观察线段图,想一想可以先算什么?
(1)学生独立观察思考后,小组交流讨论。
(2)全班交流解题思路。
汇报预测:
解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。
解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。
5、学生独立解答。
引导学生选择一种自己喜欢的方法解答。
6、组织检验。
(1)提问:我们用什么方法进行检验?
(2)追问:检验要分几步进行?
(3)学生独立进行检验,并写出答案。
7、回顾反思。
引导:回顾解决问题的过程,你有什么体会?
先让学生在四人小组内说一说自己的体会,再组织全班交流。
8、交流讨论。
在之前的学习中,我们曾经运用画图的策略解决过哪些问题?
三、反馈完善
1、完成教材第49页“练一练”。
这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。
2、完成教材第52页“练习八”第1题。
这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。
3、完成教材第52页“练习八”第3题。
这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60×2=120(本)
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
用连乘解决问题教案篇四
教材第78页的例3,练习十九第1、2题。
知识与技能
(1)使学生能根据乘法和所学的乘法口诀解决生活中简单的实际问题。
(2)初步学会口述应用题的条件和问题。
过程与方法
通过学生观察、讨论、汇报交流等活动,使学生初步学会根据乘法的含意解答求相同加数的和的乘法应用题。
情感态度与价值观
在学习过程中,培养学生的分析能力,让学生体验成功的喜悦,增强学习数学的兴趣。
重点:用乘法和所学乘法口诀解决实际问题。
难点:学会用不同的方法解决问题。
教法:谈话、讨论法。
学法:小组探究法。
多媒体课件。
一、创设情境,复习引入
(1)常规练习,齐背8的乘法口诀。
(2)听算:
第一组:2×8,3×8,8×2,4×8,5×7
第二组:8×4,4×7,7×4,6×8,8×5
(3)课件演示:教材例3。
(小军和小红一起逛超市,在超市的文具专柜有许多的文具:文具盒每个8元,铅笔每枝3元,橡皮每块2元,日记本每个4元……)
二、提出问题,解决问题
(1)看一看,说一说。
请同学们仔细看图,把看到的情景讲给大家听,同桌互相说一说。
全班汇报,交流。
(2)提出问题。
你能根据这幅图说出解决的数学问题吗?
文具盒每个8元,买3个文具盒,一共多少元钱?
橡皮每块2元,买7块橡皮,一共多少钱?
铅笔3元一枝,要买5枝一共多少钱?
日记本每个4元,买6本,一共多少钱?
……
(3)解决问题。
以小组为单位,合作解决问题。
汇报学习过程。
三、练习巩固
(1)比一比,算一算。
出示练习十九的第2题:让谁算得又对又快。
(2)看图列算式。
出示练习十九第1题图,请同学们仔细观察,列出算式,再集体交流。
(3)每横排有6颗星,4排有几颗星?
每列有4颗星,6列有几颗星?
(3)第横排有7个圆,3排有几个圆?
每列有3个圆,7列有几个圆?
四、拓展学习
(1)找一找,生活中还有哪些问题可以用乘法解决,与同学们说一说。
分析:这是一道先乘后减的应用题,首先利用乘法口诀算出小兰花钱总数,再用妈妈给的钱数减花掉钱数求剩余。
五:总结
通过今天的学习,你们有什么收获?还有哪些问题没有解决?
板书设计
用乘法解决问题
文具盒每个8元,买3个文具盒,一共要多少元?
分析:求3个文具盒的价钱总数,可以用1个文具盒的价钱乘买的个数。
解答:3×8=24(元)
答:买3个文具盒要24元。
本节课充分让学生难过摆、看、想、说、算等实践活动感知新旧知识的内在联系,在此基础上理解数量关系。教师适时点拨,帮助学生完成了新知识的主动建构。我进一步认识到学生的知识不仅仅是教会的,而更应该是由学生自己摸会的。
用连乘解决问题教案篇五
本课是在学习了乘法口诀后,通过练习使学生熟练地掌握和运用乘法口诀,并能灵活运用乘法知识解决简单的实际问题。练习与生活实际联系在一起,扩大用乘法计算解决问题的空间,让学生感受生活中处处用数学的同时,提高学生解决实际问题的能力。
教学时,我先让学生巩固乘法的意义,旨在唤起学生的记忆。在学生的知识和情绪热身之后,开始用乘法解决问题的练习。
练习题的安排按由简到繁,由易到难,循序渐进的思路进行。整个过程先让学生独立看图搜集数学信息和问题,列式计算。然后汇报、交流,说出解题的想法,理清思路,提高自己的语言表达能力。设计了对比练习,从而进一步理解乘法的意义。使学生们明白为什么应该用加法,而不能用乘法。促使学生不断的深入观察、思考、反思。
但是,本节课也暴露出了一些问题,差生无从下手,启而慢发,甚至有的启而不发,离不开老师的讲解,学生的思路较凌乱,表达不十分清楚,语言表达能力需要大大的提高。有的同学没有专心的听,还不能很好的抓住别人说的优缺点。这让我意识到了还应该在“引”上下功夫。
另外,有老师听课,学生放不开不能大胆发言,今后还要加强学生的口头表达能力。当学生发生错误时,我引导得过多,应该调动全体学生的智慧,进行讨论,促使学生深入观察、思考、解释、反思,使知识内化、深化。
用连乘解决问题教案篇六
教学目标:
1、经历解决问题的过程,学会两步乘法解决问题,感受解决问题策略多样化。
2、让学生从多角度解决同一个问题,提高解决问题的能力,发展思维。
3、使学生感受数学知识在生活中的应用价值,体会成功的快乐。
教学重点:
教学难点:
教学过程:
一、课前谈话。
师:今天谢老师非常高兴能和我们班的同学一起来学习数学。在上课之前,老师问了本校的其他老师说我们班的同学上课特别积极,老师特想在这节课上看到大家的风采。看谁的耳朵最会听老师和其他同学的发言,看谁的脑筋动得最快并且能举手发表自己的意见。
二、创设情境,导入新课。
1、一个方阵。
生1:横着排的有5人。
师:在数学上,我们把横着排的叫做行。板:行。
师:那有几行?每行几人?板:每行有5人,有4行。
生2:竖着排的有4人。
师:在数学上,我们把竖着排的叫做列。板:列。
师:那有几列?每列几人?板:每列有4人,有5列。
生:一个方阵有20人。
师:很棒,你还看出了一个方阵的人数。
师:紧接着又走来了一个相同的方阵,看着这两个方阵,现在你能提一个数学问题吗?
生:2个方阵一共有几人?
3、探究方法。
师:这个问题你能自己解决吗?
(安静独立地思考,把算式写到本子上;写好后,思考你是先求什么,再求什么跟你的同桌说一说)。
师巡视一圈,同时听取和指导完善学生说的过程。
4、汇报交流。
(1)师:谁来说说你是怎么算的?(生说算式师板,再说思路)。
生1:54=20(人)。
202=40(人)。
师:那你的这个算式是先求哪部分,再求什么?
生:先求一个方阵的人数,就是54=20(人),再求2个方阵的人数,就是202=40(人)。
师:你能上来圈一圈吗?
师:谁听懂了他的解题思路再来说一说?(生说师同步媒体演示)。
师:大家都都听懂了他的解题思路吗?一起来读一读这个方法的解题思路。(生齐读)。
(2)师:除了这种方法,谁有不同的算法或思路?
生1:25=10(人)。
104=40(人)。
师:那你的这个思路是先求哪部分,再求什么?
生:先求合并后一个行的人数,就是25=10(人),再求4个这样一行的人数,就是104=40(人)。
师:你能上来圈一圈吗?第一步先求哪部分?
师:谁能根据这幅图把刚才这名同学的思路再说一次?(生说师同步媒体演示)。
师:大家都都听懂了他的解题思路吗?一起来读一读这个方法的解题思路。(生齐读)。
(3)师:还有另一种方法吗?
生1:42=8(人)。
85=40(人)。
师:42=8(人),表示你先求哪部分?(生:先求合并后一个列的人数)师移动方阵。
师:你能上来圈一圈吗?第一步先求哪部分?
生:先求合并后一个列的人数,就是42=8(人),再求5个这样一行的人数,就是85=40(人)。
师:谁听懂了他的解题思路再来说一说?(生说师同步媒体演示)。
师:大家都都听懂了他的解题思路吗?一起来读一读这个方法的解题思路。(生齐读)。
【预设】:若学生出不来第三种方法,则师出示。
师:你能上来指一指吗?你可真聪明!
(4)师:那我们能把这2条算式,写成一条综合算式吗?
生1:452=40(人),生2:254=40(人),生3:245=40(人)。
5、对比提升。
(1)师:通过刚才的小组交流,我们得出了这样3种方法。(课件出示3种方法)。
(2)观察这三种方法有什么相同和不同?
相同点预设:答案相同,都用乘法计算(揭题:这就是我们今天学习的用连乘解决问题)。
不同点预设:方法不一样。方法怎么不一样?先求什么,再求什么?
小结:真了不起!,同一个问题,能从不同的角度去思考,采用不同的方法来解决。
三、联系实际,巩固提高。
师:学习了方法,就来解决具体生活中的实际问题。
师:这么多鸡蛋会有多少个呢?(课件出示堆成一堆的鸡蛋)。
(1)师:要解决这个问题。这里有信息吗?你能用简洁的语言给大家介绍一下这张图片的内容吗?独立解题。
(2)师:如果用一个正方体换掉鸡蛋,你能用多种方法解决这个正方体的问题吗?
生1:从上面看先求一层的正方体个数,45=20(个),203=60(个)。
生2:从侧面看先求一层的正方体个数,34=12(个),125=60(个)。
生3:从前面看先求一层的正方体个数,35=15(个),154=60(个)。
(同步媒体演示,让学生建立空间观念)。
小结:真棒!同一个问题,不仅能自己收集信息,还能采用不同的方法来解决。在数学中有很多题目是类似的,只要你掌握其中最本质的方法,其实我们的数学就这么简单。
40个队,每队有20位运动员;每人要3个面包,2瓶矿泉水,共要多少个面包呢?
(1)40202=1600。
(2)40203=2400。
(3)32040=1600。
师:怎样改一改其他两个也是正确的。
小结:在解决问题中,选择有价值的信息非常重要。
师:在信息中,你觉得那个是需要特别提醒其他同学的?
小结:我很佩服大家,不但能用乘法解决问题,还能灵活的找出题中隐含的信息。
四、课堂总结:
今天我们一起学习了什么?老师也非常高兴与同学们一起还学会了一种解决问题的方法:先求一部分,再求整体。
用连乘解决问题教案篇七
理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。
通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。
在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。
大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。
教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。
引出课题——解决问题的策略。
大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?
学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的比较方法。
学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。
教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。
教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。
教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。
教师总结学生回答:
(1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的大小不变;
(2)图形转化可通过平移、旋转、翻折、拼接等方法;
(3)经过转化之后将无解变得可解,将复杂问题变成简单问题。
教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。
教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。
算一算下列三个图形中阴影部分面积占整个面积的几分之几。
小结:总结本节课学习内容。
作业:课后练一练。
用连乘解决问题教案篇八
(1)让学生学会观察图画,理解图画内容,知道图上加括号和问号的用意,能从图中看清告诉了什么,要求什么,能选择合适的方法进行计算,学会用数学知识解决简单的实际问题。
(2)创设亲身经历用6、7的加减法解决问题的时空,初步感受数学与日常生活的密切联系,感受数学就在我们的生活之中。
(3)引领学生体验数学的魅力,体验学数学、用数学的乐趣,激发学生学习数学的兴趣。
(4)培养学生善于观察,勤于思考的良好学习习惯。
(5)渗透环保教育,使学生热爱我们的大自然,热爱我们的生活,促进学生在情感、态度等方面的健康发展。
(1)结合学生的认知水平知道大括号、小问号的意义。
(2)理解画面内容表达的意思,根据条件和问题之间的关系选择适当的方法算出要求的问题。
对于一年级的数学学习,新生无论在数学知识上还是数学能力上都有所准备。就数的认识来看,一年级的学生二十以内的数数非常流利和连贯,可以正数倒数,学生在这方面具有良好的知识准备的。但一年级学生在数感方面的发展是不平衡的。学生对数的意义理解有一定困难。学生根据实际情况很难作出正确的回答,对于图形学生的理解有一定的困难。这可能是学生对图形的认识造成了对数的基数序数意义理解的干扰。根据学生已有的知识经验和认知规律,结合“以学生发展为本”的教学新理念。
自主学习和问题探究的策略
课件
一、激情导入:
1、导入课题
师:同学们上节课我们认识了两位数字朋友6和7,今天我们接着和它们一起去数学王国中探索奥秘。
板书(6和7)
2、明确目标
师:今天的课上老师又给同学们带来了几位新朋友,你们想认识他们吗?同学们想认识他们,那得先闯过老师这关。
第一关:快速抢答。出示题卡
第二关:想一想,填一填。看大屏幕(课件)
3、效果预期
师:好,同学们都已经掌握了学过的知识,你们都是认真听讲的好学生。
二、探究新知:
任务一:引导学生学习加法图文应用题。
1、任务呈现
(1)师:接下来,我们有请第一位好朋友。几只可爱的小白兔。我们先看一下画面上的小白兔给我们带来了哪些数学信息?(左边有4只小白兔,右边有2只小白兔。)
(2)师:根据这两个数学信息,你能提出什么数学问题?(一共有几只小白兔?)
(3)引出大括号、问号并解决问题。
1、这个问题在图上怎样直观地表示出来呢?我们的数学家找到了一种简洁明了的方法,你们想知道吗?(想)好,我们就一起来认识两个新的数学朋友吧!
2、(出示、粘贴大括号)我们的这个新朋友叫大括号,它表示把两部分小朋友合在一起。
3、(出示、粘贴“?只”)这是我们认识的第二个新朋友,它表示我们提出来的问题。
2、自主学习
师:现在,请同学们自己先想出解决问题的方法。然后,同桌说一说自己的想法。最后,大家把答案写在自己的本子上。(师巡视)
3、展示交流
生交流,师板书:4+2=6(只)。
任务二:引导学生学习减法图文应用题。
1、任务呈现
(1)师:同学们真聪明,这么快就帮老师解决了一个问题,而且认识了两个新朋友。现在,老师带你们去池塘边看看,认识第三位新朋友。(一些青蛙)
(2)师:此时,你们找到了哪些数学信息?想到了什么数学问题?快说出来大家一起来分享吧!(一共有7只青蛙,跳走了2只,还剩几只?)
(3)师:那怎样表示?怎样解决呢?
2、自主学习
小组讨论。
3、展示交流
汇报交流。师适时粘贴图画,并让学生说清楚采用了什么方法,为什么要这样解决?
(5)小结:比较异同。
提问:这两幅图在表示上有哪些相同的地方和不同的地方?(相同的地方:都用到了“大括号”和“问号”;不同的地方:第一幅图的“?”表示把两部分小兔子合起来作为一个整体,求一共有几只。第二幅图的“?”表示两部分中的一部分,求还剩几只。)解法又有什么不同呢?(求整体,用加法计算,求部分,用减法计算。)
(三)说儿歌学数学
师:同学们,你们真棒,这么快就和大括号、小问号成为了好朋友。好了,又到了我们说儿歌学数学的时间了。(课间出示)大括号,小问号,在一起,我会算。小问号,在尖尖,求一共,用加法。小问号,在两旁,求部分,用减法。
三、知识运用:
师:你们还想到其它地方玩玩,继续用数学知识解决问题吗?
1、目标检测
让学生看图独立完成后,再集体订正。(选一小题让生说说想法。)
2、结果反馈,集体订正
3、反思总结
师:通过今天的学习,你学会了什么?
师讲述:同学们真聪明,这节课大家发现了许多数学信息,提出了很多数学问题,并解决了它们。记住你这节课交到的好朋友,它能帮助我们解决很多实际问题,我们要用好数学知识并用心学好它。
板书设计:
6和7解决问题
用连乘解决问题教案篇九
1.引导学生发现学校生活中出现的问题,培养学生积极参与解决问题的意识。
2.知道共同的生活需要规则,通过制定班级公约,培养初步的民主意识、规则意识。
一、导语。
小朋友,从你们进校以来,你们的学习、生活兴趣各方面有什么进步?
二、出示画面。
讨论:图中这些小朋友在干什么?他们做得对吗?
出现这些问题的原因是什么?
你们有什么好办法来解决这些问题?
小结:学生发现学校生活中出现的.问题,培养学生积极参与解决问题的意识。学生要针对问题多角度地思考,寻求多种解决问题的途径,不求最好,只求更好的,鼓励大家相互启发,相互完善。
四、在学习方面,小朋友对老师有什么意见或要求,请大家提出来。
五、总结。
知道共同的生活需要规则,通过制定班级公约,培养初步的民主意识、规则意识。
一、导入。
二、制定班级公约。
1.制定班级公约要民主。就是要大家共同参与。
2.班级公约的内容要大家照着去做。
三、小组讨论班级公约的内容。
四、修改班级公约的内容。
五、公布班级公约的内容。
用连乘解决问题教案篇十
1.初步懂得从数学的角度提出问题,并能解决简单的数学问题。培养学生应用数学的意识。
2.培养学生积极参与数学学习活动的态度,对数学有好奇心和求知欲。初步认识数学与人类生活的密切联系。养成与他人合作的良好习惯。
第19~20页。
教具、学具准备
课件(例3主题图,“做一做”插图),奖品“智慧鸟”(不同颜色和大小)。
创设提问题的情境,体会提问题在生活中的应用
提生活中的数学问题,感受数学问题在生活中的存在。
2.学生提出数学问题后,问学生:“你提的数学问题想请谁来回答?”(让学生合作解答所提问题)
1.教学例题,让学生主动探索新知。
a.教师:春天来了,小树长出了新叶,花儿也开了,大自然里美极了!小朋友们兴高采烈地到公园里游玩。瞧,他们玩得可开心了!(边说边演示主题图。)
提问:你看到了什么?跟你的同桌说一说。
b.小组讨论:根据公园里小朋友的活动你能提出什么数学问题?你会解答吗?(喜欢说哪个活动就说哪个。)
c.小组汇报,提问并解答问题。(引导学生既能提出关于加法的问题又能提出关于减法的问题。)
2.借助多媒体课件创设情境,自主练习,巩固所学。
a.教师:小朋友们做完游戏后,准备去参观动物园,你们想不想一起去看看呢?看,动物园到了!(边说边演示“做一做”的插图。)
教师:说一说你看到了什么?
b.课件演示:有17只小鸟,飞走了8只。
教师:你能提出什么问题呢?
c.课件演示:跑来了15只小鹿。
出示课件:有15只小鹿。
教师:你能根据这个条件提出问题吗?
学生:有15只小鹿,跑了9只,还剩几只?
有15只小鹿练习跑步,其中有6只在休息,请问跑走了几只小鹿?
……
d.教师:仔细观察这幅图,你还能提出什么问题?
学生:有13条鱼,游走了7条,还剩几条?
左边有6条鱼,右边有7条鱼,一共有几条鱼?
……
e.教师从学生提的问题中选出若干个进行板演。
教师:你喜欢解答哪题就解答哪题,你也可以自己提个问题进行解答。
f.教师请个别学生上台板演,其他在练习本上解答。
1.教师:今天,哪位小朋友得到了“智慧鸟”,请你把它高高地举起来。
真能干,有这么多的小朋友得到了奖品。观察这些美丽的“智慧鸟”,你能不能也提出一些数学问题呢?(引导学生从颜色、大小等不同角度提出问题。)
2.观察其中一个组的人数。提问:仔细观察,你能提出数学问题吗?
1.说一说:今天这节课你有什么收获?
2.教师小结:今天我们学会了一个新本领,用数学知识解决了很多的生活实际问题。(边说边出示课题:解决问题)
提出课后建议,将课堂所学知识进行延伸
用连乘解决问题教案篇十一
1、通过“商店买东西”的情境,灵活运用有关除法知识解决实际生活中简单的问题。
2、通过独立探索、小组合作的方式学习,进一步加强对2——6的乘法口诀计算除法的掌握。
3、调动学生的学习兴趣,引导学生获得有价值的信息,培养学生解决问题得能力。
4、培养学生勇于表达自己的想法,认真倾听他们的意见。在问题处理中,体验成功,培养数学学习兴趣。
运用表内除法知识解决生活中的简单问题,做到学与用的有效结合。
多媒体课件等。
1、创设情境。
六一儿童节快到了,明明想要给自己买一些新玩具,可是面对那么多好玩的商品,明明不知道手中的零花钱能买多少个玩具,同学们,你们愿意帮助明明吗?现在,就让咱们一起跟着明明去商店看一看吧!(出示教材图片)。
师:从图中你知道了哪些信息?
预设:知道了一些商品的价钱。玩具熊6元1个,地球仪8元一个,皮球9元1个。汽车的价钱被遮住了。要帮助明明求出56元钱可以买几个地球仪。
师:要解决这个问题,需要哪些信息呢?
(小组交流汇报:需要知道地球仪的价钱,从图中可以知道一个地球仪是8元钱)。
(1)请同学们思考,根据以上的数学信息应该如何解决问题。小组合作,讨论解决的方法,教师巡视指导。
(2)汇报。
预设:一个地球仪8元,求能买几个就是求56元里面有几个8元。
这属于平均分问题,应该用除法计算。
如何列式计算呢?
56÷8,想七八五十六,商是7。
3、独立思考,验证结果。
同学们真聪明,这么快就解决了问题,那么我们做得正确吗?你怎么知道的?
(一个地球仪8元,7个一共78=56元,所以是对的。)。
师:很好,我们可以用乘法来验证除法计算的结果是否正确。
4、想一想,如果24元买了6辆小汽车,一辆小汽车多少钱?
师:谁愿意交流一下,你是怎么计算小汽车辆数的?
预设:(1)24元钱可以买6辆车,就是将24平均分成4份,求每份是多少。
(2)也是用除法计算。可以列式24÷6=4(元)。
(3)一辆4元,6辆就是46=24(元),计算正确。
师:根据图中的信息,你还能够提出其他数学问题并解答吗?
小组内2人合作,一问一答,其他小组成员看一看他们的回答是否正确,错误的相互改正,看谁提出的问题多,谁发现的问题多。
1、完成“练习九”第2题。
先组织学生观察情境图,收集图中的数据信息,再让学生独立解决问题,并指名说一说解决问题的思路和方法。
2、完成“练习九”第4题。
(1)出示图片,学生观察后说知道了哪些信息。
(2)独立思考解决第1、2小题分别需要哪些信息,应该如何解答。再在小组内探讨根据所知道的信息还能提出哪些数学问题。
3、完成“练习九”第6题。
出示情境图,学生观察图中的信息,分小组讨论,看能知道哪些信息。
能提出哪些用乘法或除法解决的问题呢?说一说,算一算。
同学们,我们在这节课里提出了许多数学问题,也解决了这些问题,说明数学就在我们身边,生活中处处有数学。
56÷8=7(个)。
56=30(元)。
36÷9=4(个)。
用连乘解决问题教案篇十二
“问题解决”从原来的“三足鼎立”到现在新课程的“处处渗透”,从有形到无行,从典型问题到生活问题,进行了较大的改革。一至三年级的问题解决教学,只在三下的第八单元专门劈出一个单元进行教学。但是由于在计算教学和概念教学中渗透了大量的问题解决,学生的问题解决能力得到了很大的提高。教材中的例1是连乘应用题。这类问题在学生的生活中经常碰到,因此学生并不感觉陌生。因此,在本课教学中,我力求体现以下几个方面:
一、以境促情,激发学生自主探究。
问题蕴含在生活之中。本节课教学中,我以学生喜欢的运动会作为情境载体,让学生计算运动会参加广播操的人数、长跑运动员的训练米数、运动会奖品购买、运动会照片存放等一系列数学问题,以主题式展开教学,让学生在这些熟知的生活情境中提炼数学问题、解决数学问题,不仅让他们体味到生活中处处有数学,也大大激发了他们自主探究的兴趣。
教学中,当他们独立解决参加运动会广播操人数时,不仅列出了5×8×6=240(人),而且也列出了5×8×6=240(人)及8×6×5=240(人),通过相互交流,能有条理地分析连乘问题的数量关系,并让学生初步感知同一问题可以有不同的解决办法,拓宽了学生的解题思路。同时,我并不拘泥于单一的问题情境中,把连乘问题拓宽到“计算图书室的图书”等问题,让学生初步感知这一问题存在的普遍性,掌握连乘问题的基本数量关系,培养学生分析解决问题的'能力。
二、丰富题型,培养学生解决问题的能力。
教师成功的预设是课堂教学得以和谐展开的基础。单一的问题解决课教师稍有不慎就极易上成练习堆积课。本节课在新授完成后安排了四个不同类型的相关练习。练习1是例题的模仿练习,是对学生探究知识的适当巩固。练习2以表格的形式展现,让学生学会分析表格中的数量关系,并能对小组成员进行合理分工,在合作的基础上完成练习。练习3需要学生自己搜集相关的数学信息,并能根据问题提出缺少的数学信息,是学生对连乘问题的深入理解。练习4结合估算,体验解题策略的多样化。通过不同类型的练习,使学生进一步掌握了连乘问题的数量关系,并了解到同一问题可以有不同的解决办法,培养学生合理灵活的解题能力。
当然课堂中也有许多亟待改进的地方:
1、课中师生生生的交流形式比较单一。每题几乎都是学生练习、教师指名、师生交流的形式得以展开,容易造成课堂的单调乏味。
2、只顾追求策略的多样化,忽略了连乘问题有时方法也具有局限性,不是每题都可以有三种不同类型的算式。如果在课堂上不加以对比,学生很可能造成思维定势,认为连乘问题只是简单的三个数相乘,而忽略对连乘问题数量关系的分析。
用连乘解决问题教案篇十三
原来这个单元的知识是休闲假日——混合运算,讲授分步计算和综合运算两种方法。学生虽然已经掌握了加、减、乘、除四种基本数量关系,但是一步计算到两步计算对于低年级学生来说已经是一个不小的跨越。解决两步计算的实际问题的关键是先根据题中的信息和问题之间的联系找到中间问题,分析与寻求中间问题的策略方法也是以后解决复杂实际问题的基础。如果直接跨入综合计算,对于大部分学生来说难度有点拔高了,所以本单元在以往的基础上进行了处理,只讲授分步计算。在解决一步计算的实际问题的基础上,学会解决稍复杂的实际问题,通过学习,形成解决问题的一些思路和基本策略,发展数学思考。
学生已经掌握了加、减、乘、除四种基本数量关系,并会运用这些数量关系解决一步计算的实际问题。
分步解决两步计算的实际问题是学生解决稍复杂的实际问题的开始,学生通过本单元的学习,形成解决问题的一些思路和基本策略,并为以后学习综合运算奠定坚实的基础。同时本单元教学是学生解决问题能力发展的重要转折点和关键点。
1、结合具体情境,学会分步解决两步计算的乘加(减)、除加(减)问题,初步了解用乘加(减)、除加(减)解用解决问题的思路。
2、经历用乘加(减)、除加(减)分两步计算解决实际问题的过程,初步学会有条理的思考问题,掌握一些解题思路。
3、有与同伴合作解决问题的体验,感受数学在解决生活问题中的作用,培养对数学学习的兴趣。
理解两步计算问题的数量关系,掌握分步解决两步计算问题的一般思路和解题策略。
学会分析数量之间的关系,试着找出中间问题,掌握分步解决两步计算问题的一般思路。
我主要是通过用图片摆一摆直观的呈现出数量之间的关系,学生更容易发现中间问题。
1、结合具体情境激发学生的学习兴趣。
选取的素材是学生们都非常喜欢的,也是比较熟悉的,因为大部分学生有外出旅游的经历,容易引起学生情感上的共鸣。教学时,可以先让学生根据亲身体验简单谈谈最难忘的一次旅游,激发学生的学习兴趣。教师要帮助学生在具体的情境中分析、找出数量之间的关系,掌握两步计算问题的解题思路。
2、注重相关信息的选择,提高学生整理信息的能力。
本单元的两个信息窗都提供了较多的信息,有的呈现的是对话,有的是标示牌,有的是需要学生亲自数一数的图画信息。因此,教学时,教师要注意引导学生根据提出的问题,仔细观察主题图,从众多的信息中选择有用的信息来解决问题。提高学生的分析、整理能力。
3、帮助学生初步形成解决问题的基本思路。
求什么”的思路进行,还体会到要确定“先求什么”也是有章可循的,既可以从信息想起,也可以从问题想起。在此基础上,教师还要继续丰富学生的体验,让学生运用刚刚获得的经验和方法尝试解决“自主练习”中的问题,并让学生完整的表达自己的思考过程。
4、对学生进行多角度评价。
本单元的评价,要注意考查学生是否能通过对信息的分析分步解决两步计算的实际问题,同时,还要注意考查学生是否能积极主动地参与小组合作学习,是否愿意与同伴交流等,以促进学生的全面发展。
课件、圆片等。
休闲假日——解决问题
课本101的信息窗1和相应练习。
用连乘解决问题教案篇十四
在最近这段时间的教学中,呈现了很多问题,我也在积极地去改进自己的教学方式和教学心态。
第一个是有的学生数学基础很差,非常简单的推公式会卡在数学问题上,物理知识大体上没有问题,但是只要呈现推公式的题就不会,刚开始会很仔细的去讲数学的问题,随着次数的增多,我也很气愤,不知道怎么解决才好,便去请教指导老师,与老师交流后,我更深刻的理解了此刻学生处于的.阶段,因为初二大家刚接触物理,上半学期计算上的问题很少,这学期的难度跨度很大,大家刚开始数学物理只是结合,很多学生不能很好的运用数学知识去解答物理问题,需要时间让学生慢慢适应。
第二个问题是很多学生急于去做题,知识基础打得不坚固,计算上的难题不会出问题,反而概念上的简单问题有很多。我也发明了这种孩子很很简单因为一个很小的问题被绊住,解题思路并不清晰。我思量了很久,也和物理组的其他实习教师还有指导老师进行了讨论。指导老师先告诉我的是孩子好学是好事情,不能打击学生学习的积极性,然后再来解决问题。最后我总结了大家的建议并开始改进讲题的方式。不再直接把整个思路和答案教给学生,而是用提问的方式来引导学生的思路,用思路来代替直接的答案,并且通过提问侧面的来检测学生基础知识的掌握情况,可以很清晰的看出学生是哪一部分的知识出了问题并适时提醒他们去仔细阅读课本复习相关知识。
第三个问题是随着教学的进行,从开始压强到浮力的过程,知识的难度在慢慢加大,计算中用到的物理量越来越多,包括上一学期学到的密度,这一学期学到的压强重力浮力受力分析,上一次强调受力分析已经过去了将近半个月,学生们开始忽略这个力学问题中最重要的问题。很多孩子反馈题中的已知量越来越少,需要求的未知量越来越多,思路就很简单乱。我认为问题出在学生学了知识,但是不会运用,碰到实实在在的题的时候无从下手,不知道从什么地方开始突破。请教了指导老师,也结合了我做学生的时候的经验,总结出了大题的解决方案,从需要求的量入手,求它需要什么量,然后一句一句读题,题上从来都没有没用的信息,一句一句一个点一个点推出中间信息,最后求出未知量。强调后大家的反馈情况有好转。
最近一段时间的教学收获很多,很开心与学生一起成长!
用连乘解决问题教案篇十五
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。
2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。
1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。
分别板书:假设都是鸡假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗?现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。
师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)。
表示实际多画了10条腿。4-2=2(条)。
表示一只兔比一只鸡多2条腿。102=5(只)。
表示鸡有5只。8-5=3(只)。
表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。
教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。
兔的只数。
腿的条数。
和22条腿比较。
师根据学生的回答分别板书。
4442+44=24。
多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。
4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。
5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。
1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。
2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。
兔的只数182023。
腿的条数171512。
小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。
2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
用连乘解决问题教案篇十六
1.创设情境。
2.小组讨论:怎样帮助王亮解决问题?
3.课堂交流:
(1)各小组的代表说说解决的办法。
(2)教师随时发现学生想出的办法中的闪光点和明显的缺陷,适时鼓励和纠正,引导全体学生深人思考。
4.小结归纳:
(1)教师说明这是一件真人真事,王亮最后受到电冰箱的启发,发明了新型开关,获得全国青少年发明大赛一等奖。
(2)引导学生从王亮的发明过程中归纳出动脑筋解决问题的基本思路:发现问题一寻找原因一联想启发一解决问题。
1.引导学生发现生活中的不便之处。
2.小组合作按照基本思路尝试解决问题。
3.小组内相互说说解决问题的方法和过程,确定参加全班交流的同学。
1.组织生活中的小发明擂台赛。
2.教师引导观众和擂主互动,评议每一个解决问题的办法。
3.宣布比赛结果。
4.激励学生做生活的有心人,善于发现问题,善于解决问题,做生活的有心人。
用连乘解决问题教案篇十七
1、进一步感受要根据实际需要求取商的近似值。
2、进一步培养学生的.应用意识。
一、基础训练。
完成p35第8题。
学生独立完成后交流分析过程,并讨论结果的处理?(为什么这样处理?)。
二、巩固练习,判断这几题如何处理结果?
1、有110米的布,做儿童套装,每套用布2.3米,能做多少套?
2、有110吨的煤,用载重2.3吨的小车运,需运多少车?
3、p345如何处理结果?组织学生讨论,鼓励他们说出理由,在交流中,自己发现不足校正。
4、p359(先说出解题思路,再解答)同上。
5、p3510学生独立解答,全班交流不同方法。
6、小结,请学生说说感受。
三、拓展练习。
教师可请学生编题,交换练习本解答。
用连乘解决问题教案篇十八
《用连乘方法解决问题》是三年级的一节数学课,学生在二年级学习时,已经会用表内乘、除法以及加、减法解决简单两步计算的实际问题。本单元提供的需要用两步计算解决的实际问题,选材范围扩大了,提供的信息数据范围扩大了。问题解决”从原来的计算、概念、应用题到现在新课程的“处处渗透”,从有形到无形,从典型问题到生活问题,进行了较大的改革.我有以下几点反思。
接着请学生根据题目的信息思考:要求3个方阵一共多少人《第一步先求什么《第二步再求什么《要求学生独立思考,再同桌交流,最后全班交流,学生积极性很高,而且有利于学生对不同解法的理解。使学生深刻的领会数学与现实之间的联系:数学源于生活,最终应用于生活。教材里两种解法都采用综合法思路引导学生分析推理。第一种解法是引导学生根据每个方阵有8行,每行有10人的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式和综合算式解答。第二种解法是先引导学生根据另外两个联系的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式和综合算式解答。让学生用综合法思路来分析数量关系,有利于学生找出不同的中间问题,理解两种解法所表示的不同的数量关系,明确两种解题方法的区别,便于学生掌握分析和解答的方法。
问题蕴含在生活之中。以学生喜欢的运动作为情境载体,让学生计算小朋友每天跑两圈,跑道每圈400米,她一个星期(5天)跑了多少米《以主题式展开教学,让学生在这些熟知的生活情境中提炼数学问题、解决数学问题,不仅让他们体味到生活中处处有数学,也大大激发了他们自主探究的兴趣。教学中,老师通过让学生选择老师出示的算式哪些是可以解决这个问题的方法,让学生通过算式说说想的过程,通过相互交流,能有条理地分析连乘问题的数量关系,并让学生初步感知同一问题可以有不同的解决办法,拓宽了学生的解题思路。让学生初步掌握连乘问题的基本数量关系,培养学生分析解决问题的能力。
应用题教学理当重视数量关系的分析与解题思路的梳理。本节课在分析应用题时,让学生从情景中发现问题、提出问题并解决问题。提出问题和解决问题的过程是学生思维的过程,在课堂上给学生留有充足的时间和空间,让学生去探索。这样教学不仅使学生的主体地位得到了充分的`体现,也使学生的创新思维得到的发展。
教师成功的预设是课堂教学得以和谐展开的基础。单一的问题解决课教师稍有不慎就极易上成练习堆积课。老师通过知识层次的递进,一步步的让学生发现问题,解决问题,最后的练习也是水到渠成了。

一键复制