教案是一种教师为了达到预设的教学目标,按照一定的教学步骤和方法,对教学内容进行详细规划和安排的书面材料,它是教师教学的重要参考工具。教案可以帮助教师在教学过程中合理安排时间、确定教学重点和难点、选择合适的教学策略和资源等,提高教学效果,促进学生的自主学习和合作学习。教案的教学步骤应该合理,注重启发式教学。可以通过参考他人的教案来借鉴经验,但要保持自己的独特风格和创新思维。
数学初中教案篇一
【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。
例题:课本p123证明两个角之间的关系,
请同学们总结一下他们可能出现的情况。
【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)。
生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)。
师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。
师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。
在师生的共同研讨下得出了这些方法。
师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。
【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。
1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。
就不是主动性参与,而是被动的、消极的参与。
3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。
4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。
数学初中教案篇二
使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法提高学生列方程解应用题和检验的能力教学过程:
1、复习:果园里有梨树42棵桃树的棵数是梨树的3倍梨树和桃树一共有多少棵(板演)。
3、出示线段图:梨树:
如果梨树的棵树用x表示桃树的棵数怎样表示。
4、出示条件:母鸡的只数是公鸡的5倍。
根据这个条件你可以知道什么如果公鸡的只数用x表示那么母鸡的只数可以怎样来表示。
7、导入:在四年级时我们学习了列方程解应用题谁来说一说列方程解应用题的步骤是怎样的今天这节课我们继续来学习列方程解应用题(出示课题)。
(1)齐读。
(3)“梨树和桃树各有多少棵”意思。
这道题要求的数量有两个你认为用什么方法做比较简便。
(4)下面我们就以小小组为单位进行讨论:这道题用方程来做学生讨论。
(5)交流。
(6)通过讨论和同学们的交流你们会解这道题了请做在自己的作业本上。
2、教学想一想。
集体订正提问:设未知数时你是怎样想的你是根据什么来列方程的。
3、请同学们比较这两道题在解答上有什么相同的地方又有什么不同的地方为什么会不同因此你认为列方程解应用题的关键(找出数量之间的相等关系)。
4、小结。
1、练一练校对:你是根据个条件说出数量之间的`相等关系的。
2、只列式不计算一个自然保护区天鹅的只数是丹顶鹤的2.2倍。
(1)已知天鹅和丹顶鹤一共有96只天鹅和丹顶鹤各有多少只。
(2)已知天鹅的只数比丹顶鹤多36只天鹅和丹顶鹤各有多少只。
3、选择正确的解法。
明明家鸡的只数是鸭的3倍鸡和鸭一共56只鸡和鸭各有多少只。
(1)解:设鸡和鸭各有x只x+3x=56。
商店里苹果的重量是梨的3.6倍苹果比梨多26千克苹果和梨各有多少千克。
(1)解:设梨有x千克苹果有3.6x千克3.6xx=26。
(2)解:设梨有x千克苹果有3.6x千克3.6x+x=26。
今天我们一起学习了什么你感觉到今天学的应用题有什么特点那你有些收获呢还有什么疑问。
练习二十一/2—5。
数学初中教案篇三
本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。
特点:
1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文李雅芳等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。
2、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。
3、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。
不足:
1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。
2、个别教师教案过于简单。
作业方面的特点与不足。
特点:
1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。
2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。
3、学生在书写方面有很大进步。从检查可以发现教师对学生作业的书写格式有明确的要求。
不足:
1、对于学生书写的工整性,还需加强教育。
2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。
数学初中教案篇四
立体图形的翻折问题是高二《代数》(下)中立体几何的一个学习内容,它融会贯通于各种立体几何和几何体中,对学生进一步理解立体图形起着至关重要的作用。立体图形的翻折是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形于平面图形的关系;不仅要让学生了解几何体可由平面图形折叠而成,更重要的是让学生通过观察、思考和自己动手操作、经历和体验图形的变化过程,使学生了解研究立体图形的方法。
了解平面图形于折叠后的立体图形之间的关系,找到变化过程中的不变量。
转化思想的运用及发散思维的培养。
学生在前面已经对一些简单几何体有了一定的认识,对于求解空间角及空间距离已具备了一定的能力,并且在班级中已初步形成合作交流,敢于探索与实践的良好习惯。学生间相互评价、相互提问的互动的气氛较浓。
根据教育课程改革的具体目标,结合“注重开放与生成,构建充满生命活力的课堂教学运行体系”的要求,改变课程过于注重知识传授的倾向,强调形成积极生动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
1、使学生掌握翻折问题的`解题方法,并会初步应用。
2、培养学生的动手实践能力。在实践过程中,使学生提高对立体图形的分析能力,并在设疑的同时培养学生的发散思维。
3、通过平面图形与折叠后的立体图形的对比,向学生渗透事物间的变化与联系观点,在解题过程中,使学生理解,将立体图形中的问题化归到平面图形中去解决的转化思想。
一、创设问题情境,引导学生观察、设想、导入课题。
1、如图(图略),是一个正方体的展开图,在原正方体中,有下列命题。
(1)ab与ef所在直线平行。
(2)ab与cd所在直线异面。
(3)mn与ef所在直线成60度。
(4)mn与cd所在直线互相垂直其中正确命题的序号是。
2、引入课题----翻折。
二、学生通过直观感知、操作确认等实践活动,加强对图形的认识和感受(引导学生在解题的过程中如何突破难点,从而体现在平面图形中求解一些不变量对于解空间问题的重要性)。
1、给学生一个展示自我的空间和舞台,让学生自己讲解。教师根据学生的讲解进一步提出问题。
(1)线段ae与ef的夹角为什么不是60度呢?
(2)ae与fg所成角呢?
(3)ae与gc所成角呢?
(4)在此正四棱柱上若有一小虫从a点爬到c点最短路径是什么?经过各面呢?
(通过对发散问题的提出培养学生的培养精神及转化的教学思想方法,让学生体会折叠图与展开图的不同应用。)。
2、让学生观察电脑演示折叠过程后,再亲自动手折叠,针对问题做出回答。
(1)e、f分别处于g1g2、g2g3的什么位置?
(2)选择哪种摆放方式更利于求解体积呢?
(3)如何求g点到面pef的距离呢?
(4)pg与面pef所成角呢?
(5)面gef与面pef所成角呢?
(学生会发现这几个问题可在同一个直角三角形中找到答案,然后让学生在折纸中找到这个三角形的位置,既而发现折叠过程中的不变量。)。
(学生大胆想象,并通过模型制作确认想象结果的正确性,从而开辟一条简捷的翻折思想解题思路。)。
三、小结。
1、画平面图,并折前图与折后图中的字母尽量保持一致。
2、寻找立体图形中的不变量到平面图形中求解是关键。
3、注意培养转化思想和发散思维。
(通过提问方式引导学生小结本节主要知识及学习活动,养成学习、总结、学习的良好学习习惯,发散自我评价的作用,培养学生的语言表达能力。)。
四、课外活动。
1、完成课上未解决的问题。
2、对与1题折成正三棱柱结果会怎样?对于2题改变e、f两点位置剪成正三棱柱呢?
(通过课外活动学习本节知识内容,培养学生的发散思维。)。
本课设计中,有梯度性的先安排三个小题,让学生经历先动手、思考、预习这一学习过程,然后在课堂上给学生一个充分展示自我的空间,并且适时发问的同时帮助学生找到解决方法。归纳总结解翻折问题的技巧和作为解题方法的优越性。在实施开放式教学的过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神以及合作交流的精神和创新意识,将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生自主学习与创新意识的培养落到实处。
数学初中教案篇五
创设情境导入新课引导学生欣赏鲁迅纪念馆的照片,简单介绍鲁迅其人其事,进行爱国主义教育和乡土文化教育,激发学生的自豪感,并请学生做导游,点出这节课的主线:边参观鲁迅纪念馆边学习身边的数学.
沿参观旅程依此遇到下列问题:。
3、在参观时了解到了纪念馆的一些情况:。
数学初中教案篇六
引导学生观察上面所列的算式:。
它们与我们以前学过的算式有什么区别?点出课题(板书课题)。
概念:像这样含有字母的数学表达式称为代数式。
先判别下列哪些是代数式?再说说你对代数式构成的看法.【师】:引导学生观察算式,并与以前学过的算式相比较,得出概念.
在学生交流的基础上点明代数式的构成。
让学生经历代数式概念产生的过程,使学生在数学活动过程中建构自己的数学知识,获得对概念的理解,发展数学能力。改变学生的学习方式,变"学会"为"会学"。
师生互动探索新知。
动手计算再探新知。
欢乐游戏巩固新知。
对代数式构成的理解:。
(1)一个代数式由数、表示数的字母和运算符号组成.这里的运算指加、减、乘、除、乘方和开方6种运算.
(2)为了今后研究和表述方便,规定单独一个数或者字母也称代数式.
数学初中教案篇七
(一)使学生直观认识线段,知道它的特征。
(二)使学生能辨认线段,初步学会画线段。
(三)培养学生初步的空间观念,空间的想象能力和动手操作能力。
认识线段的特征。
人手一根毛线、一张长方形纸、一把直尺、小黑板。
同学们,今天老师给大家带来了一位新朋友,想认识它吗?它的名字就叫“线段”。
(板书课题:认识线段)。
(1)初步感知。
1、你觉得线段是怎样的?(生:直直的;一段一段的;弯曲的……)。
2、能不能想办法变出一条线段?
生尝试。
师(出示准备好的.毛线):把毛线拉得直就出现一条线段。
请一生上来摸一摸。演示:这直的一段叫线段。
3、同桌合作:一个拉,另一个指出这条线段在哪里。
请两生演示。
一生想办法拉出线段,另一生指出:两手之间的距离就是线段。
演示,问:垂下来的这一段是不是线段?为什么?
4、小结:线段是直直的。(板书:直直的)。
(2)认识端点。
1、两头粘上去的叫做线段的什么?(端点)(师把毛线拉直粘在黑板上)。
2、一条线段有几个端点?(两个)(板书:有两个端点)。
(3)总结概念。
现在,同学们认识线段了吗?线段是怎样的?
让生记线段:请同学们闭上眼睛,把线段印在自己的脑子里。
(4)找线段。
其实,在我们身边,有许多物体的边都是线段。同学们找找看,看谁的小眼睛最亮?生:课桌边、黑板边……(让生用手感知)。
(5)折线段。
1、指出白纸中哪些边是线段?
2、在白纸中折出一条线段。(折痕)。
3、再折比刚才短一点的线段。
4、在这张纸中折出最长的线段。(摆擂台,让擂主说出理由和折的方法)。
(6)小结。
通过刚才的拉、折、指,你认识线段了吗?
(7)画线段。
1、生自由画在白纸上,然后反馈评价。
2、指定条件画。
a、画一条3厘米长的线段。
说说你是怎样画的?(师演示方法:用0刻度尺示画出3厘米长的线段)。
b、画一条比3厘米长1厘米的线段。
反馈:要求非常准确。(进行认真做事的思想教育)。
3、小结:线段有长有短。(板书)。
1、找一找,下面那些是线段?(小黑板出示)。
2、数一数,下面的图形是有几条线段组成的。
3、过任意两点,能连起几条线段?
3点能连几条线段?
4点呢,每两点连起来,共有几条线段?(生思考,动笔画。)。
4点位置方向有不同。
思考:
4、比较:看看哪条线段长?
演示:一样长。(生活中经常用到这样的数学知识。如:穿竖条衣服的人看上去瘦一些,穿横条衣服的人看上去胖一些等)。
这节课,同学们有哪些收获?
认识线段。
直的、有两个端点、有长有短。
数学初中教案篇八
1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、过程与方法:通过观察,归纳一元一次方程的概念。
3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。
归纳一元次方程的概念。
感受方程作为刻画现实世界有效模型的意义.
一、情景导入:
我能猜出你们的年龄,相信吗?
只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.
问:你的年龄乘以2加3等于多少?
学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?
学生讨论并回答。
二、知识探究:。
1、方程的教学(投影演示)。
小彬和小明也在进行猜年龄游戏,我们来看一看。
找出这道题中的等量关系,列出方程.
大家观察,这两个式子有什么特点。
讨论并回答:什么是方程?方程有哪些特点?
2、判断下列式子是不是方程?
(1)x+2=3(是)(2)x+3y=6(是)。
(3)3m-6(不是)(4)1+2=3(不是)。
(5)x+35(不是)(6)y-12=5(是)。
三、合作交流。
1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)。
你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?
情景二:第五次全国人口普查统计数据(20__年3月28日新华社公布)。
下面是刚才根据几道情景题所列的'方程,分析下列方程有何共同点?
2x–5=21。
40+15x=100。
x(1+153.94﹪)=3611。
2[x+(x+12)]=200。
2[y+(y–12)]=200。
在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。
生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程。
四、随堂练习。
1、投影趣味习题,。
2、做一做。
下面有两道题,请选做一题。
(1)、请根据方程2x+3=21自己设计一道有实际背景的应用题。
(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。
五、课堂小节。
1、这节课你学到了什么?
2、这节课给你印象最深的是什么?
六、作业:
分组布置。
数学初中教案篇九
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;。
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;。
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的`方程.
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.
2.新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
3.合作学习:
4.课堂练习:
1)已知:5xm-2yn=4是二元一次方程,则m+n=;。
2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_。
5.课堂总结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);。
(2)二元一次方程解的不定性和相关性;。
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
本章的课后的方程式巩固提高练习。
数学初中教案篇十
1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。
2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。
3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。
4、培养学生大胆猜想、合理论证的科学精神。
探索并运用三角形中位线的性质。
运用转化思想解决有关问题。
创设情境——建立数学模型——应用——拓展提高。
情境创设:测量不可达两点距离。
活动一:剪纸拼图。
操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。
观察、猜想:四边形bcfd是什么四边形。
探索:如何说明四边形bcfd是平行四边形?
活动二:探索三角形中位线的性质。
应用。
练习及解决情境问题。
例题教学。
操作——猜想——验证。
拓展:数学实验室。
小结:布置作业。
数学初中教案篇十一
1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、过程与方法:通过观察,归纳一元一次方程的概念。
3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。
归纳一元次方程的概念。
感受方程作为刻画现实世界有效模型的意义.
我能猜出你们的年龄,相信吗?
只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.
问:你的年龄乘以2加3等于多少?
学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?
学生讨论并回答。
1、方程的教学(投影演示)。
小彬和小明也在进行猜年龄游戏,我们来看一看。
找出这道题中的等量关系,列出方程.
大家观察,这两个式子有什么特点。
讨论并回答:什么是方程?方程有哪些特点?
2、判断下列式子是不是方程?
(1)x+2=3(是)(2)x+3y=6(是)。
(3)3m-6(不是)(4)1+2=3(不是)。
(5)x+35(不是)(6)y-12=5(是)。
1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)。
你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?
情景二:第五次全国人口普查统计数据(20__年3月28日新华社公布)。
下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?
2x–5=21。
40+15x=100。
x(1+153.94﹪)=3611。
2[x+(x+12)]=200。
2[y+(y–12)]=200。
在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。
生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程。
1、投影趣味习题,2、做一做。
下面有两道题,请选做一题。
(1)、请根据方程2x+3=21自己设计一道有实际背景的应用题。
(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。
1、这节课你学到了什么?
2、这节课给你印象最深的是什么?
分组布置。
数学初中教案篇十二
会用列一元二次方程的方法解有关面积、体积方面的应用题。
(1)列方程解应用题的步骤?
(2)长方形的周长、面积?长方体的体积?
据题意:(19—2x)(15—2x)=77。
整理后,得x2—17x+52=0,
解得x1=4,x2=13。
∴当x=13时,15—2x=—11(不合题意,舍去)。
答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。
练习1章节前引例.。
学生笔答、板书、评价。
练习2教材p。42中4。
学生笔答、板书、评价。
注意:全面积=各部分面积之和。
剩余面积=原面积—截取面积。
解:长方体底面的宽为xcm,则长为(x+5)cm,
解:长方体底面的宽为xcm,则长为(x+5)cm,
据题意,6x(x+5)=750,
整理后,得x2+5x—125=0。
解这个方程x1=9。0,x2=—14。0(不合题意,舍去)。
当x=9。0时,x+17=26。0,x+12=21。0.。
答:可以选用宽为21cm,长为26cm的长方形铁皮。
教师引导,学生板书,笔答,评价。
3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。
教材p42中a3、6、7。
教材p41中3、4。

一键复制