作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。写教案的时候需要注意什么呢?有哪些格式需要注意呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。
人教版小学六年级数学教案及反思人教版小学数学六年级教学反思篇一
一、填空。
1、篮球个数是足球的125%,篮球比足球多( )%,足球个数是篮球的( )%,足球个数比篮球少( )%。
2、排球个数比篮球多18%,排球个数相当于篮球的( )%。
3、足球个数比篮球少20%。排球个数比篮球多18%,( )球个数最多,( )球个数最少。
4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的( )%,其余的果树占总棵数的( )%。
5、女生人数占全班的百分之几 = ( )÷ ( )
杨树的棵数比柏树多百分之几 = ( )÷ ( )
实际节约了百分之几 = ( )÷ ( )
比计划超产了百分之几 = ( )÷ ( )
6、20的40%是( ),36的10%是( ),50千克的60%是( )千克,800米的25%是( )米。
7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( )元。
二、解决实际问题
1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?
参考答案:
一、填空。
1、篮球个数是足球的125%,篮球比足球多( 25 )%,足球个数是篮球的( 80 )%,足球个数比篮球少( 20 )%。
2、排球个数比篮球多18%,排球个数相当于篮球的( 118 )%。
3、足球个数比篮球少20%。排球个数比篮球多18%,( 排 )球个数最多,( 足 )球个数最少。
4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的( 60 )%,其余的果树占总棵数的( 40 )%。
5、女生人数占全班的百分之几 = ( 女生人数 )÷ ( 全班人数 )
杨树的棵数比柏树多百分之几 =( 杨树比柏树多的棵数 )÷ ( 柏树棵数 )
实际节约了百分之几 = ( 节约的数量 )÷ ( 计划数量 )
比计划超产了百分之几 = ( 超产产量 )÷ ( 计划产量 )
6、20的40%是( 8 ),36的10%是( 3.6 ),50千克的60%是( 30 )千克,800米的25%是( 200 )米。
7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( 1.2a )元。
二、解决实际问题
1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?
(30 - 25)÷ 25 = 20 %
(480 - 450)÷ 450 ≈ 6.7%
10 ÷ 80 = 12.5 %
500 ÷ (5000 – 500) ≈ 11.1%
900 × 17% = 153(万元)
方法1:12 ×10% + 12 = 1.2 + 12 = 13.2(万元)
人教版小学六年级数学教案及反思人教版小学数学六年级教学反思篇二
一、填空。
1、( )÷15=0.8=( )%=( )成
2、篮球个数是足球的125%,篮球比足球多( )%。
3、一个圆锥的体积是76立方厘米,底面积是19平方厘米。这个圆锥的高是( )厘米。
4、如果3a=4b,那么a : b = ( ):( ) 。
5、一个直角三角形中,两个锐角度数的比是3 : 2 ,这两个锐角分别是( )度、( )度。
6、12的约数中可以选出4个数组成一个比例,请你写出比值不同的两组:( )、( )。
7、一个比例里,两个外项正好互为倒数,其中一个内项是2.5,另一个内项是( )。
8、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘米。
9、一个长为6厘米,宽为4厘米的长方形,以长为轴旋转一周,将会得到一个底面直径是( )厘米,高为( )厘米的( )体,它的体积是( )立方厘米。
二、选择。
2、下列说法正确的有 。
a、表示两个比相等的式子叫做比例。 b、互质的两个数没有公约数。
c、分子一定,分数值和分母成反比例。d、圆锥的体积等于圆柱体积的 。
三、计算。
1、用递等式计算。(12分)
2、解方程。(6分)
四、画一画。(5分)
学校的操场长150米,宽60米,请你根据比例尺在下面的空白处画出操场的平面图。(并请你标明比例尺及长宽的厘米数) (1:3000)
五、解决实际问题(25分)
2、一个圆柱形的无盖水桶,底面半径4分米,高6分米,至少需要用多少平方分米的铁皮?(用进一法取近似值,得数保留整数);如果用来装水,可以装多少千克水?(每升水重1千克)
结用去绳长25厘米。
(1)、扎这个盒子至少用去塑料绳多少厘米?
参考答案:
一、填空。
2、篮球个数是足球的125%,篮球比足球多( 25 )%。
3、一个圆锥的体积是76立方厘米,底面积是19平方厘米。这个圆锥的高是(12)厘米。
4、如果3a=4b,那么a : b = ( 4 ):( 3 ) 。
5、一个直角三角形中,两个锐角度数的比是3 : 2 ,这两个锐角分别是(54)度、(36)度。
( 2 :3 = 4 :6 )、( 1 :3 = 4 :12 )。
7、一个比例里,两个外项正好互为倒数,其中一个内项是2.5,另一个内项是( 0.4 )。
8、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,圆柱的体积是( 157.7536 )立方厘米。
9、一个长为6厘米,宽为4厘米的长方形,以长为轴旋转一周,将会得到一个底面直径是( 8 )厘米,高为(6)厘米的( 圆柱 )体,它的体积是( 301.44 )立方厘米。
10、 如左图所示,把一个高为10厘米的圆柱切成若干等分,拼成一个近似的长方体。如果这个长方体的底面积是50平方厘米,那么圆柱体积是( 500 )立方厘米。
二、选择。
2、下列说法正确的有 a c 。
a、表示两个比相等的式子叫做比例。 b、互质的两个数没有公约数。
c、分子一定,分数值和分母成反比例。d、圆锥的体积等于圆柱体积的 。
三、计算。
1、用递等式计算。(12分)
2、解方程。(6分)
四、画一画。(5分)
学校的操场长150米,宽60米,请你根据比例尺在下面的空白处画出操场的平面图。(并请你标明比例尺及长宽的厘米数) (1:3000)
长:150米 = 15000厘米 15000 × = 5厘米
宽:60米 = 6000厘米 6000 × = 2厘米
2厘米
5厘米 比例尺:
五、解决实际问题(25分)
5000 ×5.22% × 3 × (1 - 5%) = 743.85(元)
2、一个圆柱形的无盖水桶,底面半径4分米,高6分米,至少需要用多少平方分米的铁皮?(用进一法取近似值,得数保留整数);如果用来装水,可以装多少千克水?(每升水重1千克)
3.14 ×4 + 3.14 ×4 × 2 × 6 = 200.96(平方分米)≈ 201(平方分米)
结用去绳长25厘米。
(1)、扎这个盒子至少用去塑料绳多少厘米?
(1)、(50 + 15)× 2 × 2 + 25 = 285厘米
(2)、3.14 × 50 × 15 = 2355平方厘米
人教版小学六年级数学教案及反思人教版小学数学六年级教学反思篇三
;1.结合具体情境,理解分数乘法的意义,引导学生充分利用已有的知识和经验,探索分数乘法的计算法则及分数连乘的计算方法,并能够熟练地进行计算。
2.使学生会解答“求一个数的几分之几是多少”的简单实际问题,增强应用数学的意识。
3.结合计算和解题过程,进一步培养学生仔细计算、认真检查和及时验算的良好习惯。
1.通过教学活动,体会新旧知识之间的内在联系。
分数乘法包括“分数乘整数”和“一个数乘分数”这两部分内容。先教学分数乘法的意义,通过具体例子,知道一个数乘分数不能再用整数乘法的意义来解释,需要扩展乘法的意义。然后教学分数乘法的计算法则,要与分数乘法的意义紧密联系起来。最后着重教学“求一个数的几分之几是多少”的应用题。教学时,也要紧密结合一个数乘分数的意义,突出把哪个量看作单位“1”,为学生更好地掌握分数乘法应用题的分析方法做好准备。
2.教学分数乘法的计算时,应注意与学生的现实生活紧密联系,激发学生学习的兴趣。
计算问题是在现实生活中产生的,有着丰富的现实背景。老师要立足现实基础,把计算问题还原到需要通过分数乘法计算解决的现实问题中去,使学生充分感受到通过计算可以解决一些实际问题,体会到学习计算的必要性。
3.抓住本单元的知识重点,给学生提供探索与交流的空间,在探索的过程中,理解算理和算法。
本单元的教学重点是分数乘法的计算法则,教学难点是使学生在具体情境中理解一个数乘分数的意义。在学习分数乘分数时,老师可以用折纸的方法让学生理解算理与算法,可以通过“动手操作—学生展示操作方法—老师演示—学生联想操作过程,尝试计算—小组讨论,归纳算法—概括计算方法”的过程来完成对一个数乘分数意义的理解以及算法的探索。
4.练习的内容和形式要有新意、有深度,以增强学生的学习兴趣。
(1)加强思考性,学生不仅要算,而且还要想,使学生在思考中计算。
(2)富于趣味性。
(3)体现教育性。
1 分数乘法…………………………………………………………..5课时
2 解决问题………………………………………………………….2课时
整理和复习……………………………………………………………...2课时
分数乘整数
教材第2、第3页的内容及练习一的第1、第2题。
1.在具体情境中,使学生理解分数乘整数的意义。在理解算理的基础上,掌握分数乘整数的计算方法。
2.能运用“先约分再相乘”的方法正确计算,提高计算能力。
3.培养学生认真书写、仔细审题的良好习惯。
重点:理解分数乘整数的意义,在理解算理的基础上正确计算。
难点:运用“先约分再相乘”的方法正确进行计算。
实物投影。
1.求5个12是多少。
用加法算:12+12+12+12+12=60
用乘法算:12×5=60
提问:12×5这个算式的意义是什么?
2.计算。
提问:这个算式有什么特点?应该怎样计算?
3.小结。
老师:整数乘法的意义就是求几个相同加数的和的简便运算。
同分母分数的加法计算法则:分子相加的和作分子,分母不变。
1.出示例1。
(1)用加法计算。
(3)提问:这里为什么用乘法?乘法的意义是什么?
学生讨论交流。
(4)小结:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
2.出示例2。
(3)展示学生的做法,让他们分别说一说自己的算法。
(4)归纳总结。
老师:这一道题同学们想出了这么多种解法,观察一下它们有没有什么相同点。
学生发现:分子相乘的积作分子,分母没有变化。
提问:哪种方法更简便,为什么?
老师强调:能约分的可以先约分再计算,这样比较简便,不易出错。
3.练习。
(1)完成教材第2页“做一做”的第1题。
要求学生说清为什么用乘法计算,表示的意义是什么。
(2)完成教材第2页“做一做”的第2题。
要求学生写出计算过程,在订正时叙述过程,强调能约分的要先约分,再计算。
(3)完成教材第6页练习一的第1题。
要求学生讲清分数乘整数的意义,再直接口算出结果。
加强计算方法的对比,可以请计算快的同学说一说自己的口算方法,进一步强化“先约分,再计算”的方法。
(4)完成教材第6页练习一的第2题。
独立列式解答,集体订正。
1.先在正方形中涂出2个,再算一算涂色部分一共占这个正方形的几分之几。
2.在里填上合适的数。
3.×3==
思维训练
教材习题
教材第2页做一做
1.学生对整数乘法和分数加法已有一定的经验,可以结合起来进行教学。
2.学生在刚学习分数乘法时可能会有时想不到先约分,老师应该强调这一点。
3.学生不太习惯借助线段图理解运算,要引导学生体验数形结合思想的意义。
这部分内容是在已学的整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过“吃蛋糕”这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的学习。通过分数加法来进一步学习分数乘整数的计算
方法。学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法
推导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总
结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分,
所以老师在教学时,还要强调这方面的内容。
1.引导学生根据线段图直观地理解分数乘法的意义。
在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应
用分数乘整数的计算法则,比较熟练地进行计算。通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
2.在教学中突出知识是可以迁移的,沟通加法和乘法间的内在联系。
促进学生自主探索和归纳出分数乘整数的计算方法。虽然分数乘整数和整数乘整数的计算意义完全相同,都是求几个相同加数的和的简便运算,但是计算的方法却有很大的差别,因此我们必须让学生知其所以然,即为什么用分子与整数相乘的积作为分子,分母不变的道理。
分数乘分数
教材第3、第4页的内容及练习一的第3~6题。
1.结合具体情境,理解一个数乘分数的意义并掌握分数乘分数的计算方法。
2.提高学生的计算能力,使学生能够正确、熟练地进行计算。
3.培养学生审题认真、书写工整的好习惯。
理解分数乘分数的意义,掌握分数乘分数的计算方法并能正确计算。
练习题投影片,每人准备一张形状规则的纸。
1.口算。
2.口头出题列式。
强调:求一个数的几分之几是多少,要用乘法计算。
1.出示例3。
学生读题,理解题意。
老师:通过读题,请你找出已知条件和问题。
提问:通过找已知条件和问题,你知道了什么?
引导学生说出:公顷是这块地的总面积,种土豆的面积占这块地的,种玉米的面积占,问题是求种土豆和种玉米的面积分别是多少公顷。
2.确定方法。
提问:这道题用什么方法计算?为什么?
学生:用乘法计算,因为求一个数的几分之几是多少,就用这个数乘分数。
学生动手折纸。
老师:涂色部分占这张纸的几分之几?()
追问:你是怎么算的?
质疑:分数乘分数应该怎样计算?
归纳:分数乘分数,用分母与分母相乘的积作分母,分子与分子相乘的积作分子。
4.练习。
(1)完成教材第6页练习一的第3题。
老师要求学生写出计算过程,并指导书写。
投影展示学生的书写过程,集体订正。
(2)完成教材第6页练习一的第4题。
学生写完后,要求他们说出每个算式的意义。
(3)完成教材第6页练习一的第5题。
这是应用题,要强调书写的规范性。
1.口算下面各题。
教材习题
教材第4页做一做
1.学生已经了解了分数乘整数的意义。
2.学生比较难以理解分数乘分数的意义和算理。
3.学生容易把分数加法与分数乘法的计算混淆,要帮助学生区分。
分数乘分数的意义是分数乘整数意义的扩展,且计算算理较难理解,所以这部分内容是本节教学的重点,也是难点。记住分数乘法的计算法则并不困难,但让学生理解分数乘法的算理,尤其是分数乘分数的算理,是本节教学的难点。要充分借助学生已有知识基础,通过观察、实验、操作和推理等探索性与挑战性的活动,去理解算理,
同时培养学生的观察、动手、分析和推理等能力。另外,学生可能会把分数加法与分数乘法的计算混淆,要通过判断、改错和对比练习等形式帮助学生区分,使学生能够正确计算分数乘法。
1.在解决实际问题的过程中,借助问题情境将已有的知识迁移。
学生已经理解了分数乘整数的意义,应该让他们通过知识迁移理解分数乘分数的意义。通过直观操作的方法,引导学生自主探索和归纳分数乘分数的计算方法,理解分数乘分数的算理。培养学生用简洁的语言表达思考的过程,发展学生观察推理的能力。
2.利用直观操作的方法,让学生经历、探索分数乘分数的算理形成的过程,并归纳出算理。
先约分再计算结果的分数乘法
教材第5页的内容、练习一的第7~13题,第8页例5。
1.通过学习,理解分数乘分数的计算法则也适用于分数和整数相乘,加深对分数乘法计算法则的理解。
2.进一步提高学生计算的准确性和灵活性。
3.培养学生良好的书写习惯。
正确掌握分数和整数相乘的约分方法,灵活计算。
口算卡,练习题投影片。
1.说出下面各算式的意义。
1.揭示课题。
老师:我们已经会计算分数乘分数了,而整数也可以看作分母是1的假分数,所以我们也可以用分数乘分数的法则来计算分数乘整数的算式。
板书课题:分数乘整数的约分方法
2.出示例4。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)理解题意。
少千米,用什么方法计算?为什么?
学生甲:应该用乘法计算。因为是在求一个数的几分之几是多少。
学生乙:已知速度和时间,求路程,用乘法计算。
老师:同学们从不同角度说明了这道题为什么用乘法计算,有的同学想到了分数乘法的意义,有的同学想到了“路程、速度和时间”这三者之间的关系,真的很棒。
学生互相交流,得出结论。
(3)计算。
提问:怎样计算更加简便?
明确:能约分的可以先约分再乘。
(5)分析错因。
提问:为什么第三种答案与其他两种不同呢?错在哪里?
学生自由发言。
追问:分数和整数相乘怎样约分?
小结:因为整数都可以看作分母是1的分数,所以分数乘分数的法则也适用于分数乘整数。
3.巩固练习。
(1)完成教材第5页的“做一做”。
学生可以先说意义再计算,集体订正答案时,请学生说出计算方法。
(2)完成教材第6页练习一的第7题。
老师对掌握程度不同的学生可以有不同的要求,引导学生找出当一个数分别乘一个比1大的数、比1小的数和等于1的数时,积与第一个因数之间的大小关系。
(3)完成教材第6页练习一的第8~13题。
学生独立完成后,集体订正答案。
4.出示例5。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)探究算法。
老师:我们已经学会分数乘分数、分数乘整数的计算方法,那么分数乘小数怎么算呢?
板书:分数乘小数的计算方法
学生1:可以把2.1转成分数进行计算。
1.在○里填上“”“”或“=”。
1.先计算下面各题,说一说发现了什么规律。
(2)略
分数乘整数的约分方法
分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
运用约分对分数乘分数进行简便运算时,约分后分子和分母必须只有公因数1,计
算后的结果才是最简分数。
分数乘小数的计算方法。计算小数乘分数时,可以把小数转化成分数进行计算,即分子与分子相乘,分母与分母相乘,然后约分就可以了;也可以把分数化成小数,按照小数乘小数的计算方法进
行计算;在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。
1.学生已经了解了分数乘整数和分数乘分数、分数乘小数的意义。
2.学生还不习惯分数乘法先约分再乘。
3.有些学生不清楚整数该与分数的分子还是分母约分。
本部分内容主要教学分数乘法在乘的过程中的简便的书写格式。教材一方面把分数乘法的两种形式集中呈现,加强它们之间的对比和联系,一方面提出分数和整数相乘怎样约分的问题,让学生知道除了像例4那样进行约分,也可以把分数的分母与整数直接约分。这部分内容是在学生学过分数乘整数的基础上进行教学的,它是后面学习分数除法以及分数乘除法应用题的基础。
1.加强两种形式的乘法的对比练习。
学生已经理解了分数乘整数和分数乘分数的意义,通过对比练习可以找到两种形式的乘法之间的联系。
2.引导学生观察教材的约分过程,想一想与例2的约分形式有什么不同。特别要注意提醒学生要先观察能否约分,并且注意提醒他们不能把整数与分数的分子约分。
分数混合运算和整数乘法运算定律应用到分数乘法
教材第8、第9页的内容及练习二的第6题。
1.使学生知道分数乘加、乘减混合运算与整数混合运算的运算顺序相同,理解整数乘法的运算定律对于分数乘法同样适用,能正确运用这些定律进行分数乘法的简便运算。
2.培养学生的简算意识和简算能力。
3.培养学生养成良好的审题习惯,能认真计算。
运用乘法运算定律正确进行分数乘法的简算。
练习题投影片。
1.说出下面各题的运算顺序。
7×3+5×825×(24-19) (7+25)×442+26×17147÷7×21
28+28÷7
老师:分数乘加、乘减混合运算与整数混合运算的运算顺序相同。
2.尝试练习。
出示例6。
1.知识铺垫。
(1)老师:我们已经学过了长方形的面积的计算方法,请你们说一说,怎样来求长方形的面积。
学生1:我用“(长+宽)×2”来求。
学生2:我用“长×2+宽×2”来求。
学生3:我把四条边直接相加来求。
学生回答,老师板书公式。
(2)根据公式列出算式并求解。
提问:从上面的算式中,你发现了什么规律?
学生互相交流。
2.归纳小结。
整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
3.用字母表示乘法运算定律。
提问:如何用字母来表示这些运算定律,你还记得吗?
学生回忆,老师板书:
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
4.运用定律,解决问题。
老师:应用乘法运算定律,可以使一些计算简便。
出示例7。
1.引导观察。
老师:仔细观察题中的数和运算符号有什么特点,怎样使计算简便一些? 学生审题,思考运用哪个运算定律可以使计算简便。
2.学生尝试计算。
提问:想一想简算的依据是什么。
3.练习。
完成教材第9页的“做一做”。
学生先独立完成,再说一说运用了什么定律。
提问:可以把87分解成什么?(86+1)
这样转化后可以运用哪个运算定律进行简算?
如果班里学生水平较高,可以让做出这道题的同学进行讲解,老师适时给予评价。
1.填空。
根据( ) 根据( )
课堂作业新设计
分数乘法的运算顺序和运算定律
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
分数乘加、乘减混合运算的运算顺序同整数乘加、乘减混合运算的运算顺序相同。
没有括号的先算乘法,后算加、减;有括号的,先算括号里面的,再算括号外面的。
整数乘法的交换律、结合律和分配律,对于分数乘法同样适用。
1.学生已经掌握了分数乘法计算、整数乘法运算定律、整数乘法运算定律推广到小数乘法等相关知识。
2.六年级的学生已经具备了自主探索、合作交流的能力,这一点应该鼓励,并对做得好的同学适当给予表扬。
本部分教学整数乘法运算定律推广到分数。教材首先说明分数混合运算的顺序与整数混合运算顺序相同。在此基础上安排两个例题。例6结合具体计算,说明乘法运算定律在分数乘法运算中的应用。例7通过观察计算得出“整数乘法的交换律、结合律和分配律,对于分数乘法也适用”。“做一做”安排运用运算定律进行分数乘法的简便计算。整数乘法运算定律学生已经学习了,但掌握不是很牢固,所以课前复习和回顾对本节课的学习非常重要。
新课教学分为两个层次。
第一层次由整数乘法推广到小数乘法引入,通过教师创设的问题,引发学生的认知冲突,进而组织学生猜想:能否推广到分数乘法。让学生自由地、充分地发表观点后,引导学生自行设计方案来验证猜想,开放了教学的时空。学生的思路突破了教材的束缚,使学习数学的过程真正成为生动活泼的、主动的、富有个性的过程。
第二层次为例题教学。从个体的尝试,到小组间交流,再到全班汇报,步步为营,层层递进,始终紧扣“简算时,运用了什么定律”展开。实践自己探究出的新知,使学生获得了成功的体验,增强了学习数学的自信心;在独立解题后再交流,使小组合作落到实处,也进一步扩充了课堂教学的信息渠道。
巩固分数乘加、乘减混合运算及简算
教材第10~12页练习二的第3~17题。
1.通过练习,熟练掌握分数乘法的计算法则,能熟练地运用定律进行简便计算。
2.进一步提高学生计算的准确性及灵活性。
3.进一步培养学生养成良好的审题习惯。
能正确灵活地运用乘法运算定律进行简便计算。
练习题投影片。
错例剖析。老师出示下面3道题。
学生认真审题后,说一说以上3道题哪些做得不对,错在哪里,应怎样改正。
1.基本练习。
(1)完成教材第10页练习二的第6题。
老师可以留出5分钟~8分钟的时间让学生独立完成,做完后请学生说清自己进行简便计算的依据,并指出关键步骤。
老师强调:当算式中含有不同级的运算时,要按顺序计算。
(2)完成教材第11页练习二的第10题。
老师先指导学生观察每道题的特点,再挑出可以简算的题目。
学生在5分钟内完成。
(3)完成教材第10页练习二的第5题。
学生先判断对错,再说明理由,最后改错。
2.综合练习。
(1)完成教材第11页练习二的第8题。
这道题学生可能会用不同方法解答,老师鼓励学生从不同角度考虑问题。学生说出思路时,老师要给予积极评价。
(2)完成教材第11页练习二的第9题。
这道题是长方形面积公式的考查,计算后集体订正。
(3)完成教材第12页练习二的第14题。
指导学生先找出已知条件,再计算。
学生做题之前可以先说明思路,再用不同方法解答。
1.说出下面各算式的意义并口算出结果。
1.在○里填上“”“”或“=”。
思维训练
1. =
2. (1)b (2)b (3)a (4)a
分数连乘应用题
教材第13、14页的内容及练习四第1~3题。
1.使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题。
2.培养学生解决问题的能力,提高学生的分析能力。
3.进一步提高学生思考问题的逻辑性。
重点:掌握分数连乘的计算方法,突出一次计算。
难点:会解答用分数连乘计算的实际问题。
练习题投影片。
1.说出下面算式表示的意义,再口算出得数。
学生同桌讨论,集体订正。
1.出示例8。
多少平方米?
学生读题,明确题意。
2.指导学生折纸或画图。
提问:怎样用画图表示已知条件和问题?
提问:要求红萝卜地的面积,就要知道哪个量?(萝卜地的面积) 萝卜地的面积和哪个量有关系?(整个大棚的面积)
用下面的图来表示数量关系:
3.列式解答。
提问:根据以上分析,这道题应该怎样解答?
提问:怎样列综合算式解答?
根据综合算式,让学生说一说每一步分别求的是什么,每一步分别是把哪个数量看作单位“1”。
强调:分数连乘不必像整数、小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分子相乘。
4.练习。
(1)完成教材第16页练习三的第1、第2题。
学生做完后,要说明每一步表示的意义,每一步都是把哪个数量看作单位“1”。
(2)完成教材第16页练习三的第3题。
1.计算下面各题。
光。小聪、小明和小智三人谁喝到的果汁多?为什么?
课堂作业新设计
教材习题
教材第14页做一做
“求比一个数多几分之几的数是多少”的实际问题
教材第14页的内容及练习三的第4~7题。
1.使学生会解答“求比一个数多几分之几的数是多少”的应用题。
2.在解答应用题的过程中,进一步培养学生画线段图的能力,从而提高学生解答这类应用题的熟练程度。
掌握分析方法,正确熟练地解决实际问题。
练习题投影片。
1.把计算结果相等的算式连起来。
如果学生没有理解,老师可以启发。
(3)问题是求谁每分钟心跳的次数?(婴儿)
3.用线段图来表示题中的数量关系。
老师:观察线段图,你能想到解决的方法吗?
学生1:我可以先求出婴儿每分钟比青少年多跳的次数,然后加上青少年心跳的次数即为所求。
学生2:我可以先求出婴儿每分钟心跳的次数是青少年的几分之几,然后乘青少年心跳的次数即为所求。
老师:根据两位同学的描述,板书解答过程。
=135(次)
答:婴儿每分钟心跳135次。
4.小组合作,总结已知一个数量比另一个数量多几分之几,求这个数量是多少的解题方法。
汇报:(1)单位“1”的量+单位“1”的量×另一个数量比单位“1”多的几分之几=另一个数量。
(2)单位“1”的量×(1+另一个数量比单位“1”多的几分之几)=另一个数量。
5.练习。
(1)完成教材第15页的“做一做”。
(2)完成教材第16页练习三的第4~7题。
1.根据题意,把相对应的数量用线连起来。
2.分析数量关系。
练习三
“求比一个数多几分之几的数是多少”的实际问题
已知一个数量比另一个数量多几分之几,求这个数量的解题方法:
(1)单位“1”的量+单位“1”的量×另一个数量比单位“1”多的几分之几=另一个数量。
(2)单位“1”的量×(1+另一个数量比单位“1”多的几分之几)=另一个数量。
解决这类问题时要注意当多个单位“1”出现时,一定要找准所给分率以哪个量为单位“1”,做到正确对应。
1.有部分学生不知道把哪一个数量看作单位“1”。
2.利用线段图可以引导学生直观地分析和理解数量关系,应该多采用。
本节课仍然学习解决较复杂的求一个数的几分之几的问题。例9与例8不同在于它不是整体与部分之间的比较,而是两个数量的比较关系,即已知一个数量比另一个数量多(少)几分之几,求这个数量。解答方法和思路与例8相同,但因为是两个数量间的比较,要区分出把哪一个数量看作单位“1”,理解上相对难一些。
=800+300
=1100(台)
答:今年生产拖拉机1100台。
复习分数乘法的意义和计算方法
教材第17页的内容及练习四的第1~3题。
1.复习分数乘法的意义和计算法则,掌握乘法运算定律在分数乘法中的推广和分数乘法的简便计算。
2.进一步提高学生计算分数乘法的熟练程度和灵活计算的能力。
3.进一步培养学生认真书写及良好的审题习惯。
巩固分数乘法的意义,提高灵活计算的能力。
口算卡,投影片。
1.口算。(老师出示口算卡,指名学生回答)
提问:以上几道题有的是整数乘分数,有的是分数乘分数,都可以看成是一个数乘分数,一个数乘分数的意义是什么?
学生分别说出以上几道题的意义。
让学生看教材第17页的第3题,指名读题目要求。
提问:为了计算简便,在分数乘法中应该先做什么?(指名回答)(先约分,再做乘法)
提问:这道题中,有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分)
请全班同学在练习本上完成各题。
提问:我们学过哪些乘法运算定律?它们在分数乘法中适用吗?
全班同学完成教材第17页的第2题,老师检查巡视。
课上练习,完成教材第18页练习四的第1~3题。
先让学生独立审题,在练习本上解答,然后请几名学生说一说自己是怎样做的,着重说一说在进行简便运算时运用了什么定律。
直接写出得数。
教材习题
整理和复习
复习分数乘法的应用题
教材第18页的第4、第5题。
1.通过复习分数乘法的应用题,进一步加深对“求一个数的几分之几是多少”
的分数意义的理解。
2.提高学生分析、解答分数应用题的能力。
正确分析数量关系,熟练掌握求一个数的倒数的方法。
练习题投影片。
1.完成教材第18页练习四的第4题。
学生独立审题,分析数量关系,在练习本上解答。老师巡视,进行个别指导。
请一名学生在黑板上板演数量关系式,并讲一讲是怎样分析的,在计算中把什么数量看作单位“1”。
老师结合学生的讲解,进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就要把那个数量看作单位“1”。在解答两步计算的分数应用题时,更要注意每一步是把什么数量看作单位“1”,在两步计算中的单位“1”可能是不同的。
2.完成教材第18页练习四的第5题。
先让学生自己在练习本上解答,然后请几名学生说一说自己是怎样分析解答的,集体订正。
1.投影出示。
(1)
(2)
指名学生口述已知条件和问题。
学生思考,口答列式。
提问:这两道题有什么相同之处?(单位“1”的量已知,都是整体与部分之间的
关系)
2.出示练习。
(1)(2)
提问:这两道题有什么相同之处?(单位“1”的量已知,都是两个数量的比较关
系)
学生口述条件和问题,并列式解答。
1.填空。
2. (1)c (2)a 思维训练
4
教材习题
练习四
1.通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法。
2.使学生能根据方向和距离确定物体的位置,并能描述简单的行走路线。
1.注意创设活动情境,鼓励学生自主探索、合作交流。学生已经具有从方位角度认识事物的基础,并随着年龄的增长,他们的语言表达能力、动手操作能力和自主探索能力也有所提高。因此,在教学时要充分关注学生已有的知识基础和生活经验,创设大量的活动情境,为学生提供探究的空间,让学生通过观察、分析、独立思考、合作交流等方式,进一步从方位的角度认识事物。
2.在这个年龄,学生的求知欲和好奇心较强,老师要充分调动学生的积极性,引导学生自主探索、独立思考。并且由于学生的个性差异,不同学生认识事物的方法也不尽相同,老师要鼓励学生勇于发表自己的意见,大胆地与同伴进行合作与交流。通过这样的过程,使学生学会用不同的方式探索和思考问题,不断提高自己的思维水平。
3课时
根据方向和距离两个条件确定物体的位置
教材第19页例1及第20页做一做。
1.使学生明确可以根据方向和距离两个条件确定物体的位置。
2.使学生了解确定位置的知识在生活中的应用,感受数学与日常生活的联系。
3.培养学生锻炼身体的意识。
根据条件正确确定物体的位置。
例题主题图,教材第20页“做一做”图片投影片。
联系实际。
新学期,我们班又迎来了一名新同学,他对于学校的位置还不很熟悉,现在让我们大家一起给他当向导,让他尽快熟悉各专用教室的位置。
集体来到操场,用手势表示出东、南、西、北、东北、东南、西北、西南八个方向。
分组练习,辨认方向。
1.出示例1。
老师板书:目前台风中心位于a市东偏南30°方向、距离a市600km的洋面上,正以20千米/时的速度沿直线向a市移动。
学生反复读几遍。
老师提问:东偏南30°是什么意思?
小组讨论,然后集体订正答案。
老师追问:如果只有这个条件,能够确定台风中心的具体位置吗?
小组讨论,说说各小组的想法。
老师接着问:如果只知道台风中心到a市的距离,能够确定台风中心的具体位置吗?
经过讨论,使学生明确:想确定一个物体的准确位置,只知道方向或距离是不行的,要同时知道这两个条件才行。
老师:前面我们已经掌握了准确确定位置的方法,那怎么求台风大约多少小时到达a市?
学生:根据“速度×时间=路程”这一关系可以求出。
600÷20=30(时)
答:台风大约30小时后到达a市。
2.尝试练习。
(1)投影出示教材第20页的“做一做”。
(2)说出八个方向。
(3)看一看:从图中你获取了哪些信息?
(4)投影出示要解答的问题。
①学校在小明家北偏东25°的方向上,距离是400 米。
②书店在小明家东偏南30°的方向上,距离是200 米。
③邮局在小明家西偏南35°的方向上,距离是600 米。
④游泳馆在小明家西偏北40°的方向上,距离是600 米。
(5)想一想。
解答这些问题,需要用什么工具?(量角器、直尺)
量角器的使用方法是什么?
(6)尝试独立完成。
(7)交流解题中遇到的问题。
互相解疑。
怎样算出小明家到各建筑物的距离?
引导观察,小明家到学校的距离是多少?(400米)从中你发现了什么?[从小明家
到学校这段距离被平均分成了4份,400÷2=200(米),那么每一小段的距离是200米,由此可以推导出小明家到各建筑物的距离]
(8)再次检验自己的计算结果。
(9)集体交流反馈。
教材第23、第24页练习五的第1~5题。
动手连一连。
南偏西40°超市5千米
北偏东30°医院3千米
东偏南45°学校4千米
北偏西25°公园2千米
课堂作业新设计
1.略
2.(1)正西400
(2)西北45°300
(3)东北30°300
(4)南东30°400
(5)西南40°300
3.西南40°东北40°
4.西南45°1000 东北45°
思维训练
1.本节课的学习,学生学习兴趣较浓,知识理解得很好,可见,在教学中我们应该随时调整好自己的教学方法,与学生融为一体,会达到意想不到的效果。
2.在练习过程中,由于场地仅限于室内,有局限性,部分习题仍需教师点拨,又因为所处的地理环境,居住地区的方向感很好辨认,学生的学习积极性较高,如果有条件,带学生到大自然中体会一下会更好。
3.整个教学过程,注重学生的学习自主性,发挥了学生的主体作用,鼓励学生合作、思考、讨论,拓展学生的学习思路;同时,注意引导学生把所学的知识或发现的
规律运用到实际中去,培养了学生应用数学知识的能力。
教学根据方向和距离描述物体的位置。例1呈现了台风的运行情况,使学生明
确可以根据方向和距离两个条件确定物体的位置。
在确定物体的位置时可能会出现两种答案:东偏南30°或北偏东30°,教师应
告诉学生在生活中,一般我们先说与物体所在方向离得较近(夹角较小)的方位,例如,本例题中的方向一般说成“东偏南30°”。
通过第一学段的学习,学生已经能够根据上、下、左、右和东、南、西、北等
八个方向描述物体的相对位置,初步认识了在平面内可以通过两个条件确定物体的
位置。本节在此基础上,让学生学习根据方向和距离两个条件确定物体的位置,使学
生进一步从方位的角度认识事物,更全面地感知和体验了周围的事物,发展了空间观念。
1.通过尝试练习,学生能理解本节课的难点,会清晰地表述任意角度的方向。
2.教师指引学生科学的探索方法,鼓励学生敢说敢想,逐层深入;学生通过观察、独立思考、合作交流等方式,利用已有知识进行迁移,在自我反复修正中,掌握本节课知识要点。
3.当学生遇到复杂的知识时,教师要放手让学生自主探讨,鼓励学生主动寻找其实际背景,探索其应用价值,以便今后能运用数学知识解决现实生活中的问题。
定向运动的诞生和发展
1.了解定向运动的诞生。
定向运动已经有100多年的历史了,诞生在北欧。早年在北欧的斯堪的纳维亚半岛,广阔而崎岖不平的土地上覆盖着一望无际的森林,其中还散布着无数的湖泊,城镇和村庄稀疏地点缀在其中,生活在这里的人们常常需要穿越人迹罕至的森林,行走在时隐时现弯弯曲曲的小道上,地图和指南针就成了他们的生活必需品。没有地图和指南针,稍不留神,就可能迷失在茫茫的林海中。
2.定向运动的发展。
不少国家的军队发现,如果他们不具备在山林中辨别方向、选择道路和越野行进的能力,就不能很好地完成军事任务,因此,军人不知不觉中成为开展定向运动的先驱。
定向运动能迅速普及和发展起来,与定向运动自身的特点有关。它不仅对提高野外判定方向的能力及学习使用地图有好处,还能培养和锻炼人的勇敢、顽强的精神,提高人的智力和体能水平。平民百姓也发现,这项运动不像其他体育项目那样需
要在经费、器材等方面进行很大的投入,有一个指南针和一张地图就可以开展此项运动。
根据方向和距离在图上标出物体的位置
教材第20页的例2及第21页做一做。
1.使学生知道如何根据方向和距离,在图上标出物体的位置。
2.培养学生互相交流的习惯。
3.培养学生从各种角度思考问题的能力。
能够在图中正确标出物体的位置。
人教版小学六年级数学教案及反思人教版小学数学六年级教学反思篇四
教学内容:
人教版小学数学教材六年级下册第107页例1及相关练习。
教学目标:
1.体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。
2.体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。
3.在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。
重点难点:
积累数形结合数学活动经验,体验数学思想方法的价值,激发兴趣。
教学准备:
课件,不同颜色的小正方形。
学具准备:
不同颜色的小正方形,吸铁板,作业纸。
教学过程:
一、谈话导入,出示课题
教师:最近老师发现,我有一项非常神奇的本领。什么本领呢?我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5……像这样的算式,我都算得特别快。你们信吗?
教师:不信也没关系,我们现场来比一比。
师生比赛,看谁算得快。
教师:这个方法快吗?你们想不想也像老师一样算得快呢?
教师:老师给你们一点点提示,我是借助图形发现这个方法的,今天这节课我们就来研究──数与形(板书)。
【设计意图】从谈话导入,通过设置悬念,激发学生学习兴趣,从而顺理成章地引出课题。
二、动手实践,以形解数
1.教师:我先根据算式中的加数拿出若干个图形。比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。
教师:接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看?
教师:先来两个加数的,再来三个加数的。请同学们在小组内先完成第一步,再完成第二步,看看哪个小组最先发现老师的方法。
2.小组动手操作,教师巡视。
3.学生汇报,全班交流分析。
先讨论1+3,再讨论1+3+5。
教师:根据同学们的汇报,大家认为1+3=22,1+3+5=32。除了这两组同学的汇报,你们还有其他发现吗?
学生:算式中加数的个数是几,和就等于几的平方。
教师:你们认同他的方法吗?能不能举个具体的例子来说一说?
学生1:1+3+5+7+9=52。
学生2:1+3+5+7+9+11=62。
教师:那我们从头来看一看。请看屏幕:1+3+5+7+9=(52)。
教师:一个小正方形可以看成12,想要拼成一个更大的正方形,再增加1个是不够的,增加的个数要比前一个加数再多2(也就是3);想拼成更大的正方形,再增加3个是不够的,还要比3个再多2个(也就是5个),此时是1+3+5;再往下去,要加7才能拼成更大的正方形,依此类推,加到了9,就能排成每行、每列的个数是5的大正方形。
教师:那看来只要是1开始的,连续的奇数相加,就能排成每行、每列个数是几的大正方形,和也就是几的平方。
4.练习。
(1)1+3+5+7+9=( )2;
1+3+5+7+9+11+13=( )2;
____________________________=92。
教师请学生独立完成,然后全班核对答案。
(2)利用规律,算一算。
1+3+5+7+5+3+1=( );
1+3+5+7+9+11+13+11+9+7+5+3+1=( )。
全班交流,请学生说明计算结果和原因。
5.小结。
教师:我们同学都很细心,现在不但能很快算出从1开始的连续奇数的和,稍加一点变化,你们也照样算得很快。现在知道老师是用什么方法来快速计算这些题的吧?
教师:这么巧妙的方法,我们是借助什么发现的?(图形)。看来,有的计算问题借助图形解决会更容易。就像这个题一样,我们借助图形发现了更巧妙、更简便的方法。
【设计意图】充分让学生动手实践,感受如何将数和形结合,体会数和形之间的紧密联系,同时让学生感受到“形”可以展示“数”的特点,通过“形”使解决“数”的问题变得更加容易。
三、练习巩固
1.下面每个图中各有多少个红色小正方形和多少个蓝色小正方形?
学生回答,课件出示答案。
教师:请你认真思考、观察,上边的图形和对应的数之间有什么规律?四人小组交流。
教师:刚才有一个同学说,蓝色的小正方形顺次增加1个,红色的小正方形顺次增加2个。为什么蓝色的小正方形每次增加1个,而红色的小正方形每次增加2个呢?
教师:我们一起来看一看。第一个图形,若要增加1个蓝色小正方形,其上方、下方就要各增加1个红色小正方形;依此类推,第三个图形在第二个图形的基础上增加了1个蓝色小正方形,则红色小正方形就要增加几个?
教师:如果不让你看图,照这样画下去,第6个和第10个图形各有几个红色小正方形和蓝色小正方形呢?你能写出来吗?在草稿本上写一写。
教师请学生介绍,说说是怎么算出来的。
教师:观察发现,图形中左右两侧的红色小正方形个数固定不变(为6个),在中间部分,蓝色小正方形的个数乘以2就是红色小正方形的个数。即使在蓝色小正方形个数较多的情况下,仍然可以算得很快,看来图形问题确实也蕴涵着数的规律。找到了其中的规律,解决问题就清晰、容易多了。
2.课件出示教材第109页练习二十二第2题。
(1)教师:上方有图,下方有对应的数字,请你观察和思考,图和数之间有什么规律?小组交流一下。
全班交流。
学生:第2个图形中小圆的个数为1+2,第3个图形中小圆的个数为1+2+3,第4个图形中小圆的个数为1+2+3+4。
学生:是第几个图形,其中就有几行小圆。
教师:照这个规律往下画,你能画出来吗?图形下方的数字表示的是什么?第5个、第6个、第7个图形下方的数,你能不能很快写出来?
教师请学生独立完成在练习纸上。
教师请学生汇报,说说是怎么得到结果的。
教师:图形中的最后一行是第几行?含有几个小圆?
教师:现在如果老师不让你画图,你能不能想象一下第10个图形,它是什么样子的?一共有多少个小圆呢?现在我们就不画图,算一算,第10个图形下方的那个数是多少?能算出来吗?动笔试一试。
展示学生作品,请学生介绍方法。
(2)教师介绍“三角形数”“正方形数”。
教师:同学们发现没有,55个小圆能排成什么图形?(三角形)而且这个三角形的每一行的小圆的个数分别是从1到10。
教师:回过头来看看。3、6、10、15、21呢?它们是否也具有同样的特点?
教师:在数学上,我们把1、3、6、10、15、21、28这样的数称为“三角形数”。请同学们想一想,28后面的下一个三角形数是多少?(36)
教师:大家再看,一个图形,如果是4个小正方形可以拼成大正方形,如果是9个小正方形可以拼成大正方形,16个小正方形也可以拼成大正方形。像这样的数,我们称之为“正方形数”。
【设计意图】通过两个练习,让学生进一步体会数形结合的特点,感受用形来解决数的有关问题的直观性与简捷性。在练习中充分让学生动脑、动口、动手,在交流中发现特点,解决问题。
四、回顾反思
教师:今天这节课,我们一起学习了“数与形”,说说你有什么收获?
课后反思:
形的问题中包含着数的规律,数的问题也可以用形来帮助解决,教学时,让学生通过解决问题体会到数与形的完美结合,通过数与形的对应关系,相互印证结果,发现 “和”都是“平方数”,再通过图形的规律理解“平方数”(即正方形数)的含义,并让学生大胆说出自己发现的其他规律,从不同角度寻找规律,例如从第一个图到第三个图,每次增加多少个小正方形,用加法怎样列式,加数都是连续奇数,这些奇数在图中什么地方,从而对规律形式更直观的认识。
人教版小学六年级数学教案及反思人教版小学数学六年级教学反思篇五
教学内容:
小学数学六年级下册p112-113练习二十二1~7题。
教学目标:
1.通过练习,进一步掌握统计与概率的相关知识。
2. 能解决统计与概率相关的简单实际问题。
3. 感受数学与生活的紧密联系,提高学习数学的兴趣和学好数学的自信心。
重点、难点:
1.掌握统计与概率的基本知识和方法。
2.灵活应用统计与概率的相关知识解决实际问题。
教学准备:
教学挂图,小黑板,自主检测题等。
教 学 过 程
一、情境引入,回顾再现
1.回顾统计与概率的相关知识。
组织学生简单回忆,说一说:
本单元学习了统计图,统计表;平均数,中位数,众数;以及游戏公平,可能性等概率问题。
2.揭示课题。
师:那么这节课我们就来对本部分知识进行练习。
板书课题:统计与概率练习
二、分层练习,强化提高
(一)基本练习。
1.
(1)该公司去年全年的销售情况如何?
(2)该公司的发展前景怎样?
(3)你还能提出哪些问题?
①组织学生独立解答.
②汇报订正,说解题思路。
教师引导学生从图中的变化趋势上来分析问题,从而得出结论:该公司去年总体经营情况很好,产量和销量不断增长,第四季度增长幅度较快,而且出现了销量大于产量的良好势头。由此可以作出预测:该公司在未来的一段时间内将有良好的发展。
2.
①组织学生独立解答.
②汇报订正,说解题思路
教师注意提醒学生考虑事件发生的等可能性以及几率的多少。
(二)综合练习。
①组织学生独立解答第一小题。
②小组交流讨论,解答第二小题。
师根据学生的汇报,让学生明确在研究一组数据的分布情况时,用平均数、中位数或众数作为数据的代表都是可以的。但是在一般情况下,用平均数作为数据代表的时候较多,它与这组数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减少这种影响,在评分时就采取去掉一个分和一个最低分,再计算平均数,这样做是合理的。
①组织学生独立思考。
②小组交流讨论,汇报结果。
本题是有关众数的应用的练习。从进货和销售数量的差来看,尺码是35、37、39三种型号的鞋进货有些多了,下一次进货时可考虑适当降低数量;但从销量来看,37码的鞋仍然排名第一,36和38码的列第二、三名,所以每种型号的鞋的进货量的比例总体上不会有大的变化。研究一组数据的频数大小分布情况时,应用了众数的知识。
(三)提高练习。
①组织学生独立思考。
②小组交流讨论,汇报结果。
六(2)班同学的血型情况如图,
(1)从图中你能得到哪些信息?
(2)该班有50人,各种血型有多少人?
本题是有关可能性的习题,对简单事件发生的可能性作出预测。从两队的历史战绩来看,各是两胜一平两负,不相上下;从这一点来判断,两队获胜的可能性都是二分之一。但是,仔细观察可以发现:在离比赛日最近的两场比赛中均是乙队获胜,说明最近乙队的状态好于甲队,由此可以预测:乙队获胜的可能性稍大一些。这种判断也有一定道理。
三、自主检测,评价完善
自主检测
1.填空:
(1)人们对收集的统计数据经过分析整理后可以制成( )还可以制成( )
(2)( )统计图可以清楚地表示出各部分同总数之间的关系。
(3)( )统计图既能表示出数量的多少,又能反映出数量变化情况
2.选择:
(1)评价一个班整体学习成绩情况,看( )比较合适?
a.平均数 b.中位数 c.众数
(2)为了清楚地表示出2007年各月平均气温变化情况,应绘制( )。
a.条形 b.折线 c.扇形
3.做一做:
有a—j 10张字母卡片,小明翻字母卡片,小红猜小明的字母卡片,如果小红猜对,小红获胜,如果小红猜错了,小明获胜。
(1)你认为这个游戏规则对双方公平吗?对谁有利?
(2)请设计一个双方公平的游戏规则。
四、课堂总结
1.教师评价:通过本节课的练习大都分同学掌握较好,值得表扬。
2.学生谈收获:通过本节课练习你有什么新的收获?
板书设计:
统计与概率练习
统计表
统计图:条形统计图;折线统计图;扇形统计图
统计量:平均数;中位数;众数
可能性:等可能;公平;
作业设计
基础:
1.简单的统计图有( )统计图、( )统计图和( )统计图。
2.( )统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出( )。
3. 4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是( ),中位数是( ),平均数是( )。
4.在一组数据中,( )只有一个, 有时( )不止一个,也可能没有( )。(填众数或中位数)
人教版小学六年级数学教案及反思人教版小学数学六年级教学反思篇六
学习目标:
1.运用所学的圆、比例等知识解决问题。
2.了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
3.通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。
4.经历解决问题的基本过程,了解数学与生活的密切关系。
学习重点:运用所学的比例或与其相关的知识解决自行车中的数学问题。
学习难点:运用所学的比例或与其相关的知识解决自行车中的数学问题。
学习准备:课件等。
学习过程:
环节预设 教师活动 学生活动 设计意图
一、情境导入 “你知道哪些自行车的种类?”
出示各种自行车的图片 学生积极思考、回答问题。 先给出学生一个熟悉的生活场景,便于学生理解。
二、新知讲授 (一)揭示课题
1.说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2.自行车里会有数学问题吗?想一想。
(二)研究普通自行车的速度与内在结构的关系
1.提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2.分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数
3.建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4.汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。
(三)研究变速自行车能组合出多少种速度
1.提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2.分析问题,求解,汇报。
3.蹬同样的圈数,哪种组合使自行车走得最远? 学生讨论交流并回答问题。
学生通过观察、思考、讨论、合作、解决问题等一系列学习过程,逐步培养自己的合作探索精神,更加善于在生活中进行学习。
动手操作的过程中,学生会逐渐融入到知识形成的整个过程当中去,培养学生解决实际问题的能力,了解数学与生活的密切关系。
三、巩固应用 1、已知:前齿轮齿数为:26,后齿轮齿数为:16,车轮直径为:66cm。问:①你能算出蹬一圈,它能走多远?②小红家距离学校大约500米,从家到学校至少要蹬多少圈?
共两题 学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。
四、课堂小结
你有什么收获? 学生思考并回答 让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。
人教版小学六年级数学教案及反思人教版小学数学六年级教学反思篇七
教学内容:
人教版小学数学教材六年级下册第98~99页例2及相关练习。
教学目标:
1.了解三种统计图的不同特点,使学生知道对于同样的数据可以有多种分析方法,能根据需要选择合适的统计图,直观、有效地描述数据,培养进一步发展数据分析观念。
2.通过对三种统计图的认识、制作和选择,进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切联系。
教学重点:
了解不同统计图的特点;能根据实际问题选择合适的统计图,培养统计观念。
教学难点:
根据实际问题选择合适的统计图。
教学准备:
课件。
教学过程:
一、复习引入
1.复习扇形统计图。
上节课我们学习了扇形统计图,你对它了解了多少?
课件出示扇形统计图:我国居民平均月膳食各类食物的摄入量占总摄入量的百分比就可以用扇形统计图来表示。它能清楚地反映出各部分与总数之间的关系。
2.你还学过了哪些统计图?它们各有什么特点?
根据学生回答,课件随机点击出现相关内容。
(1)条形统计图,能清楚地看出各个数量的多少。
(2)折线统计图,不仅可以反映数量的多少,还能反映出数量增减变化趋势。
通过刚才的复习,我们发现,生活中有时用扇形统计图,有时用条形统计图,还有用到折线统计图的情况。那么人们在选择统计图时,是以什么为依据的呢?这三种统计图各有什么特点和用途呢?这就是我们本节课要研究的问题。
3.揭题:选择合适的统计图。(板书)
【设计意图】通过对三类统计图特点的复习,唤醒学生对已有知识基础的回忆,为接下来统计图的选择做好准备。
二、探究新知
1.学习教材第98页例2第(1)组数据。
课件出示
(1)绿荫小学2007-2011年校园内树木总量变化情况统计表。
仔细观察,你得到了哪些数学信息?如果让你用统计图表示这一组数据,你觉得可以用哪一种统计图?
学生:可以用折线统计图。
教师引导学生观察:统计图的横轴表示什么?竖轴表示什么?怎样确定竖轴上的数据每一格表示多少?(课件演示绘制过程)
教师:还可以用其他统计图吗?
学生:还可以用条形统计图来表示。(如果学生没有说到条形统计图,教师课件展示。)
教师:我们来看一看,条形统计图能不能把统计表中的信息完整地表示出来呢?
学生:可以把每年的树木总量表示出来;还可以通过条形的起伏看出大致的变化趋势。
引导比较:这张统计表中的信息可以用条形统计图来表示,也可以用折线统计图来表示,你觉得用哪一种更合适,为什么?可以同桌讨论。
小结:折线统计图能更加直观地表示出数量随着时间的变化趋势。相对来说,这里用折线统计图更合适一些。
【设计意图】通过对第(1)组数据的分析,让学生明确如何根据统计表所提供的数据特点来制作统计图,不局限于选择某一种统计图,以拓宽学生的思路,最后通过观察比较,选择更为合适的统计图种类。
2.学习教材第98页例2第(2)(3)组数据。
我们还对绿荫小学的树木进行了其他方面的统计,请看下方表格(课件出示统计表)。
请仔细阅读统计表信息,它们可以用什么统计图来表示?试着在练习纸上画一画。
比一比:你认为哪种统计图能更加直观地表达统计表中的信息?
交流反馈
第(2)张表格:可以用条形统计图来表示,也可以用扇形统计图来表示(课件演示)。
比较:都能表示出各种树木占树木总量的百分比,但扇形统计图能更加直观地反映出各种树木的数量和树木总量之间的关系。是的,当需要了解部分与整体之间的关系时,选择扇形统计图更合适。
第(3)张表格:给出了各种树木的数量,只能用条形统计图来表示。
为什么不用其他的统计图?
各种树种处于平等、独立的地位,用折线统计图表示是不合适的。
因为缺乏相应的百分比数据,所以也无法用扇形统计图表示。
3.课堂小结:通过刚才的学习,你知道了什么?
小结内容可以包括:三种统计图各有什么特点?在描述各种数据的时候可以用哪些统计图?其中哪些更有优势?用哪些统计统计图又是不合理的?
【设计意图】例题反映了根据不同的情况选择不同的统计图。第(2)张表格可以用不同的统计图,第(3)表格只能用一种统计图,选择什么样的统计图能更适当、清晰反映数据,通过让学生在自主分析数据以及制作、选择、比较统计图的过程中,进一步加深对三种统计图的特点的理解。
三、巩固练习
1.教材第99页“做一做”。
课件出示题目:在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。下面是我国乔木林各龄组的面积构成情况。
以上信息可以用什么统计图描述?哪种更直观?
(1)学生独立思考完成。
(2)交流反馈,根据学生回答出示统计图(可以用条形统计图完成,也可以用扇形统计图来完成)。
引导比较:用扇形统计图能更加直观地反映出它们之间的关系。
2.考考你:选择最合适的统计图。
(1)如果我想制作一个统计图,使它能够清晰地反映世界人口从1957—2014年的变化情况,你认为选择哪种统计图最合适?
(2)如果我想制作一个统计图,使它能够反映2014年各大洲人口占世界人口的百分比,你认为选择哪种统计图最合适?
(3)如果我想制作一个统计图,使它能够反映2014年各大洲人口的具体情况,你认为应该选择哪种统计图?
3.教材第103页第7题。
(1)学生独立完成。
(2)集体交流订正。
【设计意图】利用练习让学生在选择统计图的多样化选取和优化选择的过程中,进一步理解每种统计图的特点,对三种统计图产生整体的认识。
四、回顾总结,布置作业
1.这节课我们学习了什么?现在你知道如何正确选择统计图了吗?
2.课外作业:教材第104页第8题。
课后反思:
在这节课里我给予学生自主学习的时间与空间,让学生在认识扇形统计图后,自己去解决问题,领悟知识的内涵,放飞自己的思想,通过学生的自主学习体现其主体地位;而我只是学生的组织者、引导者、合作者、倾听者,通过参与学生活动中以启发、调整、激励体现主导地位。数学源于生活,又服务于生活。本课从课前准备、引例到生活拓展,注重选取与学生生活息息相关的事件进行分析研究,真正做到人人学有价值的数学,发展学生的数学应用意识,使学生进一步感受数学与生活的密切联系,享受用数学解决实际问题带来的乐趣,学生的学习效果较好,只是在语言逻辑叙述上个别同学较欠缺,有待于进一步有意识训练。
人教版小学六年级数学教案及反思人教版小学数学六年级教学反思篇八
1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是( )厘米,宽是( )厘米,这张图片( )不变,大小( )。
2、一块正方形的花手帕,边长10厘米,将其按( )的比放大后,边长变为30厘米。
3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。
4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?
5、在2∶5、12∶0.2、310∶15 三个比中,与5.6∶14 能组成比例的一个比是( )。
6、在比例里,两个( )的积和两个( )积相等。
7、如果a×3=b×5,那么a∶b= ( ) ∶ ( )。
8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:
( ) ∶ ( ) = ( ) ∶ ( )。
9、根据3×8 = 4×6写成的比例是( )、( )或( )。
10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是( )∶( )。
13、解比例
14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( )。
参考答案:
1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是( 4 )厘米,宽是( 3 )厘米,这张图片( 形状 )不变,大小( 变了 )。
2、一块正方形的花手帕,边长10厘米,将其按( 3 : 1 )的比放大后,边长变为30厘米。
3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。
4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?
(1) 因为6 :10 = ,9 :15 = ,所以6 :10 = 9 :15。
(2) 因为20 :5 = 4,4 :1 = 4,所以20 :5 = 4 :1。
(3) 因为5 :1 = 5,6 :2 = 3,所以5 :1 和 6 :2不能组成比例。
5、在2∶5、12∶0.2、31∶15 三个比中,与5.6∶14 能组成比例的一个比是(2∶5 )。
6、在比例里,两个( 外项 )的积和两个( 内项 )积相等。
7、如果a×3=b×5,那么a∶b= ( 5 ) ∶ ( 3 )。
8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:
10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是( 3 )∶( 1 )。
解:设平行四边形的高是ⅹ厘米。
36 : 24 = 24 : ⅹ
36ⅹ = 24 × 24 ┈┈ 根据比例的基本性质
36ⅹ = 576
ⅹ = 16
答:平行四边形的高是16厘米。
解:设梯形的上底是ⅹ厘米,高是y厘米。
ⅹ = 15 y = 18
答:梯形的上底是15厘米,高是18厘米。
13、解比例
14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( 3 )。

一键复制