平等和公正是构建和谐社会的基石。写一篇完美的总结需要明确目的,突出重点,避免冗长废话。以下是一些经典的总结范文,欢迎大家阅读并进行借鉴。
数学的读书心得篇一
莫里斯·克莱因(morriskline,1908—1992),纽约大学库朗数学研究所的教授,荣誉退休教授,他曾在那里主持一个电磁研究部门达20年之久。他的著作很多,包括《数学:确定性的丧失》和《数学与知识的探求》等。
本书论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。
本书的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本最具有代表性,再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。本书当然有它的局限性,作者相信它已给出整个历史的一种概貌。
本书的组织着重在居领导地位的数学课题,而不是数学家,数学的每一分支打上了它的奠基者的烙印,并且杰出的人物在确定数学的进程方面起决定作用。
本书论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。
本书的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本最具有代表性,再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。本书当然有它的局限性,作者相信它已给出整个历史的一种概貌。
本书的组织着重在居领导地位的数学课题,而不是数学家,数学的每一分支打上了它的奠基者的烙印,并且杰出的人物在确定数学的进程方面起决定作用。
数学的读书心得篇二
《自然哲学的数学原理》是第一次科学革命的集大成之作,它在物理学、数学、天文学和哲学等领域产生了巨大影响。在写作方式上,牛顿遵循古希腊的公理化模式,从定义、定律(即公理)出发,导出命题;对具体的问题(如月球的运动),他把从理论导出的结果和观察结果相比较。全书共分五部分,首先“定义”,这一部分给出了物质的量、时间、空间、向心力等的定义。第二部分是“公理或运动的定律”,包括著名的运动三定律。接下来的内容分为三卷。前两卷的标题一样,都是“论物体的运动”。
第一卷研究在无阻力的自由空间中物体的运动,许多命题涉及已知力解定受力物体的运动状态(轨道、速度、运动时间等),以及由物体的运动状态确定所受的力。第二卷研究在阻力给定的情况下物体的运动、流体力学以及波动理论。压卷之作的第三卷是标题是“论宇宙的系统”。由第一卷的结果及天文观测牛顿导出了万有引力定律,并由此研究地球的形状,解释海洋的潮汐,探究月球的运动,确定彗星的轨道。
本卷中的“研究哲学的规则”及“总释”对哲学和神学影响很大。当时英国皇家学会要出版这部书,但是凑不出适当款子,而皇家学会的干事胡克则声称万有引力的平方反比定律是他首先发现的,爱德蒙·哈雷出于气愤,提议牛顿写了这本书,并由他自费出版了牛顿的书,于1687年7月《自然哲学的数学原理》拉丁文版问世。
数学的读书心得篇三
是建立在客观研究的基础上。牛顿十分重视科学研究的方法和态度,他指明了研究自然的四条基本规则,这四条规则的核心问题是强调研究的客观性,即坚持对自然研究的唯物主义的态度。他自身的研究就是建立在长期实际观察的基础上。同时他通过定律对自然现象的解释,是以大量的数学分析为基础的,在本书的第一编第一章中,牛顿讲述了有关微积分及几何学方面的内容。这些内容实际上是全书的数学基础。
牛顿本来是微积分的发明人之一,但为了便于读者接受,他在这本书中却尽量避免使用比较困难的微积分的方法。他用的数学工具严格地限于几何。书的开头部分有很长的“说明”,对书中所运用的一些概念的基本定义,诸如力、天体、力学、运动等进行必要的解释说明。在“说明”之后,牛顿认真详细地介绍了“运动之基本定理或定律”,即牛顿关于物体运动的三个定律。这就是我们现在所说的经典力学的三个基本定律。第一定律:每个物体如果没有外界影响使其改变状态,那么该物体仍保持其原来静止的或等速直线运动的状态。牛顿认为这是一个基本的普遍的自然界的事实,也是无可争辩的。
由这条定律出发,外力是改变物体运动状态的原因,而不是维持原有状态的原因。例如炮弹会停止和下落,是因为空气的阻力和重力的影响,如果不存在这种外力,那么炮弹将保持它匀速运动的状态。第二定律:运动的变化与所施加的力成正比,并沿力的作用方向发生。这其实就是今天我们所说的动量问题,动量等于物体的质量与速度的乘积,速度的变化就是加速度。对同一个物体而言,所施加的力与由此产生的加速度成正比。第三定律:对于每一个作用力,总存在一个与之相等的反作用力和它对抗;或者说,两个物质彼此施加的相互作用力恒等,方向则恰恰相反。根据这个定律,牛顿指出,相互作用的两个物体不管表面上是否产生运动状态的变化,它们之间的作用力和反作用力都是成对出现或同时存在的。例如人用桨划船前进的运动中,船能前进,就在于人用桨划入水中时,对水有作用力,水产生了一个相等的反作用力,推动船的前进。第三定律同样也适用于圆周运动中的向心力和离心力。
数学的读书心得篇四
折纸与数学,这两个看似毫不相关的领域,在《折纸与数学的美丽关系》一书中被通俗易懂地阐述了它们之间的潜在联系。在阅读这本书之后,我深刻领悟到了折纸和数学之间的奥妙,以及许多关于思维方式和思考模式的启示。
第一段:介绍
折纸作为一种传统的手工活动,在过去几年重新受到了人们的关注。无论是在休闲时光还是在学校数学课程中,我们都可以看到折纸的身影。但是,很少有人能想到折纸和数学之间有什么关系。本书详细地讲述了这两个领域之间的联系,给我们展示了一个全新的折纸世界和数学世界。
第二段:折纸与数学之间的联系
在本书中,作者通过众多的实例向读者展示了折纸和数学之间的联系。这些实例包括:折纸的数学抽象、折纸中的几何学、折纸中的重心、用数学解决折纸难题等。通过这些实例,读者可以深刻地理解折纸和数学之间的联系。例如,折纸可以被看作是立体空间中的平面图形,这种空间中的平面图形和几何学的许多基本概念一样,具有对称性、相似性和等量性等重要属性。这些特性也是数学中常见的性质,因此折纸和数学之间具有深刻的联系。
第三段:启示
除了展示折纸和数学之间的联系之外,本书还对我们的思维方式和思考模式提出了一些新的启示。例如,折纸需要细心、耐心和仔细的分析,这些都是良好的思维习惯。在折纸过程中,一旦出现错误,就需要细心、耐心地重新找到解决方案。这种方法也可以运用到数学和其他学科中去。通过折纸和数学的学习,我们可以获得更好的思维方式,提高我们处理问题的能力。
第四段:实践
本书不仅仅是理论性的探讨,它还提供了许多实践的机会。通过模仿书中的折纸作品,我们可以更加深入地学习折纸和数学之间的联系。在实践中,我们可以体验到这两个领域的美妙之处。同时,通过实践,我们也可以更好地理解折纸和数学之间的联系。
第五段:结论
通过《折纸与数学的美丽关系》一书的学习,我们可以更好地理解折纸和数学之间的联系。折纸作为一种传统的手工活动,不仅可以培养我们的动手能力,还可以提高我们的思维方式和思考模式。通过模仿书中的折纸作品,我们也可以更加深入地学习折纸和数学之间的联系。我们应该在日常的生活和学习中,更加注重关注折纸和数学这一领域的奥妙。
数学的读书心得篇五
折纸和数学这两个看似毫不相关的领域,是我在课余时间所喜爱的两项爱好。然而,在我读完柏杨先生的《折纸与数学》一书后,我深刻体会到了这两者的紧密联系,也更进一步增强了我对它们的热爱之情。
第二段:折纸与数学的紧密联系
折纸和数学都源于物理世界对事物和规律的探索。折纸艺术借助了几何学的基础概念,例如点、线、面等,折纸师需要熟练地使用量角器、直尺、三角板等工具,通过自己的发挥和创意,将纸张折叠成形态各异的物品。这其中难免涉及到角度、比例、对称等数学基本概念。在数学上,几何学也是基于真实世界的空间形态而构建的,同样也需要借助于点、线、面等概念。而在高等数学中,拓扑学等更是在几何学的基础上进行了更高级别的抽象。
第三段:折纸与数学的互相促进
折纸和数学互相促进、互相补充。折纸的美学追求,源于几何学对形态的要求,而数学理论的推陈出新,也需要折纸工艺的验证。在柏杨先生的书中,我们还可以看到许多数学思想的引申。例如,弦割定理是几何学中一个定律,而它在折纸中也得到了应用。数学和折纸将彼此推到了不同的高度。
第四段:我的启发
在读完这本书之后,我领悟到,学习和探索不同领域之间的联系,是拓宽视野、培养创新思维的好方法。将不同的知识与技能进行组合,不仅能够帮助我们更好地理解与应用,更有可能取得意想不到的成就。从个人角度看,我在折纸和数学上的研究,也让我更好地发挥了自己的创造力和独立思考能力。
第五段:结语
总之,在我的生活和学习中,折纸和数学一直是我喜爱的两个领域。通过阅读柏杨先生的《折纸与数学》一书,我对这两个领域的联系、互相促进更有了深刻的认识,对于如何将不同领域的知识进行有机融合也有了新的思考。我相信,不同的领域之间的联系和互相促进,将会为我们的学习与生活带来更加丰富多彩的可能。
数学的读书心得篇六
随着信息时代的不断发展,数学作为一门重要的基础学科,越来越受到人们重视。而对于一些非数学专业的学生来说,学习数学总是一个令人头疼的问题,但是,通过我自己的实践和学习,我想和大家分享一些我关于简单学数学的读书心得体会。
第一段,引子
在大学学习时,我常常发现数学课程对许多同学来说是一件很难的事情。有些学生甚至会抱怨,称从来不曾理解过数学的魔力。但是,数学在日常生活中无处不在:我们用它来计算账单、统计票数,甚至是为了做清单。我决定破除这个谬论并从根本上改变观念:数学无处不在且不难学习。为此,我积极探索了几种方法来简化数学学习。
第二段,背景
许多人认为数学是一门不同寻常的学科,除了需用心记忆方程式和公式外,还要深度理解抽象规律。然而,在我的个人实践中,我发现用趣味和游戏元素结合的方法能让学习变得更有趣,从而更容易理解。当我独自学习时,我经常使用一些简单的遊戲来帮助自己加深对某个概念的理解。比如,我经常使用额外的卡片或骰子来学习算数性质或积分概念。这些方法增加了学习数学的乐趣,同时也打破了我对安装繁琐的数学障碍的既有想法。
第三段,真正的方法
在这个信息快节奏的时代里,人们可能不会找到足够的时间来坐下学习。但是,用户友好和自适应的智能学习应用可以提供您的数字世界中的数学学习资源。这些应用程序可以轻松地将数学概念提供给您,并帮助您识别常见的数学难点。例如,一些应用还会提供使用视频和图形化方法的简短讲解,以帮助您理解并且能够为您提供快捷的反馈。
在使用这些工具和应用程序的同时,理解数学的过程也应当得到重视。例如,您可以尝试使用针对数学知识点的启发式学习,以便您能突破过去的难点。这种类型的学习将指导您制定有目的的问题,并给您反馈帮助您更好地理解数学概念,而不只是机械地按照给定的公式计算。
第四段,总结
总的来说,这篇文章旨在帮助人们发现学习数学的更平易近人的方法。尝试多样化的教学方法和利用机器智能工具来学习是非常重要的,而了解数学概念背后的基本原理才是最重要的。我们相信,通过使用不同的工具和启发式学习,学习数学一定是一件既有趣又充满乐趣的事情。在不断的练习和学习中,我们可以轻松地掌握数学知识,无论将来身处何处。
第五段,展望
我发现,随着数学信息的不断涌现,在对待教育和学习的态度上,我们需要一种更全面和更持久的方法。对于那些困惑和不解的学生,我们要用更多的耐心和心态告诉他们在快节奏的数学学习的背后,隐含的是改变思维方式和思考风格,乃至提高我们的生活素养。这种思维方式可以帮助我们更好地理解世界,适应未来的挑战,并促进更好的问题解决方案的出现。
数学的读书心得篇七
学好高中数学,在学习方法上要有所转变和改进。而做好数学笔记无疑是非常有效的环节,善于做数学笔记,是一个学生善于学习的反映。
老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。
将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。
对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。
注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。
数学学习是智、情、意、行的综合。数学学习过程伴随着积极的情感体验、意志体验过程,记下自己学习过程的感受,可以用来更好地调控自己的学习行为。譬如,一道运算很繁杂的习题,依靠坚强的意志获得解题成功后,可在旁边写上“功夫不负有心人”等自勉的语句,用来激励自己。
学习过程中不可避免地会犯这样或那样的错误,“聪明人不犯或少犯相同的错误”,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。
数学的读书心得篇八
《自然哲学的数学原理》是第一次科学革命的集大成之作,被认为是古往今来最伟大的科学著作,它在物理学、数学、天文学和哲学等领域产生了巨大影响。在写作方式上,牛顿遵循古希腊的公理化模式,从定义、定律(公理)出发,导出命题;对具体的问题(如月球的运动),他把从理论导出的结果和观察结果相比较。全书共分五部分,首先“定义”,这一部分给出了物质的量、时间、空间、向心力等的定义。第二部分是“公理或运动的定律”,包括著名的运动三定律。接下来的内容分为三卷。前两卷的标题一样,都是“论物体的运动”。第一卷研究在无阻力的自由空间中物体的运动,许多命题涉及已知力解定受力物体的运动状态(轨道、速度、运动时间等),以及由物体的运动状态确定所受的力。第二卷研究在阻力给定的情况下物体的运动、流体力学以及波动理论。压卷之作的第三卷是标题是“论宇宙的系统”。由第一卷的结果及天文观测牛顿导出了万有引力定律,并由此研究地球的形状,解释海洋的潮汐,探究月球的运动,确定彗星的轨道。本卷中的“研究哲学的规则”及“总释”对哲学和神学影响很大。
《自然哲学的数学原理》无论从科学史还是整个人类文明史来看,牛顿的《自然哲学的数学原理》都是一部划时代的巨著。在科学的历史上,《自然哲学的数学原理》是经典力学的第一部经典著作,也是人类掌握的第一个完整的科学的宇宙论和科学理论体系,其影响所及遍布经典自然科学的所有领域,在其后的300年时间里一再取得丰硕成果。从科学研究内部来看,《自然哲学的数学原理》示范了一种现代科学理论体系的样板,包括理论体系结构、研究方法和研究态度、如何处理人与自然的关系等多个方面的内容。此外,《自然哲学的数学原理》及其作者与同时代著名人物的互动关系也是科学史研究和其它学术史研究中经久不息的话题。
当时英国皇家学会要出版这部书,但是凑不出适当款子,而皇家学会的干事胡克则声称万有引力的平方反比定律是他首先发现的,爱德蒙·哈雷出于气愤,提议牛顿写了这本书,并由他自费出版了牛顿的书,于1687年7月《自然哲学的数学原理》拉丁文版问世。1713年出第2版,1725年出第3版。1729年由莫特将其译成英文付印,就是现在所见流行的英文本。各版均由牛顿本人作了增订,并加序言。後世有多种文字的译本,中译本出版于1931年。该书的宗旨在于从各种运动现象探究自然力,再用这些力说明各种自然现象。全书共分四个部分。开头和第一篇介绍了力学的基本运动三定律与基本的力学量;其中质量的概念是由牛顿首先提出及定义的,但牛顿当时称其为“物质的量”,这一名称後来被另一个物理量使用。第二篇中,讨论了物体在阻尼介质中的运动,提出阻力大小与物体速度的一次及二次方成正比的公式。还研究了气体的弹性和可压缩性,以及空气中的声速等问题,这为牛顿提供了一个展示他数学技巧的舞台。第三篇题目为宇宙体系,讨论了太阳系的行星、行星的卫星和彗星的运行,以及海洋潮汐的产生,涉及到多体问题中的摄动。
牛顿并没有声称自己要构造一个体系。牛顿在《自然哲学之数学原理》第一版的序言一开始就指出,他要「致力于发展与哲学相关的数学」,这本书是几何学与力学的结合,是一种「理性的力学」,一种「精确地提出问题并加以演示的科学,旨在研究某种力所产生的运动,以及某种运动所需要的力。他的任务是“由动现象去研究自然力,再由这些力去推演其它的运动现象”。
然而牛顿实际上是构造了一个人类有史以来最为宏伟的体系,他所说的力,主要是重力,我们今天称之为引力,或万有引力,以及由重力所衍生出来的摩擦力、阻力和海洋的潮汐力等,而运动则包括落体、抛体、球体滚动、单摆与复摆、流体、行星自转与公转、回归点、轨道章动等,简而言之,包括当时已知的一切运动形式和现象。也就是说,牛顿是要用统一的力学原因去解释从地面物体到天体的所有运动和现象。
在结构上,《自然哲学之数学原理》是一种标准的公理化体系,它从最基本的定义和公理出发,「在第一编和第二编中推导出若干普适命题」,其中第一编题为“物体的运动”为全书的讨论做了数学工具上的准备,把各种运动形式加以分类,详细考察每一种运动形式与力的关系;第二编讨论“物体(在阻滞介质中)的运动”,近一步考察了各种形式阻力对运动的影响,讨论地面上各种实际存在的力与运动的情况。在第三编中“示范了把它们应用于宇宙体系,用前两编中数学证明的命题由天文现象推演出使物体倾向于太阳和行星的重力,再运用其他的数学命题由这些力推算出行星、彗星、月球和海洋的运动”。在全书的最后牛顿写下了一段著名的「总释」,集中表述了牛顿对于宇宙间万事万物的根本原因——万有引力以及我们的宇宙为什是一个这样的优美的体系的总原因的看法,集中表达了他对于上帝的存在和本质的见解。
数学的读书心得篇九
学习数学是一件需要耐心和恒心的事情,但是在学习过程中,我们经常会因为理解不了某个概念或者方法,而感到困惑和无助。近期我经历了一次与数学的“大战”,在这场战役中,我领悟到了简单学习数学的心得体会,今天我来和大家分享一下其中的经验与感悟。
第二段:提高自己的思考能力
学习数学的过程中,最重要的是培养自己的思考能力。我觉得正确的学习方法是,先要对接下来要学习的知识有一个大致的了解,可以通过查阅课本资料或者询问老师、同学来获取这些信息。接着,在课堂上认真听讲,因为在这个过程中,老师会告诉我们每一个知识点的核心概念和特点,同时也会介绍与之相关的例题。在听完老师讲解之后,我们需要拿出一定的时间来思考这些问题,这样才能更好地掌握知识的本质。
第三段:坚持练习和归纳总结
数学学习中少不了大量的练习题,坚持做题的同时,我们也要在练习的过程中进行反思。如果我们能写出一篇摘要,把学习到的知识点进行整理和总结,并且用自己的语言来概述,这样不仅可以让我们把学习到的内容更好地消化吸收,更重要的是,我们还可以用这种方式来检验自己对所学知识的理解程度。
第四段:善于利用工具
在学习数学的过程中,数学工具往往可以大大提高我们做题的效率。比如,我们可以利用电脑上的计算器或者一些简单的公式来计算,这样可以大大减少一些不必要的重复操作,提高效率。 同时,我们也需要注意一些数学工具的正确使用,这样才能更好地利用数学工具来帮助自己解题。
第五段:结语
在完成这篇文章的过程中,我深刻的认识到了学习数学的重要性和学习方法的重要性。通过积极的思考和坚持不懈地努力,我们可以学习到更多的数学知识,也能够对数学加深理解。对于那些一直被数学困扰的人来说,只要我们遵循好正确的学习方法,就一定会取得不错的成果,用轻松的方式学习数学,就让我们的学习之路变得更加的充实和幸福。
数学的读书心得篇十
上个周末,我阅读了《我就是数学》。一开始我被这霸气的书名震撼了,一种好奇心油然而生。这究竟是个什么样的老师?为什么这么说?于是我迫不及待看完了这本书。结果我再次被震撼了,也被这样一个爱数学、爱教育的人吸引了。感觉到华老师已经全身心都投在了数学上,投在了教育上。华老师真的就是为数学而生。他真的就是数学。
通读完了这本书后感觉好像得到了很多经验,感觉自己面对可爱的顽皮的小学生定能应付自如了。可是当我走进课堂面对五《1》和五《2》班学生的那种渴望与好奇的眼睛时。心里真的有懂了,华老师的课之所以那样精彩,很多都来自于他在课前的慎思,课前慎思不应只是去背诵你要怎样去说,而是要把自己的想法加进去,每个班级的学情也不尽相同,只有联系学生,联系生活才能把每一节课准备好。
同时,华老师也十分注重课中的求索,就是一件小事,他也能从中受益。我认为华老师的这一举动,即显示了对学生的尊重,又对学生起到了‘润物无声’的教育,即显示了一种精神,也显示了教师的一种气势。所以我要学习这种无声的教育,为自己修炼一堂人生之课。这样才能更好的传授生给学生知识,才能更好地教学生如何做人。
在教学中,才能在与孩子交往的过程中找到接触点,尤其要站在儿童的角度去思考,毕竟他们只是孩子。从华老师那里学到了课堂上的差错可能成为正确的‘先导’。善待差错,感谢差错。他告诉我们不能忽视学生出现的问题,课堂就是学生出错的地方,要冷静地分析,恰当地评价,灵活地纠正。华老师对于差错资源的有效利用,不仅保护了学生的学习积极性,还把‘阳光心态’传染给了我们,相信课堂因融错而精彩’!我要学习华老师那种教师的智慧就是要善于从学生95%错误的解答中发现那5%的正确的东西,给予热情的肯定,并积极加以引导,让学生一步一步推到那95%的错误。
最让我值得学习的就是华老师的课后反思,学生的一个错,一句话,都让他思考良久。课后他都会回想每一个教学环节,总结好的地方与不当之处,尤其是反思后的再实践,他认为再实践是对反思的检验与进一步反思的催生。当我读到这里时,甚感惭愧。回顾自己几十年的.教学,在这方面相差太远。如今面对新的环境,新的学生,我要重新定位,我相信自己,构筑理想课堂的愿望将不再遥远。
读完全书,我被华老师对教育的深深热爱所感动,被他灵活的智慧,渊博的学识所叹服,被他对工作的负责,对学生的尊重所敬佩。他已经把自己看作了数学的代言人,教学的生命体。所以才会有‘我就是数学的宣言吧!
最后,我要引用华老师的话激励自己:‘教育像农业一样需要信任,需要完善,需要耐心,需要期待,需要守望,教育是农业,不是工业,更不是商业,能像农民种地那样教书,真好!
数学的读书心得篇十一
记得那时刚上五年级刚学方程的时候,上课没有认真听讲,犯了错误,让我吃尽了苦头。
那天,放完学回家,妈妈把方程题印了出来,让我做题。“准是妈妈提前看我的书了,要不,怎会知道我开始学方程了。”自己心里嘀咕着。其中有一道题是:2x+5=45。
当时,可是把我给难住了,我真的是不会啊!嗨,早知道,上课认真听一下,这会也不会这样抓瞎。题看着我,我看着题,就这样漠视几分钟,也没写出来。只能放弃这道题,继续往下做,庆幸别的题,自己还算都做了出来,拐回头了,再看看这题,“题认识我,我不认识这题。”还是最终选择“自首”老实交代吧!
我把上课没有认真听讲,现在拿到这样的'题,无从下手的想法告诉了妈妈,妈妈知道了我的薄弱地方,加大了题量,只是为能真正弄懂,弄明白。
一道小小的题,不认真听讲的后果,我吸取这次教训,再也没有出现这样的状况。
数学的读书心得篇十二
有人说:“读一本好书,就是和一个品德高尚的人对话。”《我叫小学数学》就是这样一本好书。作者李烈对一些案例的点析,深入浅出,入情入理,发人深思。读完全书,给我留下了深刻的印象。
一个善于思考,能深入了解学生的老师,其身上一定闪动着智慧的灵光。书中有这样一个例子:一个学生上课频频举手,给老师的印象是“不懂装懂,随意举手,欺骗老师。”可是李烈老师经过深入了解后认定他有一颗好胜、上进心。由此可见,遇事要三思而后行,要先了解情况,再思考采取何种措施,使问题得到解决。
再如目前我们的大班额授课情况下,学生由于天赋不同,生长的环境不同,个人的`经历不同,因此差异是客观存在的。学生在同一班级中,由同一位老师引导学习相同的教材,所产生的的效果也是不同的。李烈老师注意到平等地对待每一个学生,承认学生是有差异,根据每个孩子的实际情况要求他们,及时肯定学生的点滴进步,帮助学生找到自我价值,看到自己付出努力后取得的成功,从而增强自信,身心得到健康发展。李烈老师的“差异性原则”通常是这样做的。
数学的读书心得篇十三
书到用时方恨少,事非经过不知难,有人说:“一本教育杂志,也应当是一所学校,有先进的教育理念,有切实、具体的可以给读者以启迪的教育案例,有高水平的服务……”而《初中数学教师》恰恰如此,它的文章精短实用,可读性强,内容实在,在推动教学改革、传递教学信息方面都有独到之处。
如今,做为一名初中数学教师,我更加希望能在教学方面得到一些切实具体的帮助,《初中数学教师》将怎样处理教材难点,怎样设计创造性教学方案等都为我们想到了。她的教学点评中肯,教案设计新颖,教学随笔精致。她贴近教改前沿,是初中数学教改的冲锋号。
“问渠哪得清如许,为有源头活水来”,“是固教然后知困,学然后知不足也”。因此,在教学中,书本是无言的老师,读书是我教学中最大的乐趣。比知识更重要的是方法,有方法才有成功的路径。教师今天的学习主要不是记忆大量的知识,而是掌握学习的方法——知道为何学习?从哪里学习?怎样学习?如果一个老师没有掌握学习方法,即使他教的门门功课都很优异,他仍然是一个失败的学习者。因为这对于处在终身学习时代的人来说,不啻是一个致命的缺陷。学习型社会为全体社会成员提供了充裕的学习资源。
比方法更重要的是方向。在知识经济大潮中,作为一名人民教师,应该认准自己的人生坐标,找准自己的价值空间。教书的生活虽然清贫,但一本好书会使我爱不释手,一首好诗会使我如痴如醉,一篇美文会使我百读不厌。我深深地知道,只有乐学的教师,才能成为乐教的教师;只有教者乐学,才能变成为教者乐教。
更多精彩的教师读书笔记推荐:
教师读书笔记摘抄
小学英语教师读书笔记
教师读书笔记:赏识助您走向成功
《学会做一个偷懒的老师》读书笔记
幼儿园教师读书笔记《3 —6岁儿童发展与学习指南》
数学的读书心得篇十四
一个奇特的数字电梯,你想进去吗?一个奇怪的数字大门,你想闯进去吗?一位可怕的数学魔鬼,你敢见它吗?如果你的答案是肯定的话,那就同我一起进入数学的世界吧!
“可怕”的数学这本书主要讲了数学里的圆、长方形、正方形等形状,还有一位数学魔鬼,它会领着你来到数学的王国里,当然它偶尔也会犯点小错误,但这些小错误为我们增添了许多乐趣。
数学两个字的含义数不清,也十分深奥,如果数学是一座很大的城堡,那么我才刚刚来到了这座城堡的大门口!大家如果喜欢数学,也来看看这本书,它不仅富含趣味性,还让所有读过这本书的人全都喜爱上数学。
数学的读书心得篇十五
你发现过生活中处处有数学吗?你发现过数学中的美和乐趣吗?这一本书将带着你一起去发现生活中的数学,去发现数学中的美和乐趣。
今天,大家就来听一听我的介绍吧!
这本书上有许多有趣的小故事。当你读完一个故事时,就会发现这个故事原来是一道数学题。书上有很多我喜欢的文章,如:数字黑洞、数学天气预报、圆形井盖和加减号的故事。我就先讲一讲《来之不易的加减号》这个故事吧!
加法符号,开始使用的是英文plus的.字头p。在德国使用词et(和的意思)。随着欧洲商业的繁荣,人们嫌写et慢了。为了加快速度把两个字连着写,慢慢的et变成了+号减法也一样,最初使用英文minus(减少)的字头m,而为了方便速写,逐渐变成了“—”。
大家听完我说的故事以后,是不是还想再听一个呢?那下课我们一起来看吧!

一键复制