在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
六年级鸽巢问题教学设计鸽巢问题教学设计华应龙篇一
上学期期末参加考试人数10人,本班学生总体上说比较爱学,对一些基础的知识大部分学生能扎实的掌握。但也有部分学生接受知识的能力相对较弱,学习基础又不扎实,从而导致学习成绩不理想。本学期将针对班级实际情况,切实提高每位学生的学习能力和学习成绩。
二、教材分析:
教学任务:本册教材内容包括:负数,比例,圆柱、圆锥和球,简单的统计,整理和复习等内容。
本册教材的教学是让学生:
1.负数的意义,会用负数表示日常生活中的问题。
2.理解比例的意义和性质,会解比例,理解正比例和反比例的意义,能够判断两种量成正比例或反比例,会用比例知识解决简单的问题;能给出的有正比例关系的数据在有坐标系的方格纸上画图,并能量的值估计另量的值。
3.会看比例尺,能方格纸等按的比例将简单图形放大或缩小。
4.认识圆柱、圆锥的特征,会计算圆柱的表面积和圆柱、圆锥的体积。
5.能从统计图表提取统计信息,解释统计结果,并能的判断或简单的预测;体会数据产生误导。
6.经历从生活中问题、问题、解决问题的过程,体会数学在日常生活中的作用,综合运用数学知识解决问题的能力。
7.经历对"抽屉原理"的探究过程,"抽屉原理",会用"抽屉原理"解决简单的问题,发展分析、推理的能力。
8.系统的整理和复习,对小学阶段所学的数学知识的理解和,的、灵活的计算能力,发展思维能力和空间观念,综合运用所学数学知识解决问题的能力。
9.体会学习数学的乐趣,学习数学的兴趣,学好数学的信心。
10.养成作业、书写整洁的习惯。
教学要求:
1、初步认识负数,能正确地读、写正数和负数;使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
2、掌握圆柱、圆锥的特征,掌握几何体体积的计算公式,学会正确计算它们的体积。
3、学会绘制复式统计表和统计图,并能看懂、分析统计图表中的数据所说明的问题。
4、理解比例的意义和性质,解比例,能正确判别成正比例或反比例的量,学会解答比较容易的比例应用题。
5、通过小学数学知识的系统复习整理,巩固和深化所学的数学知识,提高计算和解题能力,培养独立思考、不怕困难的精神。
教学重点:圆柱、圆锥 ,比例的应用,小学阶段主要数学知识的复习。
三、教学措施:
1、创设愉悦的教学情境,激发学生学习的兴趣。提倡学法的多样性,关注学生的个人体验。
2、在集体备课基础上,还应同年级老师交换听课,反思,真正领会教学设计意图,驾御课堂的能力。教师应转变观念,采用"激励性、自主性、性"教学策略,以问题为线索,恰当运用教材、媒体、现实材料、难点,变多讲多练,为精讲精练,真正师生互动、生生互动,从而调动学生学习,教与学的效益。
3、在教学中,为学生提供创造参与教学活动的情境,努力构建"和谐有效"课堂,通过操作、观察、讨论、比较等活动,先形象具体,后抽象概括,帮助学生理解和掌握知识点。
4、 在教学中还要注意抓住新旧知识的内在联系,教给学生恰当的学习方法,使学生了解知识间的横向联系。
5、 在教学中要重视学生的学法指导,培养学生的迁移、类推能力。
6、 抓好育尖补差工作,利用课余时间为他们补课。
四、课时安排
(一)、负数(3课时)
(二)、圆柱与圆锥(9课时)
1.圆柱………………………………………………………6课时
2.圆锥………………………………………………………2课时
整理和复习……………………………………………………1课时
(三)、比例(14课时)
1.比例的意义和性质…………………………………4课时
2.正比例和反比例的意义…………………………………4课时
3.比例的应用………………………………………………5课时
整理和复习…………………………………………………1课时
自行车里的数学……………………………………………1课时
(四)、统计(2课时)
节约用水……………………………………………………1课时
(五)、数学广角(3课时)
(六)、整理和复习(27课时)
1.数与代数…………………………………………………10课时
2.空间与图形………………………………………………9课时
3.统计与概率………………………………………………4课时
4.综合应用…………………………………………………4课时
六年级鸽巢问题教学设计鸽巢问题教学设计华应龙篇二
抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。
1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。
【教学方法】
1.借助学具,学生自主动手操作、分析、推理、发现、归纳、总结原理。
2. 适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。
4.完善评价体系,进行小组捆绑,激励学生全员参与,体验成功的乐趣。
5.师生课前准备:①学生:每组5根小棒、4个杯子;课件②学生记录自己是哪一个月出生的。③教师准备1副牌。
【教学目标】
知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
成比较抽象的数学思维。
情感目标:通过“抽屉原理”的灵活应用感受到数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。
【教学难点】理解抽屉原理,并对一些简单实际问题加以“模型化”。
【教具、学具准备】学生:每组5根小棒、4个杯子;课件
【教学过程】
一、联系生活,激趣导入
用一副牌展示“抽屉原理”。 (师生合作完成魔术)
师:同学们喜欢魔术吗?今天老师客串一下魔术表演,想见识见识吗?请全班同当老师的助手,每一个小组有一副牌,大家知道一副扑克牌有54张去掉两张王牌,剩52张,现在用它变一个魔术。这个魔术的名字叫“猜花色”。在组长的组织下每人随意抽五张牌先反扣在桌上。我猜,每位同学的手中至少有两张花色是相同的。是这样的吗?见证奇迹的时刻到了。请翻牌看看,老师猜得准么? 生:猜对了。
生:猜对了,给点掌声吧。老师为什么猜的那么准,想知道吗?其实这里面蕴藏着一个非常有趣的数学原理----抽屉原理(板书课题)相信你们认真学习后,会明白的。
(设计意图: 老师通过一个魔术展示了在生活里 “抽屉原理”问题中的一种,勾起了学生对这个魔术很好奇心,为原本枯燥的数学课注入了活力。)
师:看看这节课的学习目标。(指名读一读)
(设计意图: 建立明确的目标,就会引起师生注意的集中性和指向性,引起对某类知识,某种能力的强烈注意。就能在最短的时间,最省力地完成“三个维度”的目标,最有效的提高教学质量。)
二、动手实验、 探究新知
师:为研究这个原理,老师为大家准备了什么?
生:小棒和杯子(板书:小棒、杯子)
师:那我们今天就用小棒和杯子做几个有趣的数学实验来研究这个原理。
(一)第一步:研究4根小棒放入3个杯子中的现象。
1、请看大屏幕:
师补充:每个组要认真记录不同摆法。希望每个小组分工合作愉快,开始
2.汇报展示
师:大部分学生都摆完了,谁来说说,你们是怎么摆的?
4 0 03 1 0
2 2 02 1 1
(引导学生明确虽然摆放的顺序不一样,但是同一种放法)
师:老师欣赏这组同学的操作步骤,按一定顺序,可以做到不重复,不遗漏。
师:还有别的放法吗?
生:没有了。
(3)引导观察,得出结论。
引导学生观察4种方法,从而得出:总有一个杯子里面至少有2根小棒。
师:是的,这4种放法,不管怎么放,你有什么发现?)
1组:(可能会出现不同发现)
师:说啥?再说一遍。
生:
师:还有谁发现了什么?
生:
(设计意图:这个环节鼓励每个小组都说出自己的看法,因为学生思维能力的不同,得出的结论也就不同。只有通过多种思维的碰撞,学生的逻辑思维能力、解决问题的能力才能提高,对抽屉原理的认识才会更加深刻。)
师:再次观察四种方法,哪种方法能直接得到这个结论。
这种分法,实际就是先怎么分的?(引导平均分)
师:关于平均分有没有问题?我有一个问题,为什么用平均分这一种方法,就能得出总有一个杯子里的至少有2根小棒这个结论。
(二)第二步:研究5根小棒放入4个杯子中的现象。
1、课件出示:5根小棒放进4个杯子里你感觉会出现什么情况。
师:再往下继续研究,5根小棒放在4个小杯子里你感觉会出现什么情况,
生猜测:5根小棒放在4个小杯子,不管怎么放,肯定有一个杯子里至少有2根小棒。
师:对不对需要实验验证,我们还要像刚才那样一一把所有摆法都列举出来吗?用什么方法操作验证这个结论对错就可以了。
生:用平均分的方法就可以了。
师:咱们试试看,小组合作交流,用这种平均分的方法操作验证,并像黑板上那样记录在学案里。
2、展示摆法,引导观察发现:
师:哪一个小组愿意展示分享一下?
生:5根,每个小杯子放一根,剩下的一根放在其中的一个小杯子。(实际演示一下)
师:谁和他的分法一样的,这种分法,实际就是先怎么分的?(板书:平均分)
课件演示
生:5÷4=11
师:能解释算式里每个数的意义吗?
生:5表示小棒数,4表示杯子是,商1表示平均每个杯子放进1根小棒,余数1表示还剩1根小棒。
师小结:要想发现存在着“总有一个杯子里一定至少有2根”,先平均分,余下1根,不管放在那个杯子里,一定会出现“总有一个杯子里一定至少有2根”。 )
3、学以致用---照这样的思路,继续往前走:
课件出示:把7根小棒放进6个小杯子里,总有一个杯子里至少有( )根,。
100根小棒放进99个小杯子里,总有一个杯子里至少有( )
根。
师:这么大的数字,同学们这么快就得出了结论,你是不是发现了什么规律了?(小棒的数量与杯子的数量有什么关系?))还要操作验证吗?说说你的想法。
学生独立解决以上问题,在展示汇报时学生要说明白解决问题的方法是什么。
4、引导学生知识点小结:
六年级鸽巢问题教学设计鸽巢问题教学设计华应龙篇三
1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。
2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。
3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。
教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。
教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。
教学过程:
一、 唤起与生成
1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。
2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!
3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。
确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。
4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!
二、探究与解决
(一)、小组探究:4放3的简单鸽巢问题
1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
2、审 题:
①读题。
②从题目上你知道了什么?证明什么?
(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)
③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?
“不管怎么放”:就是随便放、任意放。
“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。
“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。
3、探 究:
②活 动:小组活动,四人小组。
听要求!
活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。
听明白了吗?开始!
3、反 馈:汇报结果
可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)
追 问:谁还有疑问或补充?
预设:说一说你比他多了哪一种放法?
(2,1,1)和(1,1,2)是一种方法吗?为什么?)
只是位置不同,方法相同
(1)逐一验证:
符合总有一个笔筒里至少有2支铅笔。
第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。
第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
符合条件的那个笔筒在三个笔筒中都是最多的。
(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。
所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
(二)自主探究:5放4的简单鸽巢原理
1、过 渡:依此推想下去
2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。
3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)
4、验 证:你们的猜测对吗?让我们来验证一下。
活动要求:
(1)思考有几种摆法?记录下来。
(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。
好,开始。(教师参与其中)。
5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法
(课件同步播放)
预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。
6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。
①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。
②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。
不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。
(三)、探究鸽巢原理算式
还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?
(好麻烦,是啊, 想想都觉得麻烦!)
3、平均分:为什么这样分呢?
生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)
师:你为什么要先在每个笔筒中放1支呢?
生:因为总共只有4支,平均分,每个笔筒只能分到1支。
师:为什么一开始就要去平均分呢?
生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。
生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
师:看来,平均分是保证“至少”数的关键。
4、列式:
①你能用算式表示吗?
4÷3=1……1 1+1=2
②讲讲算式含义。
a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。
b、真棒!讲给你的同桌听。
5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。
5÷4=1……1 1+1=2
说说算式的意思。
a、同桌齐说。
b、谁来说一说?
师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。
(四)探究稍复杂的鸽巢问题
2、题组(开火车,口答结果并口述算式)
(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔
(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔
7÷5=1…… 2 1+2=3?
7÷5=1…… 2 1+1=2
出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)
你认为哪种结果正确?为什么?
质 疑:为什么第二次还要平均分?(保证“至少”)
把铅笔平均分才是解决问题的关键啊。
(3)把笔的数量进一步增加:
8支铅笔放5个笔筒里,至少数是多少?
8÷5=1……3 1+1=2
(4)9支铅笔放5个笔筒里,至少数是多少?
9÷5=1……4 1+1=2
(5)好,再增加一支铅笔?至少数是多少?
还用加吗?为什么 10÷5=2 正好分完, 至少数是商
(6)好再增加一支铅笔,,你来说
11÷5=2……1 2+1=3 3个
①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)
②那同学们再想想,铅笔的支数到多少支时,至少数还是3?
③铅笔的支数到多少支的时候,至少数就变成了4了呢?
(8)算的这么快,你一定有什么窍门?(比比至少数和商)
(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)
3、观察算式,同桌讨论,发现规律。
铅笔数÷笔筒数=商……余数” “至少数=商+1”
你和他们的发现相同吗?出示:商+1
4、质疑:和余数有没有关系?
(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)
(五)归纳概括鸽巢原理
1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?
100÷30=3…… 10 3+1=4 至少数是4个
(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)
2、推广:
(1)书本放进抽屉
8÷3=2……2? 2+1=3
(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)
(2)鸽子飞进鸽巢
11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?
11÷4=2……3? 2+1=3
答:至少有 3只鸽子飞进同一只鸽笼。
(3)车辆过高速路收费口(图)
(4)抢凳子
书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。
3、建立模型:鸽巢原理:
知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。
5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?
有信心用我们发现的原理继续接受挑战吗?
3、巩固与应用
那我们回头看看课前小魔术,你明白它的秘密了吗?
1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。
答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。
正确应用鸽巢原理是表演成功的秘密武器!
2、飞镖运动
同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。
课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。
在练习本上算一算,讲给你的同桌听听。
谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)
41÷5=8……1? 8+1=9
在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。
3、我们六年级共有367名学生,其中六(2班)有49名学生。
(1)六年级里至少有两人的生日是同一天。
(2)六(2)班中至少有5人的生日是在同一个月。
他们说的对吗?为什么?
同桌讨论一下。
谁来说说你们的想法?
(1、367人相当于鸽子,365、或366天相当于鸽巢......
? 2、49人相当于鸽子,12个月相当于鸽巢......)
真理是越辩越明!
3、星座测试命运
说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?
你用星座测试过命运吗?你相信星座测试的命运吗?
我们用鸽巢原理来说说你的想法。
全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。
4、柯南破案:
大爷:是什么手机号呢?这么贵?
年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!
老大爷:哦!
听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。
聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?
(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)
4、 回顾与整理。
这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!
下 课!
板书设计:
鸽? 巢? 问? 题
物体? 抽屉 至少数
4? ÷ 3 =? 1……1 1+1=2?
5? ? ÷ 4? =? 1……1? ? ? 1+1=2?
7? ? ÷ 5? =? 1……2? ? ? 1+1=2
9 ÷ 5? =? 1……4? 1+1=2
11 ? ÷? 5? =? 2……1 ? 2+1=3
28 ÷ 5? =? 5……3? 5+1=6
100 ? ÷ 30? =? 3……1 3+1=4?
m ÷ n = 商……余数? 商+1
六年级鸽巢问题教学设计鸽巢问题教学设计华应龙篇四
1.了解两点确定一条直线和两条相交直线确定一个点,并能区分直线、线段和射线。
2.能结合具体情境认识角,会画出指定度数的角。
3.培养学生的动手能力和互相交流合作的意识。
重点:区分直线、线段和射线,认识角并会画角。
难点:理解线与角间的内在联系与区别。
量角器、尺子、课件。
师:我们在小学阶段学过哪几种线?认识哪些角?
生1:我们学过直线、射线、线段。
生2:我们认识直角、锐角、平角、钝角、周角。
师:这节课我们一起复习“线与角”。(板书课题:线与角)
1.复习线段、射线和直线。
课件出示:
师:你能说出上面的图形各是什么吗?
生:直线、射线、线段。
师:你能找出线段、射线、直线的区别吗?
学生分组讨论,教师巡视、辅导。
先请学生汇报结果,再给出下表,让学生完成。
端点个数 能否度量
线段
射线
直线
师:线段、射线和直线有什么联系?(线段和射线是直线的一部分)
师:长方形、正方形、三角形、平行四边形,它们的边是直线还是线段?(线段)
师:角的边是直线吗?
生:不是,角的边是射线。
2.角的整理与分析。
(1)让学生自己任意画一个角。
师:根据你画的角说一说,关于角,我们都学习了哪些知识?(板书:角)
教师画出一个角。
(2)学生回答,教师板书。
师:什么叫角?角的各部分名称是什么?
师:计量角的单位是什么?角的大小与什么有关?与什么无关?怎样画角?
师:按角的度数,角可以分为哪几种?
师根据学生的回答板书。
生1:由一点出发引出两条射线所组成的图形,叫作角。角由一个顶点和两条边组成。角的计量单位是度,符号是“°”。
生2:角的大小与两边张开的大小有关,与边的长短无关。
生3:根据角的度数,可以把角分为锐角、直角、钝角、平角、周角。
师:锐角是怎样的角?(教师画出图形并写出相应的特征)
师:大家能画出其余几种角的图形并说出它们的特征吗?
生:锐角是小于90°的角;直角等于90°;钝角大于90°且小于180°;平角等于180°;周角等于360°。
3.垂线和平行线。
师:在同一平面内,两条直线有哪几种位置关系?
生:相交(互相垂直与不垂直)和平行。
师:小组内互相说说什么叫互相垂直,什么叫平行线。
教师分别画出一组互相垂直和互相平行的直线。
生1:两条直线相交成直角时,这两条直线叫作互相垂直,一条直线叫作另一条直线的垂线。
生2:在同一平面内,不相交的两条直线叫平行线。
师:平行线间的距离有什么特点?
生:处处相等。
师:如何画一条直线的垂线和平行线?
学生分组讨论、交流,然后师生共同总结。
师:通过今天的复习,你掌握了哪些知识?
生1:能正确区分直线、线段和射线。
生2:能画出指定度数的角。
线与角
1.线
顶点个数 能否度量
线段 2 能
射线 1 不能
直线 无 不能
a 类
1.填空。
(1)线段有()个端点,射线有()个端点,直线()端点。
(2)两条直线相交组成4个角,如果其中一个角是90°,那么其他三个角是()角,这两条直线的位置关系是()。
(3)6时整,时针与分针所成角的度数是()。
(4)()决定了角的大小。
(5)135度角比平角小()度,比直角大()度。
2.判断。(对的在括号里画
估算。(教材第77~78页)
1.能结合具体情境进行估算并解释估算的过程,会选择合适的估算方法。
2.培养学生的估算习惯。
3.在解决具体问题的过程中感受估算的作用。
重点:能结合具体情境进行估算并叙述估算的过程。
难点:选择合适的估算方法。
课件。
课件出示教材第77页第2个主题图。
师:根据你估算的结果判断应该去哪个影院看电影。
生:应去星华影院。
师:六年级大约有多少人?
生:大约有270人。
师:这节课我们就一起来复习“估算”。(板书课题:估算)
师:在生活学习中,哪些时候要用到估算呢?
生1:买东西的时候要估算带的钱够买几件商品。
生2:计算前可以进行估算。
生3:计算后可以用估算的方法验证结果是否正确。
师:大家说得都很好,那么刚才那道题大家是用什么方法进行估算的?请你把自己的估算方法和小组内同学说一说。
生1:我的估算方法是把几个班的人数都看成40,40×6是240,所以应去星华影院。
生2:我的估算方法是把几个班的人数都看成50,50×6是300,所以应去星华影院。
生3:我的估算方法是把几个班的人数都看成45,45×6是270,所以应去星华影院。
师:大家都很棒,说出了不同的估算方法,希望大家在解决其他问题时也会选择合适的估算方法。
师:通过今天的复习,你掌握了哪些知识?
生:进一步理解了估算的过程,会选择合适的估算方法进行估算。
a 类
1.估一估下面各题的结果,并把错误的改正过来。
2.解决问题。
(2)一本故事书有268页,小明每天看35页,一周能看完吗?
(考查知识点:估算的意义;能力要求:能结合具体情境进行估算,会选择合适的估算方法)
b 类
某校组织学生春游,若租用45座客车,则有15人没有座位,若租同样数量的60座客车,则余一辆空车,其余刚好坐满。已知45座客车租金为220元,60座客车租金为300元。
(1)这个学校一共有学生多少人?
(2)怎样租车最划算?
(考查知识点: 估算的应用;能力要求:利用估算解决具体的实际问题)
课堂作业新设计
a 类:
1.略
2.(1)够(2)不能(3)能
b 类:
(1)240人
(2)租4辆45座客车和1辆60座客车最划算。
教材第77页“巩固与应用”
1.够不够
2.略
3.49≈5050×30=1500(字)15001528不能
4.略
5.小女孩儿估算的结果比精确结果大,小男孩儿估算的结果比精确结果小。

一键复制